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CONTROLLABILITY OF NONLINEAR IMPULSIVE
SECOND ORDER INTEGRODIFFERENTIAL
EVOLUTION SYSTEMS IN BANACH SPACES

GANESAN ARTHI AND KRISHNAN BALACHANDRAN

Abstract. This paper deals with the controllability of impulsive second order

integrodifferential systems in Banach spaces. Sufficient conditions for the con-

trollability are derived with the help of the fixed point theorem due to Sadovskii

and the theory of strongly continuous cosine family of operators. An example is

provided to show the effectiveness of the proposed results. Further, we study the

controllability of second order integrodifferential evolution systems with impulses

by using the Schaefer fixed-point theorem.

1. Introduction

In various real-world applications, there is a necessity given to steer processes in

time. More and more it becomes acknowledged in science and engineering, that these

processes exhibit discontinuities. Our paper on theory of control and on theory of

dynamical systems gives a contribution to this natural or technical fact. One of the

fundamental concepts in mathematical control theory is controllability which plays

an important role in deterministic control theory and engineering because they have

close connections to pole assignment, structural decomposition, quadratic optimal

control, observer design and many other physical phenomena [2]. This concept leads

to some very important conclusions regarding the behavior of linear and nonlinear

dynamical systems. Most of the practical systems are nonlinear in nature and hence

the study of nonlinear systems is important.

On the other hand, many systems are characterized by abrupt changes at certain

moments due to instantaneous perturbations, which lead to impulsive effects. Such

behavior is seen in a range of problems from: mechanics; chemotherapy; optimal

control; ecology; industrial robotics; biotechnology; spread of disease; harvesting;

medical models. The reader is referred to [8, 12, 22, 29] and references therein
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for some models and applications to the above areas. Impulsive dynamical systems

exhibit the continuous evolutions of the states typically described by ordinary differ-

ential equations coupled with instantaneous state jumps or impulses. The presence

of impulses implies that the trajectories of the system do not necessarily preserve

the basic properties of the non-impulsive dynamical systems. To this end the theory

of impulsive differential systems has emerged as an important area of investigation

in applied sciences [14, 30]. It is well-known that the notation of “aftereffect” in-

troduced in physics is very important. To model processes with aftereffect it is

not sufficient to employ ordinary or partial differential equations. An approach to

resolve this problem is to use integrodifferential equations. Integrodifferential equa-

tions arise in many engineering and scientific disciplines, often as approximations

to partial differential equations, which represent much of the continuum phenom-

ena. Many forms of these equations are possible. Some of the applications are

unsteady aerodynamics and aeroelastic phenomena, viscoelastic panel in supersonic

gas flow, fluid dynamics, electrodynamics of complex media, many models of pop-

ulation growth, polymer rheology, neural network modeling, sandwich system iden-

tification, materials with fading memory, mathematical modeling of the diffusion of

discrete particles in a turbulent fluid, theory of lossless transmission lines, theory of

population dynamics, compartmental systems, nuclear reactors and mathematical

modeling of hereditary phenomena. The theory of impulsive integrodifferential equa-

tions in the field of modern applied mathematics has made considerable headway in

recent years, because the structure of its emergence has deep physical background

and realistic mathematical models.

Impulsive control systems have been studied by several authors [9, 24, 27, 28]. In

[24] the problem of controlling a physical object through impacts is studied, called

impulsive manipulation, which arises in a number of robotic applications. In [27]

the authors investigated the optimal harvesting policy for an ecosystem with im-

pulsive harvest. For some recent references on different control strategies, including

impulsive control, we refer the reader to [1, 6, 10, 16, 18] and the references therein.

Controllability problems for different types of nonlinear systems have been consid-

ered in many publications and monographs. The extensive list of these publications

can be found, for example, in the papers [3, 4, 5, 15, 20]. The study of dynam-

ical systems with impulsive effects has been an object of intensive investigations

[7, 13, 17, 21]. Li et al.[13], using the Schaefer fixed point theorem, studied the

controllability of impulsive functional differential systems in Banach spaces. In [21],

sufficient conditions were formulated for the exact controllability of second-order

nonlinear impulsive control systems. This paper is devoted to extending controlla-

bility results to impulsive second-order evolution systems. To be precise, in [5], the

authors used Schaefer’s fixed point theorem to establish controllability results for
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second-order integrodifferential evolution systems in Banach spaces. Some papers

on deterministic controllability problems contain a strict compactness assumption

on the semigroup and cosine function, in this case the application of controllability

results are restricted to finite dimensional space. Here, we obtain controllability

results for impulsive second order integrodifferential systems with a noncompact

condition on the cosine family of operators. Also, we establish the controllability

conditions for integrodifferential evolution systems with impulsive conditions. How-

ever, the corresponding theory of impulsive integrodifferential equations in abstract

spaces is still in its developing stage and many aspects of the theory remain to be

addressed. To our best knowledge, there is no work reported on the controllability

of nonlinear impulsive second order integrodifferential evolution systems in Banach

spaces. To close the gap in this paper, we study this interesting problem.

