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SOME REMARKS ON OPERATOR EQUATION
Cφ = CψX

TAKUYA HOSOKAWA AND MICHIO SETO

Abstract. We discuss linear equations whose coefficients are bounded composi-

tion operators on the Hardy space over the unit disk. Some connections between

those equations, Pick interpolation and de Branges-Rovnyak spaces are studied in

detail.

1. Introduction

Let D denote the open unit disk in the complex plane C, and let H2 be the Hardy

space over D. S will denote the set of all holomorphic functions which map D into

itself. For every φ in S, a linear operator Cφ is defined as Cφf = f ◦ φ for any f in

H2. It is well known that the Littlewood subordination theorem implies that Cφ is

bounded. It should be mentioned that Jury gave another proof of boundedness of

composition operators with symbols in S as an application of de Branges-Rovnyak

space theory in Jury [1]. The purpose of this paper is to study the following operator

linear equation:

Cφ = CψX, (1.1)

where φ and ψ are fixed in S. In this paper, the equation (1.1) is said to have a

solution if there exists a linear operator A such that C[z] is contained in domA, the

domain of A, and Cφf = CψAf for any f in domA.

This paper is organized as follows. Section 2 is the preliminaries. In Section

3, we study solutions in the set of bounded analytic functions H∞. A necessary

and sufficient condition that the equation Cφ = CψX is solvable in H∞ is given.

In Section 4, we will see a certain connection between that condition and the de
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Branges-Rovnyak theory. In Section 5, we deal with a similar problem in the Drury-

Arveson space.

2. Preliminaries

We shall begin with some trivial cases. If φ is a constant function valued at a point

a in D, then Cφ is the point evaluation Pa at a. It is not difficult to see the following:

(i) Suppose that φ is not constant and ψ ≡ b ∈ D. Then the equation Cφ =

CψX has no solution.

(ii) Suppose that φ(z) ≡ a ∈ D and ψ is not constant. Then the equation

Cφ = CψX has the unique solution X = Pa.

(iii) Suppose that φ(z) ≡ a ∈ D and ψ(z) ≡ b ∈ D. Then the equation Cφ =

CψX has infinitely many solutions.

(iv) If Cψ is invertible, then X = Cφ◦ψ−1 .

(v) If Cφ is invertible, then Cψ is also invertible and X = Cφ◦ψ−1 .

To avoid these cases, in the rest of this paper we assume that φ and ψ are not either

constant or automorphisms of D.

Proposition 2.1. Suppose that the equation Cφ = CψX has a solution. Then there

exists a function u in
∩
p≥1H

p such that φ = u ◦ ψ, where Hp denotes the Hardy

space for 1 ≤ p <∞.

Proof. Let A be a solution of Cφ = CψX. We set un = Azn and u = u1. Trivially,

it follows that φ = u ◦ ψ. Moreover, we have that

un ◦ ψ = (u ◦ ψ)n = φn = Cφz
n = CψAz

n = Cψun = un ◦ ψ.

By the unicity theorem, we have that un = un. Hence u belongs to H2n for every

n ≥ 0. This concludes the proof. □

Remark 2.1. The conclusion of Proposition 2.1 implies that φ(λ) = φ(µ) if ψ(λ) =

ψ(µ). Hence, it is easy to find pairs of functions φ and ψ in S such that Cφ = CψX

has no solution.

Let kλ be the reproducing kernel of H2 for λ ∈ D. Then it is well known that

C∗
φkλ = kφ(λ). Let Tu be the Toeplitz operator for u ∈ H∞. Then we also have that

T ∗
ukλ = u(λ)kλ.

3. Solutions in H∞

Let 0 < r ≤ 1. We set

Qr(z, λ) =
r2 − φ(λ)φ(z)

1− ψ(λ)ψ(z)
.
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In particular, Q1 will be abbreviated as Q.

Lemma 3.1. Suppose that equation Cφ = CψX has a solution A. If u = Az belongs

to H∞ and ∥u∥∞ ≤ r then Qr is positive semi-definite.

