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RICCI PSEUDO n-PARALLEL REAL
HYPERSURFACES OF A COMPLEX SPACE FORM

MAYUKO KON

ABSTRACT. We prove that the Ricci tensor of a real hypersurface of a complex
space form M™(c), ¢ # 0, n > 3, satisfies Ricci pseudo n-parallel condition if and
only if M is pseudo-Einstein.

1. Introduction

Let M"(c) be an n-dimensional complex space form with constant holomorphic
sectional curvature 4c, and let M be a real hypersurface of M"(c). We denote by
J the complex structure of M™(c). Then M has an induced almost contact metric
structure (¢, &,n, g).

As a generalization of Einstein manifolds, Riemannian manifolds with parallel
Ricci tensor have been intensively studied. Ki [3] proved that there are no real
hypersurfaces in a complex space form M™(c), ¢ # 0, with parallel Ricci tensor S.
Moreover, Kimura and Maeda [6] showed that no real hypersurface in M"(c), ¢ # 0,
n > 3, satisfies semi-parallel condition, that is, R(X,Y)S = 0 for any X and Y
tangent to the real hypersurface. Ki, Nakagawa and Suh [4] proved that the Ricci
tensor S of a real hypersurface M of a complex space form M"(c), ¢ # 0, n > 3, is
cyclic semi-parallel, that is,

(R(X,Y)S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y =0

for any X, Y and Z tangent to M if and only if M is a pseudo-Einstein real
hypersurface. On the other hand, Niebergall and Ryan [10] considered the condition
g((R(X,Y)S)Z, W) =0 for any X,Y, Z, W orthogonal to &, which is called pseudo-
Ryan, under the assumption that M is Hopf hypersurface. In [8], the author showed
that M satisfies pseudo-Ryan condition if and only if it is Pseudo-Einstein when
n > 3.

One of the generalizations of Ricci semi-parallelity is the Ricci pseudo-parallelity:

R(X,Y)S = F((X AY)S),
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where F' is a function. The Ricci pseudo-parallelity is an interest property for
hypersurfaces. In fact, every Cartan’s isoparametric hypersurface in spheres has
pseudo-parallel Ricci tensor (see [2]).

In this paper, we study Ricci pseudo-parallel condition on the holomorphic dis-
tribution for real hypersurfaces of a complex space form. If the curvature tensor R
and the Ricci tensor S of M satisfy

9(R(X,Y)S)Z, W) = Fg((X AY)S)Z, W)

for any tangent vector fields X, Y, Z and W orthogonal to £, F' being a function,
we call S the pseudo n-parallel Ricci tensor. We prove the following

Theorem 3.1. Let M be a real hypersurface of a complex space form M™(c), ¢ # 0,
n > 3. Then S s pseudo n-parallel if and only if M is pseudo-Finstein.

Using Theorem 3.1, we obtain the following results.

Theorem 3.2. Let M be a real hypersurface of a complex projective space CP",
n > 3. If S is pseudo n-parallel, then M 1is locally congruent to one of the following:

(1) a geodesic hypersphere of radius r (0 < r < m/2),

(i) @ minimal tube of radius 7/4 over a complex projective space CP"2 with
principal curvatures 1, —1 and 0 whose multiplicities aren—1, n—1 and 1,
respectively.

Theorem 3.3. Let M be a real hypersurface of a complex hyperbolic space CH™,
n > 3. If S is pseudo n-parallel, then M 1is locally congruent to one of the following:
(i) a geodesic hypersphere,
(ii) a tube over a complex hyperbolic hyperplane,
(iii) a horosphere.
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2. Preliminaries

Let M™(c) denote the complex space form of complex dimension n with constant
holomorphic sectional curvature 4c. For the sake of simplicity, if ¢ > 0, we only use
¢ = +1 and call it the complex projective space CP", and if ¢ < 0, we just consider
¢ = —1, so that we call it the complex hyperbolic space CH". We denote by J the
almost complex structure of M™(c¢). The Kahler metric of M"(c) will be denoted by
G.