2. Second Order Impulsive Delay Integrodifferential Sys-

tems

Before stating and proving the main result, we first introduce notations, definitions

and preliminary facts which are used throughout this section. A is the infinitesi-

mal generator of a strongly continuous cosine family of bounded linear operators

(C(t))t∈R defined on a Banach space X endowed with a norm ∥ · ∥. We denote by

(S(t))t∈R the sine function associated with (C(t))t∈R which is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R.

Moreover, M and N are positive constants such that ∥C(t)∥ ≤M and ∥S(t)∥ ≤ N ,

for every t ∈ J .

The notation [D(A)] is the space D(A) = {x ∈ X : C(t)x is twice continuously

differentiable in t} endowed with the norm ∥x∥A = ∥x∥+ ∥Ax∥, x ∈ D(A).

Define E = {x ∈ X : C(t)x is once continuously differentiable in t} endowed with

the norm ∥x∥E = ∥x∥ + sup
0≤t≤1

∥AS(t)x∥, x ∈ E. Then E is a Banach space. The

operator-valued function

G(t) =

[
C(t) S(t)

AS(t) C(t)

]
is a strongly continuous group of bounded linear operators on the space E × X

generated by the operator A =

[
0 I

A 0

]
defined on D(A) × E. From this, it

follows that AS(t) : E → X is a bounded linear operator and that AS(t)x → 0,

t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable
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function, then y(t) =
∫ t

0
S(t − s)x(s)ds defines an E-valued continuous function

which is a consequence of the fact that∫ t

0

G(t− s)

[
0

x(s)

]
ds =

[ ∫ t

0

S(t− s)x(s)ds,

∫ t

0

C(t− s)x(s)ds
]T

defines an (E ×X)-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + g(t), 0 ≤ t ≤ b, (2.1)

x(0) = v, x′(0) = w, (2.2)

where g : [0, b] → X is an integrable function, has been discussed in [25]. Similarly

the existence of solutions of semilinear second order abstract Cauchy problems has

been treated in [26]. We only mention here that the function x(·) given by

x(t) = C(t)v + S(t)w +

∫ t

0

S(t− s)g(s)ds, 0 ≤ t ≤ b,

is called a mild solution of (2.1) − (2.2) and that when v ∈ E, x(·) is continuously
differentiable and

x′(t) = AS(t)v + C(t)w +

∫ t

0

C(t− s)g(s)ds 0 ≤ t ≤ b.

The following properties are well known [25]:

(i) if x ∈ X then S(t)x ∈ E for every t ∈ R.
(ii) if x ∈ E then S(t)x ∈ D(A), (d/dt)C(t)x = AS(t)x and (d2/dt2)S(t)x =

AS(t)x for every t ∈ R.
(iii) if x ∈ D(A) then C(t)x ∈ D(A), and (d2/dt2)C(t)x = AC(t)x = C(t)Ax for

every t ∈ R.
(iv) if x ∈ D(A) then S(t)x ∈ D(A), and (d2/dt2)S(t)x = AS(t)x = S(t)Ax for

every t ∈ R.
To consider the impulsive conditions, it is convenient to introduce some additional

concepts and notations.

Denote J0 = [0, t1], Jk = (tk, tk+1], k = 1, 2, . . . ,m. Let I ⊂ R be an interval. We

define the following classes of functions :

PC(I,X) = {x : I → X : x(t) is continuous everywhere except for some tk at

which x(t−k ) and x(t
+
k ) exist and x(t

−
k ) = x(tk), k = 1, 2, . . . ,m}.

For x ∈ PC(I,X), take ∥x∥PC = sup
t∈I

∥x(t)∥, then PC(I,X) is a Banach space.

Let (Z, ∥ ·∥Z), (W, ∥ ·∥W ) be Banach spaces. The notation L(Z,W ) stands for the

Banach space of bounded linear operators from Z intoW endowed with the uniform

operator norm denoted by ∥ ·∥L(Z,W ), and we abbreviate this notation to L(Z) when
Z = W . Moreover, Br(x : Z) denotes the closed ball with center at x and radius
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r > 0 in Z and we write simply Br when no confusion arises.

The following lemma is crucial in the proof of our main result.

Lemma 2.1 ([19]: Sadovskii’s Fixed Point Theorem). Let F be a condensing oper-

ator on a Banach space X. If F (S) ⊂ S for a convex, closed and bounded set S of

X, then F has a fixed point in S.

