SOME REMARKS ON OPERATOR EQUATION $C_{\varphi}=C_{\psi} X$

TAKUYA HOSOKAWA AND MICHIO SETO

Abstract

We discuss linear equations whose coefficients are bounded composition operators on the Hardy space over the unit disk. Some connections between those equations, Pick interpolation and de Branges-Rovnyak spaces are studied in detail.

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C}, and let H^{2} be the Hardy space over $\mathbb{D} . \mathcal{S}$ will denote the set of all holomorphic functions which map \mathbb{D} into itself. For every φ in \mathcal{S}, a linear operator C_{φ} is defined as $C_{\varphi} f=f \circ \varphi$ for any f in H^{2}. It is well known that the Littlewood subordination theorem implies that C_{φ} is bounded. It should be mentioned that Jury gave another proof of boundedness of composition operators with symbols in \mathcal{S} as an application of de Branges-Rovnyak space theory in Jury [1]. The purpose of this paper is to study the following operator linear equation:

$$
\begin{equation*}
C_{\varphi}=C_{\psi} X, \tag{1.1}
\end{equation*}
$$

where φ and ψ are fixed in \mathcal{S}. In this paper, the equation (1.1) is said to have a solution if there exists a linear operator A such that $\mathbb{C}[z]$ is contained in $\operatorname{dom} A$, the domain of A, and $C_{\varphi} f=C_{\psi} A f$ for any f in $\operatorname{dom} A$.

This paper is organized as follows. Section 2 is the preliminaries. In Section 3, we study solutions in the set of bounded analytic functions H^{∞}. A necessary and sufficient condition that the equation $C_{\varphi}=C_{\psi} X$ is solvable in H^{∞} is given. In Section 4, we will see a certain connection between that condition and the de

[^0]Branges-Rovnyak theory. In Section 5, we deal with a similar problem in the DruryArveson space.

2. Preliminaries

We shall begin with some trivial cases. If φ is a constant function valued at a point a in \mathbb{D}, then C_{φ} is the point evaluation P_{a} at a. It is not difficult to see the following:
(i) Suppose that φ is not constant and $\psi \equiv b \in \mathbb{D}$. Then the equation $C_{\varphi}=$ $C_{\psi} X$ has no solution.
(ii) Suppose that $\varphi(z) \equiv a \in \mathbb{D}$ and ψ is not constant. Then the equation $C_{\varphi}=C_{\psi} X$ has the unique solution $X=P_{a}$.
(iii) Suppose that $\varphi(z) \equiv a \in \mathbb{D}$ and $\psi(z) \equiv b \in \mathbb{D}$. Then the equation $C_{\varphi}=$ $C_{\psi} X$ has infinitely many solutions.
(iv) If C_{ψ} is invertible, then $X=C_{\varphi \circ \psi^{-1}}$.
(v) If C_{φ} is invertible, then C_{ψ} is also invertible and $X=C_{\varphi \circ \psi^{-1}}$.

To avoid these cases, in the rest of this paper we assume that φ and ψ are not either constant or automorphisms of \mathbb{D}.

Proposition 2.1. Suppose that the equation $C_{\varphi}=C_{\psi} X$ has a solution. Then there exists a function u in $\bigcap_{p \geq 1} H^{p}$ such that $\varphi=u \circ \psi$, where H^{p} denotes the Hardy space for $1 \leq p<\infty$.

Proof. Let A be a solution of $C_{\varphi}=C_{\psi} X$. We set $u_{n}=A z^{n}$ and $u=u_{1}$. Trivially, it follows that $\varphi=u \circ \psi$. Moreover, we have that

$$
u^{n} \circ \psi=(u \circ \psi)^{n}=\varphi^{n}=C_{\varphi} z^{n}=C_{\psi} A z^{n}=C_{\psi} u_{n}=u_{n} \circ \psi .
$$

By the unicity theorem, we have that $u^{n}=u_{n}$. Hence u belongs to $H^{2 n}$ for every $n \geq 0$. This concludes the proof.

Remark 2.1. The conclusion of Proposition 2.1 implies that $\varphi(\lambda)=\varphi(\mu)$ if $\psi(\lambda)=$ $\psi(\mu)$. Hence, it is easy to find pairs of functions φ and ψ in \mathcal{S} such that $C_{\varphi}=C_{\psi} X$ has no solution.

