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RICCI PSEUDO η-PARALLEL REAL
HYPERSURFACES OF A COMPLEX SPACE FORM

MAYUKO KON

Abstract. We prove that the Ricci tensor of a real hypersurface of a complex

space form Mn(c), c ̸= 0, n ≥ 3, satisfies Ricci pseudo η-parallel condition if and

only if M is pseudo-Einstein.

1. Introduction

Let Mn(c) be an n-dimensional complex space form with constant holomorphic

sectional curvature 4c, and let M be a real hypersurface of Mn(c). We denote by

J the complex structure of Mn(c). Then M has an induced almost contact metric

structure (ϕ, ξ, η, g).

As a generalization of Einstein manifolds, Riemannian manifolds with parallel

Ricci tensor have been intensively studied. Ki [3] proved that there are no real

hypersurfaces in a complex space form Mn(c), c ̸= 0, with parallel Ricci tensor S.

Moreover, Kimura and Maeda [6] showed that no real hypersurface in Mn(c), c ̸= 0,

n ≥ 3, satisfies semi-parallel condition, that is, R(X,Y )S = 0 for any X and Y

tangent to the real hypersurface. Ki, Nakagawa and Suh [4] proved that the Ricci

tensor S of a real hypersurface M of a complex space form Mn(c), c ̸= 0, n ≥ 3, is

cyclic semi-parallel, that is,

(R(X,Y )S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y = 0

for any X, Y and Z tangent to M if and only if M is a pseudo-Einstein real

hypersurface. On the other hand, Niebergall and Ryan [10] considered the condition

g((R(X, Y )S)Z,W ) = 0 for any X, Y, Z,W orthogonal to ξ, which is called pseudo-

Ryan, under the assumption that M is Hopf hypersurface. In [8], the author showed

that M satisfies pseudo-Ryan condition if and only if it is Pseudo-Einstein when

n ≥ 3.

One of the generalizations of Ricci semi-parallelity is the Ricci pseudo-parallelity:

R(X,Y )S = F ((X ∧ Y )S),
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where F is a function. The Ricci pseudo-parallelity is an interest property for

hypersurfaces. In fact, every Cartan’s isoparametric hypersurface in spheres has

pseudo-parallel Ricci tensor (see [2]).

In this paper, we study Ricci pseudo-parallel condition on the holomorphic dis-

tribution for real hypersurfaces of a complex space form. If the curvature tensor R

and the Ricci tensor S of M satisfy

g((R(X,Y )S)Z,W ) = Fg(((X ∧ Y )S)Z,W )

for any tangent vector fields X, Y , Z and W orthogonal to ξ, F being a function,

we call S the pseudo η-parallel Ricci tensor. We prove the following

Theorem 3.1. Let M be a real hypersurface of a complex space form Mn(c), c ̸= 0,

n ≥ 3. Then S is pseudo η-parallel if and only if M is pseudo-Einstein.

Using Theorem 3.1, we obtain the following results.

Theorem 3.2. Let M be a real hypersurface of a complex projective space CP n,

n ≥ 3. If S is pseudo η-parallel, then M is locally congruent to one of the following:

(i) a geodesic hypersphere of radius r (0 < r < π/2),

(ii) a minimal tube of radius π/4 over a complex projective space CP n−1
2 with

principal curvatures 1, −1 and 0 whose multiplicities are n− 1, n− 1 and 1,

respectively.

Theorem 3.3. Let M be a real hypersurface of a complex hyperbolic space CHn,

n ≥ 3. If S is pseudo η-parallel, then M is locally congruent to one of the following:

(i) a geodesic hypersphere,

(ii) a tube over a complex hyperbolic hyperplane,

(iii) a horosphere.

I would like to express my gratitude to Prof. Inoguchi for his valuable advices.