This section is concerned with the study of controllability of delay integrodiffer-

ential system with impulsive conditions described in the form

x′′(t) = Ax(t) +Bu(t) + f
(
t, xt,

∫ t

0

a(t, s, xs)ds
)
,

t ∈ J = [0, b], t ̸= tk, k = 1, 2, . . . ,m, (2.3)

x0 = ϕ on [−r, 0], x′(0) = η ∈ X, (2.4)

△x(tk) = Ik(x(t
−
k )), k = 1, 2, . . . ,m, (2.5)

△x′(tk) = Jk(x(t
−
k )), k = 1, 2, . . . ,m, (2.6)

where A is the infinitesimal generator of a strongly continuous cosine family of

bounded linear operators (C(t))t∈R defined on a Banach space X. The control func-

tion u(·) is given in L2(J, U), a Banach space of admissible control functions with U

as a Banach space and B : U → X as a bounded linear operator; a : J × J ×D →
X, f : J ×D ×X → X, Ik : X → X, Jk : X → X (k = 1, 2, . . . ,m), △ξ(t) repre-
sents the jump of a function ξ(·) at t, which is defined by△ξ(t) = ξ(t+)−ξ(t−). D =

{φ : [−r, 0] → X, φ(t) is continuous everywhere except a finite number of points t̃

at which φ(t̃−), φ(t̃+) exist and φ(t̃−) = φ(t̃)}. 0 < t1 < t2 < . . . < tm < b, ϕ :

[−r, 0] → X. For any continuous function x defined on [−r, b] \ {t1, . . . , tm} and any

t ∈ J , we denote by xt the element of D defined by xt(θ) = x(t + θ),−r ≤ θ ≤ 0.

Here xt(·) represents the history of the state from time t− r, up to the present time

t.

Definition 2.1. A solution x(·) ∈ PC([−r, b], X) is said to be a mild solution of the

abstract Cauchy problem (2.3)− (2.6), if x0 = ϕ on [−r, 0], the impulsive conditions

△x(tk) = Ik(x(t
−
k )), △x′(tk) = Jk(x(t

−
k )), k = 1, 2, . . . ,m, are satisfied and the

following integral equation is verified :

x(t) = C(t)ϕ(0) + S(t)η +

∫ t

0

S(t− s)

[
Bu(s) + f

(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)]

ds

+
∑

0<tk<t

C(t− tk)Ik(x(t
−
k )) +

∑
0<tk<t

S(t− tk)Jk(x(t
−
k )), t ∈ J.

Definition 2.2. The system (2.3) − (2.6) is said to be controllable on the interval

J , if for every x0 = ϕ ∈ PC([−r, 0], X), x′(0) = η and z1 ∈ X, there exists a control

u ∈ L2(J, U) such that the mild solution x(·) of (2.3)− (2.6) satisfies x(b) = z1.
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In order to establish the controllability result, we introduce the following technical

hypothesis:

(H1) The function f : J ×D ×X → X satisfies the following conditions :

(i) a(t, s, ·) : D → X is continuous for each t, s ∈ J and the function

a(·, ·, x) : J × J → X is strongly measurable for each x ∈ D.

(ii) f(t, ·, ·) : D × X → X is continuous for each t ∈ J and the function

f(·, x, y) : J → X is strongly measurable for each (x, y) ∈ D ×X.

(iii) For every positive constant r, there exists αr ∈ L1(J) such that

sup
∥x∥,∥y∥≤r

∥f(t, x, y)∥ ≤ αr(t), for a.e. t ∈ J.

(iv) There exists an integrable function n : J → [0,∞) such that∥∥∥∫ t

0

a(t, s, ϕ)ds
∥∥∥ ≤ n(t)ψ2(∥ϕ∥PC), lim inf

ξ→∞

ψ2(ξ)

ξ
= Λ̃ <∞,

for almost all t ∈ J, ϕ ∈ PC([−r, 0], X), where ψ2 : [0,∞) → (0,∞) is a

continuous non-decreasing function.

(v) There exists an integrable function m : J → [0,∞) such that

∥f(t, ϕ, x)∥ ≤ m(t)ψ1(∥ϕ∥PC) + ∥x∥, lim inf
ξ→∞

ψ1(ξ)

ξ
= Λ <∞,

for almost all t ∈ J, ϕ ∈ PC([−r, 0], X), where ψ1 : [0,∞) → (0,∞) is a

continuous non-decreasing function.

(vi) For each t ∈ J , the function f(t, ·, ·) : D × X → X is completely

continuous.

(H2) B is a continuous operator from U to X and the linear operator W :

L2(J, U) → X, defined by

Wu =

∫ b

0

S(b− s)Bu(s)ds,

has a bounded invertible operatorW−1 which takes values in L2(J, U)/kerW

and there exists a positive constant M1 such that ∥BW−1∥ ≤M1.

(H3) The impulsive functions satisfy the following conditions:

(i) The maps Ik, Jk : X → X, k = 1, 2, . . . ,m are completely continuous

and there exist continuous non-decreasing functions µk, σk : [0,∞) →
(0,∞), k = 1, 2, . . . ,m, such that

∥Ik(x)∥ ≤ µk(∥x∥), ∥Jk(x)∥ ≤ σk(∥x∥), x ∈ X.

(ii) There are positive constants L1, L2 such that

∥Ik(x1)− Ik(x2)∥ ≤ L1∥x1 − x2∥,
∥Jk(x1)− Jk(x2)∥ ≤ L2∥x1 − x2∥, x1, x2 ∈ X, k = 1, 2, . . . ,m.