Let k_{λ} be the reproducing kernel of H^{2} for $\lambda \in \mathbb{D}$. Then it is well known that $C_{\varphi}^{*} k_{\lambda}=k_{\varphi(\lambda)}$. Let T_{u} be the Toeplitz operator for $u \in H^{\infty}$. Then we also have that $T_{u}^{*} k_{\lambda}=\overline{u(\lambda)} k_{\lambda}$.

3. Solutions in H^{∞}

Let $0<r \leq 1$. We set

$$
Q_{r}(z, \lambda)=\frac{r^{2}-\overline{\varphi(\lambda)} \varphi(z)}{1-\overline{\psi(\lambda)} \psi(z)}
$$

In particular, Q_{1} will be abbreviated as Q.
Lemma 3.1. Suppose that equation $C_{\varphi}=C_{\psi} X$ has a solution A. If $u=A z$ belongs to H^{∞} and $\|u\|_{\infty} \leq r$ then Q_{r} is positive semi-definite.

Proof. Let $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a set of distinct n points in \mathbb{D}. Then we have that

$$
T_{u}^{*} k_{\psi(\lambda)}=\overline{\varphi(\lambda)} k_{\psi(\lambda)} \quad\left(\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right)
$$

by Proposition 2.1. Since $\|u\|_{\infty} \leq r$ implies that $r^{2} I_{H^{2}}-T_{u} T_{u}^{*} \geq 0$, we have that

$$
0 \leq\left\langle\left(r^{2} I-T_{u} T_{u}^{*}\right) \sum_{j=1}^{n} c_{j} k_{\psi\left(\lambda_{j}\right)}, \sum_{k=1}^{n} c_{k} k_{\psi\left(\lambda_{k}\right)}\right\rangle_{H^{2}}=\sum_{j, k=1}^{n} \frac{r^{2}-\overline{\varphi\left(\lambda_{j}\right)} \varphi\left(\lambda_{k}\right)}{1-\overline{\psi\left(\lambda_{j}\right)} \psi\left(\lambda_{k}\right)} c_{j} \overline{c_{k}}
$$

for any $c_{1}, \ldots, c_{n} \in \mathbb{C}$. This concludes the proof.
Lemma 3.2. If Q_{r} is positive semi-definite then $\psi(\lambda)=\psi(\mu)$ implies that $\varphi(\lambda)=$ $\varphi(\mu)$.

Proof. Suppose that $\psi(\lambda)=\psi(\mu)$. Then we have that

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{r^{2}-\overline{\varphi(\lambda)} \varphi(\lambda)}{1-\overline{\psi(\lambda)} \psi(\lambda)} & \frac{r^{2}-\overline{\varphi(\mu)} \varphi(\lambda)}{1-\overline{\psi(\mu)} \psi(\lambda)} \\
\frac{r^{2}-\overline{\varphi(\lambda)} \varphi(\mu)}{1-\overline{\psi(\lambda)} \psi(\mu)} & \frac{r^{2}-\overline{\varphi(\mu)} \varphi(\mu)}{1-\overline{\psi(\mu)} \psi(\mu)}
\end{array}\right)=-r^{2} \frac{|\varphi(\lambda)-\varphi(\mu)|^{2}}{\left(1-|\psi(\lambda)|^{2}\right)^{2}}
$$

Since Q_{r} is positive semi-definite, we have that $\varphi(\lambda)=\varphi(\mu)$.
Theorem 3.1. Let φ and ψ be functions in \mathcal{S}. Then Q_{r} is positive semi-definite if and only if there exists a function u in H^{∞} such that $\|u\|_{\infty} \leq r$ and $C_{\varphi}=C_{\psi} C_{u}$.