Let M be a real (2n—1)-dimensional hypersurface immersed in M™(c). We denote
by g the Riemannian metric induced on M from G. We can take the unit normal
vector field N of M in M™(c), locally. For any vector field X tangent to M, we
define ¢, n and & by

JX = ¢X +n(X)N, JN = —=¢,

where ¢ X is the tangential part of JX, ¢ is a tensor field of type (1,1), n is a 1-form,
and & is the unit vector field on M. Then they satisfy

X =-X+n(X)g, ¢6=0, n(eX)=0,
9(@X,Y) +9(X,0Y) =0, n(X) = g(X,¢),
9(0X,9Y) = g(X,Y) = n(X)n(Y).
Thus (¢,&,m,g) defines an almost contact metric structure on M. Let Hy denote
the holomorphic distribution on M defined by Hy(z) = {X € T.(M)|n(X) = 0}.
We denote by V the operator of covariant differentiation in M"(c), and by V

the one in M determined by the induced metric. Then the Gauss and Weingarten
formulas are given respectively by

VxY =VxY + g(AX,Y)N, VxN = —-AX

for any vector fields X and Y tangent to M. We call A the shape operator of M

derived from N. If the shape operator A of M is of the form AX = AX + un(X)&
for some functions A and p, then M is said to be n-umbilical (see Tashiro-Tachibana

[12]).

For the contact metric structure on M, we have
Vx§ = ¢AX, (Vx@)Y =n(Y)AX — g(AX,Y)E.
We denote by R the Riemannian curvature tensor field of M. Then the equation
of Gauss is given by
R(X,Y)Z = c(g(Y, 2)X = g(X, 2)Y + g(¢Y, Z)p X
= 9(0X,2)9Y — 29(¢X,Y)0Z)
+ g(AY, Z)AX — g(AX, Z)AY,
and the equation of Codazzi by
(VxA)Y = (Vy A)X = c(n(X)oY —n(Y)oX —29(¢X,Y)E).
From the equation of Gauss, the Ricci tensor S of type (1,1) of M is given by
g(SX,)Y)=(2n+ 1)cg(X,Y) — 3en(X)n(Y)

+trAg(AX,Y) — g(AX, AY), (1)



where trA is the trace of A. When the Ricci tensor S satisfies g(SX,Y) = ag(X,Y)+
bn(X)n(Y) for constants a and b, M is said to be pseudo-Einstein.
We use the following theorems.

Theorem A ([1], [11]). Let M be a n-umbilical real hypersurface of a complex
projective space CP™, n > 2, then M 1is locally congruent to a geodesic hypersphere.

The following theorem is the direct consequence of theorems in Montiel [9].

Theorem B. Let M be a n-umbilical real hypersurface of a complex hyperbolic space
CH"™, n > 3. Then M 1is locally congruent to one of the following:

(a) a geodesic hypersphere,

(b) a tube over a complex hyperbolic hyperplane,

(¢) a horosphere.

Theorem C ([1], [7]). Let M be real hypersurface of a complex projective space CP".
We suppose that the Ricci tensor S satisfies g(SX,Y) = ag(X,Y) + (X )n(Y) for
funcions a and b. Then a and b must be constant and M is locally congruent to one
of the following:

(a) a geodesic hypersphere,

(b) a tube of radius r over a complex projective subspace CPP, 1 < p <n — 2,
0<r<mn/2andcot’r =p/(n—p—1).

(¢) a tube over a complex quadric Q".

Theorem D ([9]). A real hypersurface M of a complex hyperbolic space CH™, n > 3,
is pseudo-FEinstein if and only if it is n-umbilical.

3. Characterization of pseudo-Einstein real hypersurfaces

First, we prepare the following lemmas.