— 24 —



Theorem 2.1. Suppose that (H1)−(H3) are satisfied. Then the system (2.3)−(2.6)

is controllable on J provided that

(1 + bNM1)

[
NΛ

∫ b

0

m(s)ds+N Λ̃

∫ b

0

n(s)ds+
m∑
k=1

(ML1 +NL2)

]
< 1.

Proof. Using the assumption (H2), for an arbitrary function x(·), we define the

control

u(t) = W−1

[
z1 − C(b)ϕ(0)− S(b)η −

∫ b

0

S(b− s)f
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

−
m∑
k=1

C(b− tk)Ik(x(t
−
k ))−

m∑
k=1

S(b− tk)Jk(x(t
−
k ))

]
(t).

We shall now show that when using this control the operator Φ defined by

Φx(t) = C(t)ϕ(0) + S(t)η +

∫ t

0

S(t− ξ)BW−1

[
z1 − C(b)ϕ(0)− S(b)η

−
∫ b

0

S(b− s)f
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds−

m∑
k=1

C(b− tk)Ik(x(t
−
k ))

−
m∑
k=1

S(b− tk)Jk(x(t
−
k ))

]
(ξ)dξ +

∫ t

0

S(t− s)f
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

+
∑

0<tk<t

C(t− tk)Ik(x(t
−
k )) +

∑
0<tk<t

S(t− tk)Jk(x(t
−
k )), t ∈ J,

has a fixed point. This fixed point is then a mild solution of the system (2.3)−(2.6).

Clearly (Φx)(b) = z1 which means that the control u steers the system from the

initial function ϕ to z1 in time b, provided we can obtain a fixed point of the operator

Φ which implies that the system is controllable.

For ϕ ∈ PC([−r, 0], X), we define ϕ̂ ∈ PC([−r, b], X) by

ϕ̂ (t) =

{
C(t)ϕ(0), 0 ≤ t ≤ b,

ϕ(t), −r ≤ t ≤ 0.

If x(t) = y(t) + ϕ̂(t), t ∈ [−r, b], it is easy to see that y satisfied y0 = 0 and

y(t) = S(t)η +

∫ t

0

S(t− ξ)BW−1

[
z1 − C(b)ϕ(0)− S(b)η

−
∫ b

0

S(b− s)f
(
s, ys + ϕ̂s,

∫ s

0

a(s, τ, yτ + ϕ̂τ )dτ
)
ds
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−
m∑
k=1

C(b− tk)Ik(y(t
−
k ) + ϕ̂(t−k ))−

m∑
k=1

S(b− tk)Jk(y(t
−
k ) + ϕ̂(t−k ))

]
(ξ)dξ

+

∫ t

0

S(t− s)f
(
s, ys + ϕ̂s,

∫ s

0

a(s, τ, yτ + ϕ̂τ )dτ
)
ds

+
∑

0<tk<t

C(t− tk)Ik(y(t
−
k ) + ϕ̂(t−k )) +

∑
0<tk<t

S(t− tk)Jk(y(t
−
k ) + ϕ̂(t−k ))

if and only if x satisfies

x(t) = C(t)ϕ(0) + S(t)η +

∫ t

0

S(t− ξ)BW−1

[
z1 − C(b)ϕ(0)− S(b)η

−
∫ b

0

S(b− s)f
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds−

m∑
k=1

C(b− tk)Ik(x(t
−
k ))

−
m∑
k=1

S(b− tk)Jk(x(t
−
k ))

]
(ξ)dξ +

∫ t

0

S(t− s)f
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

+
∑

0<tk<t

C(t− tk)Ik(x(t
−
k )) +

∑
0<tk<t

S(t− tk)Jk(x(t
−
k ))

and x(t) = ϕ(t), t ∈ [−r, 0].

Define PC0 = {y ∈ PC([−r, b], X) : y0 = 0} and Ψ : PC0 → PC0 by (Ψy)(t) =

0, −r ≤ t ≤ 0 and

(Ψy)(t) = S(t)η +

∫ t

0

S(t− ξ)BW−1

[
z1 − C(b)ϕ(0)− S(b)η −

∫ b

0

S(b− s)

× f
(
s, ys + ϕ̂s,

∫ s

0

a(s, τ, yτ + ϕ̂τ )dτ
)
ds−

m∑
k=1

C(b− tk)Ik(y(t
−
k ) + ϕ̂(t−k ))

−
m∑
k=1

S(b− tk)Jk(y(t
−
k ) + ϕ̂(t−k ))

]
(ξ)dξ +

∫ t

0

S(t− s)

× f
(
s, ys + ϕ̂s,

∫ s

0

a(s, τ, yτ + ϕ̂τ )dτ
)
ds+

∑
0<tk<t

C(t− tk)Ik(y(t
−
k ) + ϕ̂(t−k ))

+
∑

0<tk<t

S(t− tk)Jk(y(t
−
k ) + ϕ̂(t−k )), t ∈ J.