Proof. The if part is trivial by Lemma 3.1. We shall show the only if part. The following is a standard argument in the theory of Pick interpolation. We define a densely defined linear operator T^{*} as follows:

$$
T^{*} k_{\psi(\lambda)}=\overline{\varphi(\lambda)} k_{\psi(\lambda)} \quad(\lambda \in \mathbb{D})
$$

Note that T^{*} is well defined by Lemma 3.2. By the assumption, we have

$$
0 \leq \sum_{j, k=1}^{n} \frac{r^{2}-\overline{\varphi\left(\lambda_{j}\right)} \varphi\left(\lambda_{k}\right)}{1-\overline{\psi\left(\lambda_{j}\right)} \psi\left(\lambda_{k}\right)} c_{j} \overline{c_{k}}=r^{2}\left\|\sum_{j=1}^{n} c_{j} k_{\psi\left(\lambda_{j}\right)}\right\|^{2}-\left\|T^{*} \sum_{j=1}^{n} c_{j} k_{\psi\left(\lambda_{j}\right)}\right\|^{2} .
$$

Therefore T^{*} can be extended to a bounded linear operator and $\left\|T^{*}\right\| \leq r$. Furthermore, it is easy to see that T^{*} commutes with T_{z}^{*}. Hence there exists u in H^{∞} such that $T^{*}=T_{u}^{*}$ and $\|u\|_{\infty} \leq r$. It follows that

$$
\overline{\varphi(\lambda)} k_{\psi(\lambda)}=T_{u}^{*} k_{\psi(\lambda)}=\overline{u(\psi(\lambda))} k_{\psi(\lambda)} \quad(\lambda \in \mathbb{D})
$$

which implies that $\varphi=u \circ \psi$. This concludes the proof.
Corollary 3.1. Let φ and ψ be functions in \mathcal{S}. Then Q is positive semi-definite if and only if there exists u in \mathcal{S} such that $C_{\varphi}=C_{\psi} C_{u}$.

Remark 3.1. In the proof of Theorem 3.1, we have seen that the infimum of r 's such that Q_{r} is positive semi-definite is equal to the H^{∞}-norm of u. Further, the conclusion of Lemma 3.2 valid under the following slightly mild condition: for any λ and μ in \mathbb{D}, there exists a positive number $r(\lambda, \mu)$ such that $Q_{r(\lambda, \mu)}$ is positive semidefinite. Then the correspondence $u: \psi(\lambda) \mapsto \varphi(\lambda)$ defines a holomorphic function on $\Omega=\psi\left(\mathbb{D} \backslash\left\{\lambda \in \mathbb{D}: \psi^{\prime}(\lambda)=0\right\}\right)$. Indeed, setting $z=\psi(\lambda)$, for sufficiently small h, we can choose λ^{\prime} as $z+h=\psi\left(\lambda^{\prime}\right)$ and

$$
\frac{u(z+h)-u(z)}{h}=\frac{\varphi\left(\lambda^{\prime}\right)-\varphi(\lambda)}{\psi\left(\lambda^{\prime}\right)-\psi(\lambda)}=\frac{\frac{\varphi\left(\lambda^{\prime}\right)-\varphi(\lambda)}{\lambda^{\prime}-\lambda}}{\frac{\psi\left(\lambda^{\prime}\right)-\psi(\lambda)}{\lambda^{\prime}-\lambda}} \rightarrow \frac{\varphi^{\prime}(\lambda)}{\psi^{\prime}(\lambda)} \quad(h \rightarrow 0) .
$$

Therefore, our problem is closely related to finding the holomorphic extension of u from Ω to \mathbb{D}.

If Q is positive semi-definite, then a reproducing kernel Hilbert space corresponds to Q, which will be denoted by \mathcal{H}_{Q}. In the next section, we study the structure of \mathcal{H}_{Q}.

4. Structure of \mathcal{H}_{Q}

Let $\mathcal{H}(\varphi)$ denote the de Branges-Rovnyak complement induced by the Toeplitz operator T_{φ} for φ in \mathcal{S}, that is, $\mathcal{H}(\varphi)$ is equal to the range of $\left(I-T_{\varphi} T_{\varphi}^{*}\right)^{1 / 2}$ as vector subspaces in H^{2} and equipped with the range norm (see Sarason [3] for details). Then $\mathcal{H}(\varphi)$ is a reproducing kernel Hilbert space and its kernel is

$$
K^{\varphi}(z, \lambda)=k_{\lambda}^{\varphi}(z)=\frac{1-\overline{\varphi(\lambda)} \varphi(z)}{1-\bar{\lambda} z}
$$