2. Preliminaries

Let Mn(c) denote the complex space form of complex dimension n with constant

holomorphic sectional curvature 4c. For the sake of simplicity, if c > 0, we only use

c = +1 and call it the complex projective space CP n, and if c < 0, we just consider

c = −1, so that we call it the complex hyperbolic space CHn. We denote by J the

almost complex structure of Mn(c). The Kähler metric of Mn(c) will be denoted by

G.
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Let M be a real (2n−1)-dimensional hypersurface immersed in Mn(c). We denote

by g the Riemannian metric induced on M from G. We can take the unit normal

vector field N of M in Mn(c), locally. For any vector field X tangent to M , we

define ϕ, η and ξ by

JX = ϕX + η(X)N, JN = −ξ,

where ϕX is the tangential part of JX, ϕ is a tensor field of type (1,1), η is a 1-form,

and ξ is the unit vector field on M . Then they satisfy

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0,

g(ϕX, Y ) + g(X,ϕY ) = 0, η(X) = g(X, ξ),

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ).

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on M . Let H0 denote

the holomorphic distribution on M defined by H0(x) = {X ∈ Tx(M)|η(X) = 0}.
We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇

the one in M determined by the induced metric. Then the Gauss and Weingarten

formulas are given respectively by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M . We call A the shape operator of M

derived from N . If the shape operator A of M is of the form AX = λX + µη(X)ξ

for some functions λ and µ, then M is said to be η-umbilical (see Tashiro-Tachibana

[12]).

For the contact metric structure on M , we have

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then the equation

of Gauss is given by

R(X,Y )Z = c(g(Y, Z)X − g(X,Z)Y + g(ϕY, Z)ϕX

− g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ)

+ g(AY,Z)AX − g(AX,Z)AY,

and the equation of Codazzi by

(∇XA)Y − (∇YA)X = c(η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ).

From the equation of Gauss, the Ricci tensor S of type (1, 1) of M is given by

g(SX, Y ) = (2n+ 1)cg(X,Y )− 3cη(X)η(Y )

+ trAg(AX, Y )− g(AX,AY ),
(1)
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where trA is the trace of A. When the Ricci tensor S satisfies g(SX, Y ) = ag(X, Y )+

bη(X)η(Y ) for constants a and b, M is said to be pseudo-Einstein.

We use the following theorems.

Theorem A ([1], [11]). Let M be a η-umbilical real hypersurface of a complex

projective space CP n, n ≥ 2, then M is locally congruent to a geodesic hypersphere.

The following theorem is the direct consequence of theorems in Montiel [9].

Theorem B. Let M be a η-umbilical real hypersurface of a complex hyperbolic space

CHn, n ≥ 3. Then M is locally congruent to one of the following:

(a) a geodesic hypersphere,

(b) a tube over a complex hyperbolic hyperplane,

(c) a horosphere.

Theorem C ([1], [7]). Let M be real hypersurface of a complex projective space CP n.

We suppose that the Ricci tensor S satisfies g(SX, Y ) = ag(X,Y ) + bη(X)η(Y ) for

funcions a and b. Then a and b must be constant and M is locally congruent to one

of the following:

(a) a geodesic hypersphere,

(b) a tube of radius r over a complex projective subspace CP p, 1 ≤ p ≤ n − 2,

0 < r < π/2 and cot2 r = p/(n− p− 1).

(c) a tube over a complex quadric Qn−1.

Theorem D ([9]). A real hypersurface M of a complex hyperbolic space CHn, n ≥ 3,

is pseudo-Einstein if and only if it is η-umbilical.

3. Characterization of pseudo-Einstein real hypersurfaces

First, we prepare the following lemmas.

Lemma 3.1. Let M be a real hypersurface of a complex space form Mn(c), c ̸= 0,

n ≥ 3. Suppose that the curvature tensor R and the Ricci tensor S of M satisfy

g((R(X,Y )S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y,W ) = 0

for any tangent vectors X, Y , Z and W orthogonal to ξ. Then we have

g(SX, Y ) =
1

2n− 2
(r − g(Sξ, ξ))g(X,Y ),
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for any tangent vectors X and Y orthogonal to ξ, where r denotes the scalar curva-

ture of M .

Proof. We suppose that R and the Ricci tensor S of M satisfy

g((R(X, Y )S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y,W ) = 0.

for any tangent vectors X, Y , Z and W orthogonal to ξ. Since

(R(X,Y )S)Z = R(X,Y )SZ − SR(X,Y )Z,

the first Bianchi identity gives

g(R(X,Y )SZ +R(Y, Z)SX +R(Z,X)SY,W ) = 0.