Proof. Let {λ1, . . . , λn} be a set of distinct n points in D. Then we have that

T ∗
ukψ(λ) = φ(λ)kψ(λ) (λ ∈ {λ1, . . . , λn})

by Proposition 2.1. Since ∥u∥∞ ≤ r implies that r2IH2 − TuT
∗
u ≥ 0, we have that

0 ≤ ⟨(r2I − TuT
∗
u )

n∑
j=1

cjkψ(λj),

n∑
k=1

ckkψ(λk)⟩H2 =
n∑

j,k=1

r2 − φ(λj)φ(λk)

1− ψ(λj)ψ(λk)
cjck

for any c1, . . . , cn ∈ C. This concludes the proof. □

Lemma 3.2. If Qr is positive semi-definite then ψ(λ) = ψ(µ) implies that φ(λ) =

φ(µ).

Proof. Suppose that ψ(λ) = ψ(µ). Then we have that

det

 r2−φ(λ)φ(λ)
1−ψ(λ)ψ(λ)

r2−φ(µ)φ(λ)
1−ψ(µ)ψ(λ)

r2−φ(λ)φ(µ)
1−ψ(λ)ψ(µ)

r2−φ(µ)φ(µ)
1−ψ(µ)ψ(µ)

 = −r2 |φ(λ)− φ(µ)|2

(1− |ψ(λ)|2)2
.

Since Qr is positive semi-definite, we have that φ(λ) = φ(µ). □

Theorem 3.1. Let φ and ψ be functions in S. Then Qr is positive semi-definite if

and only if there exists a function u in H∞ such that ∥u∥∞ ≤ r and Cφ = CψCu.

Proof. The if part is trivial by Lemma 3.1. We shall show the only if part. The

following is a standard argument in the theory of Pick interpolation. We define a

densely defined linear operator T ∗ as follows:

T ∗kψ(λ) = φ(λ)kψ(λ) (λ ∈ D).

Note that T ∗ is well defined by Lemma 3.2. By the assumption, we have

0 ≤
n∑

j,k=1

r2 − φ(λj)φ(λk)

1− ψ(λj)ψ(λk)
cjck = r2∥

n∑
j=1

cjkψ(λj)∥2 − ∥T ∗
n∑
j=1

cjkψ(λj)∥2.

Therefore T ∗ can be extended to a bounded linear operator and ∥T ∗∥ ≤ r. Further-

more, it is easy to see that T ∗ commutes with T ∗
z . Hence there exists u in H∞ such

that T ∗ = T ∗
u and ∥u∥∞ ≤ r. It follows that

φ(λ)kψ(λ) = T ∗
ukψ(λ) = u(ψ(λ))kψ(λ) (λ ∈ D),

which implies that φ = u ◦ ψ. This concludes the proof. □

Corollary 3.1. Let φ and ψ be functions in S. Then Q is positive semi-definite if

and only if there exists u in S such that Cφ = CψCu.
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Remark 3.1. In the proof of Theorem 3.1, we have seen that the infimum of r’s

such that Qr is positive semi-definite is equal to the H∞-norm of u. Further, the

conclusion of Lemma 3.2 valid under the following slightly mild condition: for any λ

and µ in D, there exists a positive number r(λ, µ) such that Qr(λ,µ) is positive semi-

definite. Then the correspondence u : ψ(λ) 7→ φ(λ) defines a holomorphic function

on Ω = ψ(D \ {λ ∈ D : ψ′(λ) = 0}). Indeed, setting z = ψ(λ), for sufficiently small

h, we can choose λ′ as z + h = ψ(λ′) and

u(z + h)− u(z)

h
=
φ(λ′)− φ(λ)

ψ(λ′)− ψ(λ)
=

φ(λ′)−φ(λ)
λ′−λ

ψ(λ′)−ψ(λ)
λ′−λ

→ φ′(λ)

ψ′(λ)
(h→ 0).

Therefore, our problem is closely related to finding the holomorphic extension of u

from Ω to D.

If Q is positive semi-definite, then a reproducing kernel Hilbert space corresponds

to Q, which will be denoted by HQ. In the next section, we study the structure of

HQ.