Obviously, the operator Φ has a fixed point if and only if Ψ has a fixed point. So we

have to prove that Ψ has a fixed point.

Now we claim that there exists r > 0 such that Ψ(Br(0, PC0)) ⊆ Br(0, PC0).

If we assume that this assertion is false, then for each r > 0, we can choose xr ∈
Br(0, PC0) such that ∥(Ψyr)(tr)∥ > r.

— 26 —



r < ∥(Ψyr)(tr)∥

≤ N∥η∥+NM1

∫ tr

0

[
∥z1∥+M∥ϕ(0)∥+N∥η∥+N

∫ b

0

[
m(s)ψ1(∥yrs + ϕ̂s∥)

+n(s)ψ2(∥yrs + ϕ̂s∥)
]
ds+M

m∑
k=1

[
∥Ik(yr(t−k ) + ϕ̂(t−k ))− Ik(ϕ̂(t

−
k ))∥

+∥Ik(ϕ̂(t−k ))∥
]
+N

m∑
k=1

[
∥Jk(yr(t−k ) + ϕ̂(t−k ))− Jk(ϕ̂(t

−
k ))∥

+∥Jk(ϕ̂(t−k ))∥
]]
dξ +N

∫ tr

0

[
m(s)ψ1(∥yrs + ϕ̂s∥) + n(s)ψ2(∥yrs + ϕ̂s∥)

]
ds

+M
m∑
k=1

[
∥Ik(yr(t−k ) + ϕ̂(t−k ))− Ik(ϕ̂(t

−
k ))∥+ ∥Ik(ϕ̂(t−k ))∥

]
+N

m∑
k=1

[
∥Jk(yr(t−k ) + ϕ̂(t−k ))− Jk(ϕ̂(t

−
k ))∥+ ∥Jk(ϕ̂(t−k ))∥

]
≤ N∥η∥+ bNM1

[
∥z1∥+M∥ϕ(0)∥+N∥η∥+N

∫ b

0

[
m(s)ψ1(r + ∥ϕ̂s∥)

+n(s)ψ2(r + ∥ϕ̂s∥)
]
ds+M

m∑
k=1

[
L1r + ∥Ik(ϕ̂(t−k ))∥

]
+N

m∑
k=1

[
L2r

+∥Jk(ϕ̂(t−k ))∥
]]

+N

∫ b

0

[
m(s)ψ1(r + ∥ϕ̂s∥) + n(s)ψ2(r + ∥ϕ̂s∥)

]
ds

+M
m∑
k=1

[
L1r + ∥Ik(ϕ̂(t−k ))∥

]
+N

m∑
k=1

[
L2r + ∥Jk(ϕ̂(t−k ))∥

]
and hence

(1 + bNM1)

[
NΛ

∫ b

0

m(s)ds+N Λ̃

∫ b

0

n(s)ds+
m∑
k=1

(ML1 +NL2)

]
≥ 1,

which contradicts our assumption.

Let r > 0 be such that Ψ(Br(0, PC0)) ⊆ Br(0, PC0). In order to prove that Ψ

is a condensing map on Br(0, PC0) into Br(0, PC0). Consider the decomposition

Ψ = Ψ1 + Ψ2 where

Ψ1y(t) = S(t)η +
∑

0<tk<t

C(t− tk)Ik(y(t
−
k ) + ϕ̂(t−k )) +

∑
0<tk<t

S(t− tk)Jk(y(t
−
k ) + ϕ̂(t−k )),

Ψ2y(t) =

∫ t

0

S(t− s)
[
f
(
s, ys + ϕ̂s,

∫ s

0

a(s, τ, yτ + ϕ̂τ )dτ
)
+Bu(s)

]
ds.
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Now

∥Bu(s)∥ ≤ M1

[
∥z1∥+M∥ϕ(0)∥+N∥η∥+N

∫ b

0

αr(s)ds

+M
m∑
k=1

µk

(
∥y(t−k )∥+ ∥ϕ̂(t−k )∥

)
+N

m∑
k=1

σk
(
∥y(t−k )∥+ ∥ϕ̂(t−k )∥

)]

≤ M1

[
∥z1∥+M∥ϕ(0)∥+N∥η∥+N

∫ b

0

αr(s)ds

+
m∑
k=1

(Mµk +Nσk)(r + ∥ϕ̂(t−k )∥)

]
= Ã0.

From [15, Lemma 3.1], we infer that Ψ2 is completely continuous. Moreover, from

the estimate

∥Ψ1v − Ψ1w∥ ≤
m∑
k=1

(ML1 +NL2)∥v − w∥,

it follows that Ψ1 is a contraction on Br(0, PC0) which implies that Ψ is a condensing

operator on Br(0, PC0).

Hence by the Sadovskii’s fixed point theorem, Ψ has a fixed point y in PC0. Let

x(t) = y(t) + ϕ̂(t), t ∈ [−r, b].