We take an orthonormal basis {e1, · · · , e2n−2, e2n−1 = ξ} of the tangent space Tx(M).

Then we have

g(
2n−2∑
i=1

R(ei, ϕei)SX +
2n−2∑
i=1

R(ϕei, X)Sei +
2n−2∑
i=1

R(X, ei)Sϕei, Y ) = 0.

By ϕξ = 0,

g(
2n−1∑
i=1

R(ei, ϕei)SX +
2n−1∑
i=1

R(ϕei, X)Sei +
2n−1∑
i=1

R(X, ei)Sϕei, Y ) = 0.

Since we have

g(
2n−1∑
i=1

R(ϕei, X)Sei, Y ) = −g(
2n−1∑
i=1

R(ei, X)Sϕei, Y ),

it follows that

2n−1∑
i=1

g(R(ei, ϕei)SX, Y ) = 2
2n−1∑
i=1

g(R(ei, X)Sϕei, Y ).

On the other hand, by the equation of Gauss,∑
i

g(R(ei, ϕei)SX, Y )

= −4ncg(ϕSX, Y ) + 2g(SX,AϕAY ),

2
∑
i

g(R(ei, X)Sϕei, Y )

= c{−6g(ϕSX, Y ) + 2g(SϕX, Y )− 2
∑
i

g(Sϕei, ϕei)g(ϕX, Y )}

+ 2g(AX,SϕAY )− 2
∑
i

g(AX, Y )g(Aei, Sϕei).
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Thus we have

c{(−4n+ 6)g(ϕSX, Y )− 2g(SϕX, Y )}

= −2c
∑
i

g(Sϕei, ϕei)g(ϕX, Y ) + 2g(AX,SϕAY )

− 2
∑
i

g(AX, Y )g(Aei, Sϕei)− 2g(AϕAY, SX).

Using (1), for X,Y ∈ Hx, we obtain

g(AX,SϕAY )−
∑
i

g(AX, Y )g(Aei, Sϕei)− g(AϕAY, SX)

= −
∑
i

(2n+ 1)cg(AX, Y )g(Aei, ϕei)

−
∑
i

trAg(AX, Y )g(Aei, Aϕei) +
∑
i

g(AX, Y )g(Aei, A
2ϕei)

= 0.

From these equations and the assumption c ̸= 0, we have

(2n− 3)g(ϕSX, Y ) + g(SϕX, Y ) =
∑
i

g(Sϕei, ϕei)g(ϕX, Y ),

for any X,Y ∈ Hx. Since ϕX, ϕY ∈ Hx, we also have

(2n− 3)g(ϕSϕX, ϕY ) + g(Sϕ2X,ϕY ) =
∑
i

g(Sϕei, ϕei)g(ϕX, Y ),

and hence

(2n− 3)g(SϕX, Y ) + g(ϕSX, Y ) =
∑
i

g(Sϕei, ϕei)g(ϕX, Y ).

From these equations, we obtain

(2n− 4)g(SϕX, ϕY ) = (2n− 4)g(ϕX, Y ).

Since n ≥ 3, we have g(SϕX, ϕY ) = g(SX, Y ). Thus, by the definition of the scalar

curvature r of M , we get

(2n− 2)g(SX, Y ) =
∑
i

g(Sϕei, ϕei)g(X,Y )

= (r − g(Sξ, ξ))g(X, Y ),

which proves our assertion. �

Lemma 3.2. Let M be a real hypersurface of a complex space form Mn(c), c ̸= 0,

n ≥ 3. If S is pseudo η-parallel, then we have

g(SX, Y ) =
1

2n− 2
(r − g(Sξ, ξ))g(X,Y ),

for any tangent vectors X and Y orthogonal to ξ.
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Proof. We suppose g((R(X,Y )S)Z,W ) = Fg(((X ∧ Y )S)Z,W ) for any tangent

vectors X, Y , Z and W orthogonal to ξ, F being a function. Since we have

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y,

we obtain

((X ∧ Y )S)Z = g(Y, SZ)X − g(SZ,X)Y − g(Y, Z)SX + g(Z,X)SY.

So we have

((X ∧ Y )S)Z + ((Y ∧ Z)S)X + ((Y ∧ Z)S)X = 0.