4. Structure of HQ

Let H(φ) denote the de Branges-Rovnyak complement induced by the Toeplitz op-

erator Tφ for φ in S, that is, H(φ) is equal to the range of (I − TφT
∗
φ)

1/2 as vector

subspaces in H2 and equipped with the range norm (see Sarason [3] for details).

Then H(φ) is a reproducing kernel Hilbert space and its kernel is

Kφ(z, λ) = kφλ (z) =
1− φ(λ)φ(z)

1− λz
.

By Corollary 3.1, the equation Cφ = CψX is solvable in the set of bounded com-

position operators if and only if the two variable function Q(z, λ) = kφλ (z)/k
ψ
λ (z) is

positive semi-definite. In this section, we will study the reproducing kernel Hilbert

space induced by the kernel function Q. In the following argument, we assume that

Q(z, λ) = kφλ (z)/k
ψ
λ (z) is positive semi-definite. We denote λ ∼ψ µ if ψ(λ) = ψ(µ).

Then ∼ψ is an equivalence relation on D, and we set Ω = D/ ∼ψ. An equivalence

class in Ω will be denoted by [λ] for λ in D. First, it is trivial that

Hψ([z], [λ]) =
1

1− ψ(λ)ψ(z)

is a positive semi-definite function on Ω×Ω. Hence there exists a Hilbert space Hψ

and functions hψ[λ] on Ω such that {hψ[λ]}[λ]∈Ω is a dense subset of Hψ and Hψ can be

represented as follows:

Hψ([z], [λ]) = ⟨hψ[λ], h
ψ
[z]⟩Hψ .
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Theorem 4.1. Suppose that Q is positive semi-definite. Then T ∗ : hψ[λ] 7→ φ(λ)hψ[λ]
([λ] ∈ Ω) defines a bounded linear operator acting on Hψ, and the de Branges-

Rovnyak complement in Hψ induced by T is the reproducing kernel Hilbert space

with the kernel function Q.

Proof. We assume that Q is positive semi-definite. Then, by Lemma 3.2, T ∗ : hψ[λ] 7→
φ(λ)hψ[λ] is well defined as a densely defined linear operator. Further, we have that

0 ≤
n∑

j,k=1

1− φ(λj)φ(λk)

1− ψ(λj)ψ(λk)
cjck = ∥

n∑
j=1

cjh
ψ
[λj ]

∥2Hψ − ∥T ∗
n∑
j=1

cjh
ψ
[λj ]

∥2Hψ .

Therefore T ∗ can be extended to a bounded linear operator and ∥T ∗∥ ≤ 1. Let

M(T ) be the de Branges-Rovnyak space induced by T , andH(T ) be the de Branges-

Rovnyak complement of M(T ) in Hψ, that is, H(T ) is equal to the range of (I −
TT ∗)1/2 as vector spaces and is equipped with the range norm

∥(I − TT ∗)1/2f∥H(T ) = ∥Pf∥Hψ ,

where P is the orthogonal projection onto the orthogonal complement of ker(I −
TT ∗)1/2. Then we have that

⟨v, (I − TT ∗)hψ[λ]⟩H(T ) = ⟨v, hψ[λ]⟩Hψ = v([λ]) (v ∈ H(T )).

Hence (I −TT ∗)hψ[λ] is the reproducing kernel of H(T ) at [λ]. Furthermore, we have

that

⟨(I − TT ∗)hψ[λ], (I − TT ∗)hψ[z]⟩H(T ) = ⟨(I − TT ∗)hψ[λ], h
ψ
[z]⟩Hψ

= ⟨hψ[λ], h
ψ
[z]⟩Hψ − ⟨T ∗hψ[λ], T

∗hψ[z]⟩Hψ

= ⟨hψ[λ], h
ψ
[z]⟩Hψ − ⟨φ(λ)hψ[λ], φ(z)h

ψ
[z]⟩Hψ

=
1− φ(λ)φ(z)

1− ψ(λ)ψ(z)

= Q(z, λ).