Then x(·) is a fixed point of the operator Φ which is a mild solution of the problem

(2.3)− (2.6). This completes the proof. □

Corollary 2.1. If all conditions of Theorem 2.1 hold except that (H3) replaced by

the following one,

(C1) : there exist positive constants ck, dk, fk, gk and constants θk, δk ∈ (0, 1), k =

1, 2, . . . ,m such that for each ϕ ∈ X,

∥Ik(ϕ)∥ ≤ ck + dk(∥ϕ∥)θk , k = 1, 2, . . . ,m,

and

∥Jk(ϕ)∥ ≤ fk + gk(∥ϕ∥)δk , k = 1, 2, . . . ,m,

then the system (2.3)− (2.6) is controllable on J provided that

(1 + bNM1)

[
NΛ

∫ b

0

m(s)ds+N Λ̃

∫ b

0

n(s)ds

]
< 1.
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Example 2.1. Consider the following impulsive partial delay integrodifferential equa-

tion of the form

∂2

∂t2
z(t, ξ) =

∂2

∂ξ2
z(t, ξ) + µ̂(t, ξ) +

sin z(t− r, ξ)

(1 + t)(1 + t2)

+
z(t− r, ξ)

(1 + t)(1 + t2)

∫ t

0

e−z(s−r,ξ)ds, (2.7)

for t ∈ J = [0, b], 0 ≤ ξ ≤ 1, subject to the initial conditions

z(t, 0) = z(t, 1) = 0, t ≥ 0,

z(t, ξ) = ϕ(t, ξ), for − r ≤ t ≤ 0,

∂

∂t
z(0, ξ) = z0(ξ),

△z(tk)(ξ) =

∫ tk

0

ek(tk − s)z(s, ξ)ds, k = 1, 2, . . . ,m,

△z′(tk)(ξ) =

∫ tk

0

ẽk(tk − s)z(s, ξ)ds, k = 1, 2, . . . ,m,

where ek, ẽk ∈ C(R,R).
We have to show that there exists a control µ̂ which steers (2.7) from any specified

initial state to the final state in a Banach space X.

Let X = L2[0, 1] and let A be an operator defined by Az = z′′ with domain

D(A) = {z ∈ X : z, z′ are absolutely continuous , z′′ ∈ X, z(0) = z(1) = 0} .

It is well known that A is the infinitesimal generator of a strongly continuous cosine

function (C(t))t∈R on X. Moreover, A has a discrete spectrum with eigenvalues of

the form −n2, n ∈ N, and the corresponding normalized eigenfunctions given by

wn(ζ) :=
√
2 sinnζ. Also the following properties hold :

(a) The set of functions {wn : n ∈ N} forms an orthonormal basis of X.

(b) If z ∈ D(A), then Az =
∑∞

n=1−n2⟨z, wn⟩wn.

(c) For z ∈ X,C(t)z =
∑∞

n=1 cos(nt)⟨z, wn⟩wn. The associated sine family is

given by S(t)z =
∑∞

n=1
sin(nt)

n
⟨z, wn⟩wn, z ∈ X.

Let ∫ t

0

a(t, s, zs)(ξ)ds =
z(t− r, ξ)

(1 + t)(1 + t2)

∫ t

0

e−z(s−r,ξ)ds,

f
(
t, zt,

∫ t

0

a(t, s, zs)ds
)
(ξ) =

1

(1 + t)(1 + t2)

[
sin z(t− r, ξ)

+z(t− r, ξ)

∫ t

0

e−z(s−r,ξ)ds
]
.
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Also define the operators Ik and Jk

Ik(ψ)(ξ) =

∫ 1

0

ek(s)ψ(s, ξ)ds, Jk(ψ)(ξ) =

∫ 1

0

ẽk(s)ψ(s, ξ)ds.

Further, we have∣∣∣∣∣ 1

(1 + t)(1 + t2)

[
sin z(t− r, ξ) + z(t− r, ξ)

∫ t

0

e−z(s−r,ξ)ds
]∣∣∣∣∣ ≤ 1

(1 + t2)
|z|.

Assume that the bounded linear operator B : U ⊂ J → X is defined by

(Bu)(t)(ξ) = µ̂(t, ξ), 0 ≤ ξ ≤ 1.

Further, the linear operator W is given by

(Wu)(ξ) =
∞∑
n=1

∫ 1

0

1

n
sinns⟨µ̂(s, ξ), wn⟩wnds, 0 ≤ ξ ≤ 1.

Assume that this operator has a bounded inverse operator W−1 in L2(J, U)/kerW .

With the choice of A, B, W, f, Ik and Jk, (2.3)− (2.6) is the abstract formulation

of (2.7). Hence the second order impulsive system (2.7) is controllable on J .