By Corollary 3.1, the equation $C_{\varphi}=C_{\psi} X$ is solvable in the set of bounded composition operators if and only if the two variable function $Q(z, \lambda)=k_{\lambda}^{\varphi}(z) / k_{\lambda}^{\psi}(z)$ is positive semi-definite. In this section, we will study the reproducing kernel Hilbert space induced by the kernel function Q. In the following argument, we assume that $Q(z, \lambda)=k_{\lambda}^{\varphi}(z) / k_{\lambda}^{\psi}(z)$ is positive semi-definite. We denote $\lambda \sim_{\psi} \mu$ if $\psi(\lambda)=\psi(\mu)$. Then \sim_{ψ} is an equivalence relation on \mathbb{D}, and we set $\Omega=\mathbb{D} / \sim_{\psi}$. An equivalence class in Ω will be denoted by $[\lambda]$ for λ in \mathbb{D}. First, it is trivial that

$$
H^{\psi}([z],[\lambda])=\frac{1}{1-\overline{\psi(\lambda)} \psi(z)}
$$

is a positive semi-definite function on $\Omega \times \Omega$. Hence there exists a Hilbert space \mathcal{H}^{ψ} and functions $h_{[\lambda]}^{\psi}$ on Ω such that $\left\{h_{[\lambda]}^{\psi}\right\}_{[\lambda] \in \Omega}$ is a dense subset of \mathcal{H}^{ψ} and H^{ψ} can be represented as follows:

$$
H^{\psi}([z],[\lambda])=\left\langle h_{[\lambda]}^{\psi}, h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}} .
$$

Theorem 4.1. Suppose that Q is positive semi-definite. Then $T^{*}: h_{[\lambda]}^{\psi} \mapsto \overline{\varphi(\lambda)} h_{[\lambda]}^{\psi}$ $([\lambda] \in \Omega)$ defines a bounded linear operator acting on \mathcal{H}^{ψ}, and the de BrangesRovnyak complement in \mathcal{H}^{ψ} induced by T is the reproducing kernel Hilbert space with the kernel function Q.
 $\overline{\varphi(\lambda)} h_{[\lambda]}^{\psi}$ is well defined as a densely defined linear operator. Further, we have that

$$
0 \leq \sum_{j, k=1}^{n} \frac{1-\overline{\varphi\left(\lambda_{j}\right)} \varphi\left(\lambda_{k}\right)}{1-\overline{\psi\left(\lambda_{j}\right)} \psi\left(\lambda_{k}\right)} c_{j} \overline{c_{k}}=\left\|\sum_{j=1}^{n} c_{j} h_{\left[\lambda_{j}\right]}^{\psi}\right\|_{\mathcal{H}^{\psi}}^{2}-\left\|T^{*} \sum_{j=1}^{n} c_{j} h_{\left[\lambda_{j}\right]}^{\psi}\right\|_{\mathcal{H}^{\psi}}^{2}
$$

Therefore T^{*} can be extended to a bounded linear operator and $\left\|T^{*}\right\| \leq 1$. Let $\mathcal{M}(T)$ be the de Branges-Rovnyak space induced by T, and $\mathcal{H}(T)$ be the de BrangesRovnyak complement of $\mathcal{M}(T)$ in \mathcal{H}^{ψ}, that is, $\mathcal{H}(T)$ is equal to the range of ($I-$ $\left.T T^{*}\right)^{1 / 2}$ as vector spaces and is equipped with the range norm

$$
\left\|\left(I-T T^{*}\right)^{1 / 2} f\right\|_{\mathcal{H}(T)}=\|P f\|_{\mathcal{H}^{\psi}}
$$

where P is the orthogonal projection onto the orthogonal complement of $\operatorname{ker}(I-$ $\left.T T^{*}\right)^{1 / 2}$. Then we have that

$$
\left\langle v,\left(I-T T^{*}\right) h_{[\lambda]}^{\psi}\right\rangle_{\mathcal{H}(T)}=\left\langle v, h_{[\lambda]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}}=v([\lambda]) \quad(v \in \mathcal{H}(T)) .
$$