Since g((R(X,Y )S)Z,W ) = Fg(((X ∧ Y )S)Z,W ), we have

g((R(X, Y )S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y,W ) = 0.

for any tangent vectors X, Y , Z and W orthogonal to ξ. From Lemma 3.1, we have

our result. �

Using Lemma 3.2, we prove our main theorem.

Theorem 3.1. Let M be a real hypersurface of a complex space form Mn(c), c ̸= 0,

n ≥ 3. Then S is pseudo η-parallel if and only if M is pseudo-Einstein.

Proof. We suppose that M satisfies g((R(X,Y )S)Z,W ) = Fg(((X ∧ Y )S)Z,W )

for any tangent vector fields X, Y , Z and W orthogonal to ξ. We can choose an

orthonormal basis {e1, · · · , e2n−2, ξ} at a point p of M such that the shape operator

A is represented by a matrix form

A =


λ1 · · · 0 h1

...
. . .

...
...

0 · · · λ2n−2 h2n−2

h1 · · · h2n−2 α

 .

Then, we have

Sei = (2n+ 1)cei − 3cη(ei)ξ + hAei − A2ei

= ((2n+ 1)c+ hλi − λ2
i )ei + hi(h− λi − α)ξ −

2n−2∑
k=1

hihkek,

Sξ = (2n+ 1)cξ − 3cη(ξ)ξ + hAξ − A2ξ

= (2n− 2)cξ + h(
2n−2∑
k=1

hkek + αξ)− A(
2n−2∑
k=1

hkek + αξ)

=
2n−2∑
k=1

hk(h− λk − α)ek + ((2n− 2)c+ αh−
2n−2∑
k=1

h2
k − α2)ξ,

— 51 —



where we have put h = trA. By Lemma 2.2, we have

g(Sei, ej) = −hihj = 0 (i ̸= j),

g(Sei, ei) =
1

2n− 2
(r − g(Sξ, ξ)) (i = 1, · · · , 2n− 2).

(2)

Equation (3.1) shows that at most one hi does not vanish at p. Thus we can assume

that hi = 0 for i = 2, · · · , 2n− 2. We set a = g(Sei, ei). Then we have

Se1 = ae1 + h1(h− λ1 − α)ξ,

Sei = aei (i = 2, · · · , 2n− 2),

Sξ = h1(h− λ1 − α)e1 + ((2n− 2)c+ αh− h2
1 − α2)ξ.

(3)

Since g((R(X, Y )S)Z,W ) = Fg(((X ∧ Y )S)Z,W ) for any tangent vector fields X,

Y , Z and W orthogonal to ξ, we have

g(R(X, Y )SZ − SR(X, Y )Z,W ) = Fg(((X ∧ Y )SZ − S(X ∧ Y )Z,W ).

By the equation of Gauss, for any j ≥ 2,

g(R(e1, ej)Se1, ej)− g(SR(e1, ej)e1, ej)

= ag(R(e1, ej)e1, ej) + h1(h− λ1 − α)g(R(e1, ej)ξ, ej)

− ag(R(e1, ej)e1, ej)

= h1(h− λ1 − α)g(R(e1, ej)ξ, ej)

= −h2
1λj(h− λ1 − α).

On the other hand, for any j ≥ 2,

F (g((e1 ∧ ej)Se1, ej)− g(S(e1 ∧ ej)e1, ej))

= F (−g(Se1, e1)g(ej, ej) + g(e1, e1)g(Sej, ej))

= F (a− a) = 0.

From these equations, we have

−h2
1λj(h− λ1 − α) = 0

for any j ≥ 2. If h1(h−λ1−α) ̸= 0, then we obtain λj = 0 for j ≥ 2. Since h = trA,

we have h = λ1 + α. This is a contradiction. So we have h1(h − λ1 − α) = 0. By

(3.2), SX = aX and g(Sξ,X) = 0 for any X orthogonal to ξ at p ∈ M , and hence

at any point of M . Thus we M is pseudo-Einstein and h1 = 0 (see [7]). We remark

that a and g(Sξ, ξ) are costant.