3. Second Order Impulsive Integrodifferential Evolution Sys-

tems

The main objective of this section is to study the controllability of systems governed

by a second order integrodifferential evolution equation with impulsive conditions

of the form

x′′(t) = A(t)x(t) + Bu(t) + f(t, x(t), x′(t)) +

∫ t

0

h(t, s, x(s), x′(s))ds,

t ∈ J = [0, T ], t ̸= tk, k = 1, 2, . . . ,m, (3.1)

x(0) = x0, x′(0) = y0, (3.2)

△x(tk) = Ik(x(tk), x
′(t−k )), k = 1, 2, . . . ,m, (3.3)

△x′(tk) = Jk(x(tk), x
′(t−k )), k = 1, 2, . . . ,m, (3.4)

where x0, y0 ∈ X,A(t) : X → X is a closed densely defined operator. The control

function u(·) is given in L2(J, U), a Banach space of admissible control functions with

U as a Banach space and B : U → X as a bounded linear operator ; f(·), h(·), Ik(·)
and Jk(·) are appropriate functions and the jump △ξ(t) of the function ξ(·) at t

defined by △ξ(t) = ξ(t+)− ξ(t−).

Let X denote a real reflexive Banach space and, for each t ∈ [0, T ], let A(t) :

X → X be a closed densely defined operator. The fundamental solution for the
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second-order evolution equation,

x′′(t) = A(t)x(t), (3.5)

has been developed by Kozak [11]. Let us assume that the domain of A(t) does not

depend on t ∈ [0, T ] and denote it by D(A) (for each t ∈ [0, T ], D(A(t)) = D(A)).

Definition 3.1. A family S of bounded linear operators S(t, s) : X → X, t, s ∈
[0, T ], is called a fundamental solution of a second order equation (3.5) if :

(Z1) For each x ∈ X, the mapping [0, T ] × [0, T ] ∋ (t, s) → S(t, s)x ∈ X is of

class C1 and

(i) for each t ∈ [0, T ], S(t, t) = 0,

(ii) for all t, s ∈ [0, T ], and for each x ∈ X,

∂

∂t
S(t, s)

∣∣∣
t=s
x = x,

∂

∂s
S(t, s)

∣∣∣
t=s
x = −x.

(Z2) For all t, s ∈ [0, T ], if x ∈ D(A), then S(t, s)x ∈ D(A), the mapping [0, T ]×
[0, T ] ∋ (t, s) → S(t, s)x ∈ X is of class C2 and

(i) ∂2

∂t2
S(t, s)x = A(t)S(t, s)x,

(ii) ∂2

∂s2
S(t, s)x = S(t, s)A(s)x,

(iii) ∂
∂s

∂
∂t
S(t, s)

∣∣∣
t=s
x = 0.

(Z3) For all t, s ∈ [0, T ], if x ∈ D(A), then ∂
∂s
S(t, s)x ∈ D(A), there exists

∂2

∂t2
∂
∂s
S(t, s)x, ∂2

∂s2
∂
∂t
S(t, s)x and

(i) ∂2

∂t2
∂
∂s
S(t, s)x = A(t) ∂

∂s
S(t, s)x,

(ii) ∂2

∂s2
∂
∂t
S(t, s)x = ∂

∂t
S(t, s)A(s)x

and the mapping [0, T ]× [0, T ] ∋ (t, s) → A(t) ∂
∂s
S(t, s)x is continuous.

We now consider some notations and definitions concerning impulsive differen-

tial equations. In what follows we put t0 = 0, tm+1 = T and we denote by PC
the space formed by the functions x : J → X such that x(·) is continuous at

t ̸= tk, x(t
−
k ) = x(tk) and x(t

+
k ) exists for all k = 1, 2, . . . ,m. It is clear that PC en-

dowed with the norm ∥x∥PC = sup
t∈J

∥x(t)∥ is a Banach space. Similarly, PC1 will be

the space of the functions x(·) ∈ PC such that x(·) is continuously differentiable on

J\ {tk : k = 1, . . . ,m} and the lateral derivatives x′R(t) = lim
s→0+

x(t+s)−x(t+)
s

, x′L(t) =

lim
s→0−

x(t+s)−x(t−)
s

are continuous functions on [tk, tk+1) and (tk, tk+1] respectively.

Next, for x ∈ PC1 we represent by x′(t) the left derivative at t ∈ (0, T ] and by

x′(0) the right derivative at zero. It is easy to see that PC1 provided with the norm

∥x∥PC1 = ∥x∥PC + ∥x′∥PC is a Banach space.

For x ∈ PC, we denote by x̃k, k = 0, 1, . . . ,m, the unique continuous function
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x̃k ∈ C([tk, tk+1];X) such that

x̃k (t) =

{
x(t), for t ∈ (tk, tk+1],

x(t+k ), for t = tk.

The proof is based on the following fixed point theorem.

Lemma 3.1 ([23]: Schaefer’s Theorem). Let E be a normed linear space. Let

F : E → E be a completely continuous operator, that is, it is continuous and the

image of any bounded set is contained in a compact set, and let

ζ(F ) = {x ∈ E : x = λFx for some 0 < λ < 1}.

Then, either ζ(F ) is unbounded or F has a fixed point.