Hence $\left(I-T T^{*}\right) h_{[\lambda]}^{\psi}$ is the reproducing kernel of $\mathcal{H}(T)$ at [$\left.\lambda\right]$. Furthermore, we have that

$$
\begin{aligned}
\left\langle\left(I-T T^{*}\right) h_{[\lambda]}^{\psi},\left(I-T T^{*}\right) h_{[z]}^{\psi}\right\rangle_{\mathcal{H}(T)} & =\left\langle\left(I-T T^{*}\right) h_{[\lambda]}^{\psi}, h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}} \\
& =\left\langle h_{[\lambda]}^{\psi}, h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}}-\left\langle T^{*} h_{[\lambda]}^{\psi}, T^{*} h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}} \\
& =\left\langle h_{[\lambda]}^{\psi}, h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}}-\left\langle\overline{\varphi(\lambda)} h_{[\lambda]}^{\psi}, \overline{\varphi(z)} h_{[z]}^{\psi}\right\rangle_{\mathcal{H}^{\psi}} \\
& =\frac{1-\overline{\varphi(\lambda)} \varphi(z)}{1-\overline{\psi(\lambda)} \psi(z)} \\
& =Q(z, \lambda) .
\end{aligned}
$$

This concludes the proof.
Remark 4.1. \mathcal{H}_{Q} can also be described by compositions and pull-backs of reproducing kernel Hilbert spaces. Details of these two operations are given in Paulsen [2]. The composition of $\mathcal{H}(u)$ by ψ will be denoted by $\mathcal{H}(u) \circ \psi$, where u is the unique function in \mathcal{S} such that $C_{\varphi}=C_{\psi} C_{u}$. It is easy to see that its kernel function is $K^{u}(\psi(z), \psi(\lambda))=k_{\lambda}^{\varphi}(z) / k_{\lambda}^{\psi}(z)=Q(z, \lambda)$. Hence $\mathcal{H}(u) \circ \psi$ is isomorphic to \mathcal{H}_{Q}. Next, let K be the kernel function of the tensor product reproducing kernel Hilbert
space $\mathcal{H}(\psi) \otimes \mathcal{H}_{Q}$, and let Δ denote the diagonal map from \mathbb{D}^{2} into \mathbb{D}^{4} defined as $\Delta(z, \lambda)=((z, \lambda),(z, \lambda))$. Then we have that

$$
K \circ \Delta(z, \lambda)=K((z, \lambda),(z, \lambda))=K^{\psi}(z, \lambda) Q(z, \lambda)=K^{\varphi}(z, \lambda),
$$

that is, $\mathcal{H}(\varphi)$ is the pull-back of $\mathcal{H}(\psi) \otimes \mathcal{H}_{Q}$ along the diagonal map Δ.

5. A multivariable case

Let \mathbb{B}_{d} be the unit ball in \mathbb{C}^{d} and let H_{d}^{2} be the Drury-Arveson space. H_{d}^{2} is the reproducing kernel Hilbert space consisting of holomorphic functions on \mathbb{B}_{d} with the following reproducing kernel:

$$
k_{\lambda}(z)=\frac{1}{1-\langle z, \lambda\rangle_{\mathbb{C}^{d}}} \quad\left(z, \lambda \in \mathbb{B}_{d}\right) .
$$

$\operatorname{Hol}\left(\mathbb{B}_{d}\right)$ will denote the set of all holomorphic maps acting on \mathbb{B}_{d}, and $\mathcal{B}\left(H_{d}^{2}\right)$ will denote the set of all bounded linear operators acting on H_{d}^{2}. We define two subsets of $\operatorname{Hol}\left(\mathbb{B}_{d}\right)$ as follows:

$$
\begin{aligned}
& \mathcal{S}_{d}=\left\{\varphi \in \operatorname{Hol}\left(\mathbb{B}_{d}\right): \frac{1-\langle\varphi(z), \varphi(\lambda)\rangle}{1-\langle z, \lambda\rangle} \text { is positive semi-definite }\right\}, \\
& \mathcal{C}_{d}=\left\{\varphi \in \operatorname{Hol}\left(\mathbb{B}_{d}\right): C_{\varphi} \in \mathcal{B}\left(H_{d}^{2}\right)\right\} .
\end{aligned}
$$