Lemma 3.1. Let M be a real hypersurface of a complex space form M™(c), ¢ # 0,
n > 3. Suppose that the curvature tensor R and the Ricci tensor S of M satisfy

g((R(X,Y)S)Z + (R(Y,Z2)S)X + (R(Z,X)S)Y,W) = 0

for any tangent vectors X, Y, Z and W orthogonal to £&. Then we have

9SX,Y) = 5 r = g(SEE)g(X,Y),
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for any tangent vectors X and'Y orthogonal to &, where r denotes the scalar curva-
ture of M.

Proof. We suppose that R and the Ricci tensor S of M satisfy
J(R(X,Y)Z + (R(YY,2)S)X + (R(Z,X)S)Y,W) =0.
for any tangent vectors X, Y, Z and W orthogonal to £. Since
(R(X,Y)S)Z =R(X,Y)SZ - SR(X,Y)Z,
the first Bianchi identity gives
g(R(X,Y)SZ+ R(Y,Z)SX + R(Z,X)SY,W) = 0.

We take an orthonormal basis {e1, -+ , 9,2, €2,_1 = &} of the tangent space T, (M).
Then we have

2n—2 2n—2 2n—2

90> R(ei, ¢e)SX + > R(de;, X)Sei + > | R(X,€;)S¢e;,Y) = 0.
i=1 =1

i=1
By ¢¢ =0,

2n—1 2n—1 2n—1

90> R(ei, ¢e)SX + > R(des, X)Se; + > R(X,€;)S¢e;,Y) = 0.
=1 =1 =1

Since we have

2n—1 2n—1

9(D R(gei, X)Se,Y) = —g( Y Rles, X)Sge;,Y),

i=1 i=1
it follows that

2n—1 2n—1

Z g(R(ei, pe;)SX,Y) =2 Z R(e;, X)Soe;, Y).
On the other hand, by the equation of Gauss,
Zg (€i,0€;)SX,Y)

= —4dncg(pSX,Y) + 29(SX, ApAY'),
2Zg (€4, X)Se;, Y)

= o{=6g(9SX.Y) +29(S0X,Y) =2} g(Sges, dei)g(6X,Y)}

+29(AX, SPAY) =2 " g(AX,Y)g(Ae;, Spe;).



Thus we have
cA(—4n +6)g(dSX,Y) —29(SpX,Y)}

= —2c) g(Spei, pe)g(#X,Y) +29(AX, SPAY)
—2) g(AX,Y)g(Ae;, Soe;) — 2g(AAY, SX).

Using (1), for X,Y € H,, we obtain
g(AX, SPAY) = > " g(AX,Y)g(Ae;, Spe;) — g(ApAY, SX)

_ Z(gn +1)cg(AX,Y)g(Ae;, pe;)

- Z trAg(AX,Y)g(Ae;, Ape;) + Z g(AX,Y)g(Ae,, A2gbei)

=0.
From these equations and the assumption ¢ # 0, we have

(2n — 3)g(¢SX,Y) + g(SPX,Y) = Z g(Soe;, pei)g(pX,Y),

for any X,Y € H,. Since ¢ X, ¢Y € H,, we also have
(2n — 3)g(pS6X, 6Y) + g(S* X, ¢Y) = > _ g(Stes, pe:)g(¢X,Y),

and hence

(2n — 3)g(SX,Y) + g(¢SX,Y) = Z g(Soe;, pe)g(6X,Y).

From these equations, we obtain
(2n —4)g(5¢X, 9Y) = (2n — 4)g(¢ X, Y).

Since n > 3, we have g(S¢X,¢Y) = g(SX,Y). Thus, by the definition of the scalar
curvature r of M, we get

(2n = 2)g(SX,Y) =) g(Sei, de;)g(X,Y)
which proves our assertion. O

Lemma 3.2. Let M be a real hypersurface of a complex space form M"(c), ¢ # 0,
n > 3. If S is pseudo n-parallel, then we have

s — 9(56,€)g(X.Y),

for any tangent vectors X and'Y orthogonal to &.

g(SX,)Y) =




Proof. We suppose g((R(X,Y)S)Z, W) = Fg(((X ANY)S)Z, W) for any tangent
vectors X, Y, Z and W orthogonal to £, F' being a function. Since we have

(X AY)Z = g(Y.2)X — (X, 2)Y,
we obtain
(XAY)S)Z =9g(Y,S2)X —g(SZ, X)Y —g(Y,2)SX + g(Z, X)SY.