Conversely, if M is pseudo-Einstein, we have SZ = aZ + bη(Z)ξ = aZ and

SW = aW for any tangent vectors Z and W orthogonal to ξ, where a and b are
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constant. Then we have

g((R(X,Y )S)Z,W ) = g(R(X,Y )SZ,W )− g(SR(X,Y )Z,W ) = 0,

Fg(((X ∧ Y )S)Z,W ) = Fg((X ∧ Y )SZ,W )− Fg(S(X ∧ Y )Z,W ) = 0.

�

Next, we prove the following theorem (see [5]).

Theorem 3.2. Let M be a real hypersurface of a complex projective space CP n,

n ≥ 3. If S is pseudo η-parallel, then M is locally congruent to one of the following:

(i) a geodesic hypersphere of radius r (0 < r < π/2),

(ii) a minimal tube of radius π/4 over a complex projective space CP n−1
2 with

principal curvatures 1, −1 and 0 whose multiplicities are n− 1, n− 1 and 1,

respectively.

Theorem 3.3. Let M be a real hypersurface of a complex hyperbolic space CHn,

n ≥ 3. If S is pseudo η-parallel, then M is locally congruent to one of the following:

(i) a geodesic hypersphere,

(ii) a tube over a complex hyperbolic hyperplane,

(iii) a horosphere.

Proof of Theorem 3.2 and Theorem 3.3. We suppose g((R(X, Y )S)Z,W ) =

Fg(((X ∧ Y )S)Z,W ) for any tangent vector fields X, Y , Z and W . From The-

orem 3.1, M is pseudo-Einstein, so we can put SX = aX + bη(X)ξ, where a and b

are constant. We notice that M is a Hopf hypersuface. Then we have

SX = aX, Sξ = (a+ b)ξ

for any tangent vector X orthogonal to ξ. Thus we obtain

g((R(X, ξ)S)X, ξ)

= g(R(X, ξ)SX, ξ)− g(SR(X, ξ)X, ξ)

= −bg(R(X, ξ)X, ξ)

= b(c+ g(AX,X)g(Aξ, ξ)).

On the other hand, we have

Fg(((X ∧ ξ)S)X, ξ)

= Fg((X ∧ ξ)SX, ξ)− Fg(S(X ∧ ξ)X, ξ)

= bFg(X,X).

Since b ̸= 0, we have c + g(AX,X)g(Aξ, ξ) = F for any unit tangent vector X

orthogonal to ξ. If g(Aξ, ξ) ̸= 0, then M is η-umbilical. If Aξ = 0, then we have

c = F . When c > 0, Theorem C implies that M is a tube over a complex projective
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space CP n−1
2 with constant principal curvatures 1, −1 and 0 whose multiplicities

are n− 1, n− 1 and 1, respectively (see [7]). Otherwise, when c < 0, from Theorem

D, pseudo-Einstein real hypersurface M does not satisfy Aξ = 0 (see [9]).

Conversely, we suppose M is η-umbilical. Then the shape operator A can be

represented by AX = λX + µη(X)ξ, λ and µ being constant. Moreover, M is

pseudo-Einstein and SX = aX + bη(X)ξ for some constants a and b. By the

straightforward computation, we have

g((R(X, Y )S)Z,W )− (c+ λ(λ+ µ))g(((X ∧ Y )S)Z,W )

= −λ(λ+ µ)
(
bη(Z)η(Y )g(X,W )− bη(Z)η(X)g(Y,W )

− bη(X)η(W )g(Y, Z) + bη(Y )η(W )g(Z,X)
)

+ bη(Z)
(
g(AY, ξ)g(AX,W )− g(AX, ξ)g(AY,W )

)
− bη(W )

(
g(AX, ξ)g(AY,Z)− g(AY, ξ)g(AX,Z)

)
= 0.

Next we suppose that M is a pseudo-Einstein real hypersurface of Mn(c), c > 0,

n ≥ 3, which satisfies Aξ = 0. We put SX = aX + bη(X)ξ for some constant a and

b. Thus we have

g((R(X,Y )S)Z,W )− cg(((X ∧ Y )S)Z,W )

= bη(Z)
(
g(AY, ξ)g(AX,W )− g(AX, ξ)g(AY,W )

)
− bη(W )

(
g(AX, ξ)g(AY,Z)− g(AY, ξ)g(AX,Z)

)
= 0.

So we have our theorem.
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