This concludes the proof. □

Remark 4.1. HQ can also be described by compositions and pull-backs of reproducing

kernel Hilbert spaces. Details of these two operations are given in Paulsen [2]. The

composition of H(u) by ψ will be denoted by H(u) ◦ ψ, where u is the unique

function in S such that Cφ = CψCu. It is easy to see that its kernel function is

Ku(ψ(z), ψ(λ)) = kφλ (z)/k
ψ
λ (z) = Q(z, λ). Hence H(u) ◦ ψ is isomorphic to HQ.

Next, let K be the kernel function of the tensor product reproducing kernel Hilbert

— 89 —



space H(ψ) ⊗ HQ, and let ∆ denote the diagonal map from D2 into D4 defined as

∆(z, λ) = ((z, λ), (z, λ)). Then we have that

K ◦∆(z, λ) = K((z, λ), (z, λ)) = Kψ(z, λ)Q(z, λ) = Kφ(z, λ),

that is, H(φ) is the pull-back of H(ψ)⊗HQ along the diagonal map ∆.

5. A multivariable case

Let Bd be the unit ball in Cd and let H2
d be the Drury-Arveson space. H2

d is the

reproducing kernel Hilbert space consisting of holomorphic functions on Bd with the

following reproducing kernel:

kλ(z) =
1

1− ⟨z, λ⟩Cd
(z, λ ∈ Bd).

Hol(Bd) will denote the set of all holomorphic maps acting on Bd, and B(H2
d) will

denote the set of all bounded linear operators acting on H2
d . We define two subsets

of Hol(Bd) as follows:

Sd = {φ ∈ Hol(Bd) :
1− ⟨φ(z), φ(λ)⟩

1− ⟨z, λ⟩
is positive semi-definite},

Cd = {φ ∈ Hol(Bd) : Cφ ∈ B(H2
d)}.

Sd is called the Schur-Agler class for H2
d . In the case d = 1, trivially, S1 coincides

with C1. For general d ≥ 2, Jury proved that Sd is contained in Cd in Theorem 5 of

[1]. In the following argument, we assume that φ and ψ belong to Cd, and we set

φ = (φ1, . . . , φd).

Proposition 5.1. Let φ and ψ be in Cd. If ψ is an open mapping and the equation

Cφ = CψX has a solution in B(H2
d), then there exists a function uj ∈ H2

d such that

φj = uj ◦ ψ and unj is in H2
d for any n ≥ 1.

Proof. The proof is the same as Proposition 2.1. □

Definition 5.1. For φ and ψ in Cd, we define

Q(z, λ) =
1− ⟨φ(z), φ(λ)⟩
1− ⟨ψ(z), ψ(λ)⟩

.

In multivariable cases, Lemma 3.2 is false in general. Therefore, in order to obtain

any result corresponding to Theorem 3.1, we will need some additional condition.

Theorem 5.1. Let φ and ψ be in Cd. If ψ is an injective open mapping and Q is

positive semi-definite, then there exists u in Sd such that Cφ = CψCu.
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Proof. We define a column operator whose entries are the densely defined linear

operators defined as follows:

T ∗
j kψ(λ) = φj(λ)kψ(λ) (λ ∈ Bd, j = 1, . . . , d).

We note that T ∗
j is well defined by the assumption that ψ is injective. By the same

argument as that in the proof of Theorem 3.1, T ∗ = t(T ∗
1 , . . . , T

∗
d ) can be extended

to a bounded linear operator from H2
d into ⊕d

j=1H
2
d and ∥TT ∗∥ ≤ 1. Furthermore, it

is easy to see that every T ∗
j is bounded and commutes with the adjoint of the d-shift.

Hence there exists uj in the multiplier algebra of H2
d such that T = (Mu1 , . . . ,Mud),

where Mu denotes the multiplication operator defined by a multiplier u. Since

∥TT ∗∥ ≤ 1 and u = (u1, . . . , ud) belongs to Sd, by Jury’s theorem, Cu is bounded.

This concludes the proof. □
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