So we have

(XA Z+(YANZD)S)X+ (Y NZ)S)X =0.
Since g((R(X,Y)S)Z, W) = Fg((X AY)S)Z, W), we have
I(R(X,Y)S)Z + (R(Y, 2)S)X + (R(Z, X)S)Y,W) = 0.

for any tangent vectors X, Y, Z and W orthogonal to (. From Lemma 3.1, we have
our result. ]

Using Lemma 3.2, we prove our main theorem.

Theorem 3.1. Let M be a real hypersurface of a complex space form M™(c), ¢ # 0,
n > 3. Then S s pseudo n-parallel if and only if M is pseudo-Finstein.

Proof. We suppose that M satisfies g((R(X,Y)S)Z,W) = Fg((X ANY)S)Z, W)
for any tangent vector fields X, Y, Z and W orthogonal to £&. We can choose an

orthonormal basis {ey,- - ,e2,_2,&} at a point p of M such that the shape operator
A is represented by a matrix form
Ao 0 hy
A=l : :
0 - )\27172 h2n72
hi -+ hop_a a

Then, we have

Se; = (2n + 1)ce; — 3en(e; )€ + hAe; — A’e;

2n—2
k=1
S¢ = (2n + 1)c€ — 3en(€)€ + hAE — A%
2n—2 2n—2
= (2n — 2)c€ + h( thek—i—af thek—i—af
k=1
2n—2 2n—2
= Z hi(h — Ay — a)ex + ((2n — 2)c + ah — Z hi — a?)E,
k=1 k=1



where we have put h = trA. By Lemma 2.2, we have
9(Sei,ej) = —hih; =0 (i # j),

. (2)
g(Ses,e) = (r—9(5¢,€) (i=1,---,2n-2).

2n — 2

Equation (3.1) shows that at most one h; does not vanish at p. Thus we can assume
that h; =0 for i = 2,--- ,2n — 2. We set a = g(Se;, ;). Then we have

Se; = aey + hi(h — A\ — )&,
Se; =ae; (1=2,---,2n—2), (3)
SE=hi(h— A —a)er + ((2n — 2)c + ah — hi — a®)E.

Since g((R(X,Y)S)Z,W) = Fg((X AY)S)Z, W) for any tangent vector fields X,
Y, Z and W orthogonal to &, we have

g(R(X,Y)SZ —SR(X,Y)ZW)=Fg((XANY)SZ—-S(XAY)Z W).
By the equation of Gauss, for any j > 2,
g(R(ela 6]‘)361, e]) - g(SR(eh 6]‘)61, 6])
= ag(R(e1,ej)er, ej) + hi(h — A — a)g(R(e1, €;)€, €;)
—ag(R(e1, ej)er, ;)
= hi(h — A\ — a)g(R(e1, ;)& e5)
= —h%)\J(h — )\1 — Oé).
On the other hand, for any j > 2,

F(g((e1 Aej)Ser,ej) — g(S(er Aejler,e)))
= F(—g(Se1,e1)g(ej, €5) + gler, e1)g(Sej, ;)
=F(a—a)=0.

From these equations, we have
—h%)\](h — )\1 — Oé) =0

for any j > 2. If hy(h— A\ —a) # 0, then we obtain A\; = 0 for j > 2. Since h = trA,
we have h = A\ + a. This is a contradiction. So we have hy(h — Ay — ) = 0. By
(3.2), SX = aX and ¢g(5¢, X) = 0 for any X orthogonal to £ at p € M, and hence
at any point of M. Thus we M is pseudo-Einstein and hy = 0 (see [7]). We remark
that a and g(S¢, &) are costant.