\mathcal{S}_{d} is called the Schur-Agler class for H_{d}^{2}. In the case $d=1$, trivially, \mathcal{S}_{1} coincides with \mathcal{C}_{1}. For general $d \geq 2$, Jury proved that \mathcal{S}_{d} is contained in \mathcal{C}_{d} in Theorem 5 of [1]. In the following argument, we assume that φ and ψ belong to \mathcal{C}_{d}, and we set $\varphi=\left(\varphi_{1}, \ldots, \varphi_{d}\right)$.

Proposition 5.1. Let φ and ψ be in \mathcal{C}_{d}. If ψ is an open mapping and the equation $C_{\varphi}=C_{\psi} X$ has a solution in $\mathcal{B}\left(H_{d}^{2}\right)$, then there exists a function $u_{j} \in H_{d}^{2}$ such that $\varphi_{j}=u_{j} \circ \psi$ and u_{j}^{n} is in H_{d}^{2} for any $n \geq 1$.

Proof. The proof is the same as Proposition 2.1.
Definition 5.1. For φ and ψ in \mathcal{C}_{d}, we define

$$
Q(z, \lambda)=\frac{1-\langle\varphi(z), \varphi(\lambda)\rangle}{1-\langle\psi(z), \psi(\lambda)\rangle}
$$

In multivariable cases, Lemma 3.2 is false in general. Therefore, in order to obtain any result corresponding to Theorem 3.1, we will need some additional condition.

Theorem 5.1. Let φ and ψ be in \mathcal{C}_{d}. If ψ is an injective open mapping and Q is positive semi-definite, then there exists u in \mathcal{S}_{d} such that $C_{\varphi}=C_{\psi} C_{u}$.

Proof. We define a column operator whose entries are the densely defined linear operators defined as follows:

$$
T_{j}^{*} k_{\psi(\lambda)}=\overline{\varphi_{j}(\lambda)} k_{\psi(\lambda)} \quad\left(\lambda \in \mathbb{B}_{d}, j=1, \ldots, d\right)
$$

We note that T_{j}^{*} is well defined by the assumption that ψ is injective. By the same argument as that in the proof of Theorem 3.1, $T^{*}={ }^{t}\left(T_{1}^{*}, \ldots, T_{d}^{*}\right)$ can be extended to a bounded linear operator from H_{d}^{2} into $\oplus_{j=1}^{d} H_{d}^{2}$ and $\left\|T T^{*}\right\| \leq 1$. Furthermore, it is easy to see that every T_{j}^{*} is bounded and commutes with the adjoint of the d-shift. Hence there exists u_{j} in the multiplier algebra of H_{d}^{2} such that $T=\left(M_{u_{1}}, \ldots, M_{u_{d}}\right)$, where M_{u} denotes the multiplication operator defined by a multiplier u. Since $\left\|T T^{*}\right\| \leq 1$ and $u=\left(u_{1}, \ldots, u_{d}\right)$ belongs to \mathcal{S}_{d}, by Jury's theorem, C_{u} is bounded. This concludes the proof.

References

[1] M. T. Jury, Reproducing kernels, de Branges-Rovnyak spaces, and norms of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), 36693675.
[2] V. Paulsen, An introduction to the theory of reproducing kernel Hilbert spaces, Lecture notes (http://www.math.uh.edu/\~vern/).
[3] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1994.
(T. Hosokawa) College of Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan E-mail address: hoso-t@mx.ibaraki.ac.jp
(M. Seto) Shimane University, Matsue, Shimane, 690-8504, Japan E-mail address: mseto@riko.shimane-u.ac.jp

Received May 12, 2014
Revised September 24, 2014

[^0]: 2010 Mathematics Subject Classification. 47B32, 47B33.
 Key words and phrases. Composition operators, Pick interpolation, de Branges-Rovnyak spaces. The first author was supported by Grant-in-Aid for Young Scientists (B), Japan Society for the Promotion of Science (No.25800055).

 The second author was supported by Grant-in-Aid for Young Scientists (B), Japan Society for the Promotion of Science (No.23740106).