Conversely, if M is pseudo-Einstein, we have SZ = aZ + n(Z)¢ = aZ and
SW = aW for any tangent vectors Z and W orthogonal to &, where a and b are



constant. Then we have
g(R(X,Y)SZ, W) =g(R(X,Y)SZ, W) —g(SR(X,Y)Z, W) =0,
Fg((XAY)SZ,W)=Fg(XANY)SZ,W)—Fg(S(XANY)Z, W) =0.

Next, we prove the following theorem (see [5]).

Theorem 3.2. Let M be a real hypersurface of a complex projective space CP",
n > 3. If S is pseudo n-parallel, then M 1is locally congruent to one of the following:

(i) a geodesic hypersphere of radius r (0 < r < 7/2),

(ii) a minimal tube of radius w/4 over a complex projective space CP"z with
principal curvatures 1, —1 and 0 whose multiplicities are n —1, n—1 and 1,
respectively.

Theorem 3.3. Let M be a real hypersurface of a complex hyperbolic space CH™,
n > 3. If S is pseudo n-parallel, then M 1s locally congruent to one of the following:
(i) a geodesic hypersphere,
(i) a tube over a complex hyperbolic hyperplane,

(iii) a horosphere.

Proof of Theorem 3.2 and Theorem 3.3. We suppose g((R(X,Y)S)Z,W) =
Fg((X NY)S)Z, W) for any tangent vector fields X, Y, Z and W. From The-
orem 3.1, M is pseudo-Einstein, so we can put SX = aX + bn(X)E, where a and b
are constant. We notice that M is a Hopf hypersuface. Then we have

SX =aX, S¢&=(a+0b)E
for any tangent vector X orthogonal to £&. Thus we obtain
9((R(X,£)9)X,¢)
= g(R(X,£)5X,¢) — g(SR(X, )X, §)
= —bg(R(X, )X, ¢)
= b(c + g(AX, X)g(AE, ).
On the other hand, we have
Fg((X A §)S)X,¢)
= Fg((X AN§)SX, &) — Fg(S(X NEX,E)
=bFg(X,X).
Since b # 0, we have ¢ + g(AX, X)g(AE, &) = F for any unit tangent vector X

orthogonal to . If g(A&, &) # 0, then M is p-umbilical. If A = 0, then we have
c=F. When ¢ > 0, Theorem C implies that M is a tube over a complex projective



space CP"s with constant principal curvatures 1, —1 and 0 whose multiplicities
are n— 1, n— 1 and 1, respectively (see [7]). Otherwise, when ¢ < 0, from Theorem
D, pseudo-Einstein real hypersurface M does not satisfy A& =0 (see [9]).

Conversely, we suppose M is n-umbilical. Then the shape operator A can be
represented by AX = AX + un(X)¢, A and p being constant. Moreover, M is
pseudo-Einstein and SX = aX + bn(X){ for some constants a and b. By the
straightforward computation, we have

g(R(X,Y)S)Z,W) = (c+ AA+p)g((X AY)S)Z, W)
= =M+ 1) (In(Z2)n(Y)g(X, W) — bn(Z)n(X)g(Y, W)
— (X )n(W)g(Y, Z) + bn(Y)n(W)g(Z, X))
+bn(2)(9(AY, €)g(AX, W) — g(AX, §)g(AY, W)
— (W) (9(AX,€)g(AY, Z) — g(AY,£)g(AX, Z))
=0.
Next we suppose that M is a pseudo-Einstein real hypersurface of M™(c), ¢ > 0,

n > 3, which satisfies A = 0. We put SX = aX + bn(X)E for some constant a and
b. Thus we have

g(R(X,Y)S)Z, W) —cg(X NY)S)Z, W)

= n(Z)(g(AY, £)g(AX, W) — g(AX, £)g(AY, W)
— (W) (g(AX,€)g(AY, Z) — g(AY, €)g(AX, Z))

— 0.

So we have our theorem.
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