Definition 3.2. A function x ∈ PC1 is said to be a mild solution of problem

(3.1) − (3.4) if x(t) ∈ D(A(t)), for each t ∈ [0, T ] and if it satisfies the following

integral equation,

x(t) = − ∂

∂s
S(t, s)

∣∣∣
s=0

x0 + S(t, 0)y0 +

∫ t

0

S(t, s)Bu(s)ds

+

∫ t

0

S(t, s)f(s, x(s), x′(s))ds+

∫ t

0

∫ s

0

S(t, s)h(s, τ, x(τ), x′(τ))dτds

−
∑

0<tk<t

∂

∂s
S(t, tk)Ik(x(tk), x

′(t−k )) +
∑

0<tk<t

S(t, tk)Jk(x(tk), x
′(t−k )), t ∈ J.

Definition 3.3. The system (3.1) − (3.4) is said to be controllable on the interval

J , if for every x0, y0 ∈ D(A) and z1 ∈ X, there exists a control u ∈ L2(J, U) such

that the mild solution x(·) of (3.1)− (3.4) satisfies x(T ) = z1.

To investigate the controllability of problem (3.1) − (3.4), we use the following

assumptions:

(A1) x(t) ∈ D(A(t)), for each t ∈ [0, T ].

(A2) There exists a fundamental solution S(t, s) of (3.5).

(A3) S(t, s) is compact for each t, s ∈ [0, T ] and there exist positive constants

M,M∗ and N,N∗, such that

M = sup {||S(t, s)|| : t, s ∈ J} , M∗ = sup
{
|| ∂
∂s
S(t, s)|| : t, s ∈ J

}
and

N = sup
{
|| ∂
∂t
S(t, s)|| : t, s ∈ J

}
, N∗ = sup

{
|| ∂
∂t

∂
∂s
S(t, s)|| : t, s ∈ J

}
, re-

spectively.

(A4) B is a continuous operator from U to X and the linear operator W :

L2(J, U) → X, defined by

Wu =

∫ T

0

S(T, s)Bu(s)ds,
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has a bounded invertible operatorW−1 which takes values in L2(J, U)/kerW

and there exists a positive constant M1 such that ∥BW−1∥ ≤M1.

(A5) f(t, ·, ·) : X×X → X is continuous for each t ∈ J and the function f(·, x, y) :
J → X is strongly measurable for each (x, y) ∈ X ×X.

(A6) h(t, s, ·, ·) : X × X → X is continuous for each t, s ∈ J and the function

g(·, ·, x, y) : J × J → X is strongly measurable for each (x, y) ∈ X ×X.

(A7) For every positive constant k, there exists αk ∈ L1(J) such that

sup
∥x∥,∥y∥≤k

∥f(t, x, y)∥ ≤ αk(t), for a.e. t ∈ J.

(A8) For every positive constant k, there exists βk ∈ L1(J) such that

sup
∥x∥,∥y∥≤k

∥∥∥ ∫ t

0

h(t, s, x, y)ds
∥∥∥ ≤ βk(t), for a.e. t ∈ J.

(A9) There exists an integrable function p : J → [0,∞) such that

∥f(t, x, y)∥ ≤ p(t)Ω(∥x∥+ ∥y∥), t ∈ J, x, y ∈ X,

where Ω : [0,∞) → (0,∞) is a continuous non-decreasing function.

(A10) There exists an integrable function q : J → [0,∞) such that∥∥∥ ∫ t

0

h(t, s, x, y)ds
∥∥∥ ≤ q(t)Ω0(∥x∥+ ∥y∥), t ∈ J, x, y ∈ X,

where Ω0 : [0,∞) → (0,∞) is a continuous non-decreasing function.

(A11) The impulsive functions satisfy the following conditions:

a) The functions Ik, Jk : X ×X → X, k = 1, 2, . . . ,m are continuous.

b)There exist positive constants alk, b
l
k, l = 1, 2, k = 1, 2, . . . ,m such that

∥Ik(x, x′)∥ ≤ a1k(∥x∥+ ∥x′∥) + a2k, ∥Jk(x, x′)∥ ≤ b1k(∥x∥+ ∥x′∥) + b2k, for x, x
′ ∈ X.

(A12) µ =
∑m

k=1

[
(M∗ +N∗)a1k + (M +N)b1k

]
< 1 and

(M +N)

∫ T

0

ϕ̂(s)ds <

∫ ∞

c

ds

Ω(s) + Ω0(s)
, where ϕ̂(t) = max

[ 1

1− µ
p(t),

1

1− µ
q(t)

]
,

M2 =
[
∥z1∥+M∗∥x0∥+M∥y0∥+M

∫ T

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds

+M

∫ T

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds+
m∑
k=1

(M∗a2k +Mb2k)

+
m∑
k=1

(M∗a1k +Mb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)]
and c =

1

1− µ

[
(M∗ +N∗)

[
∥x0∥+

m∑
k=1

a2k
]
+ (M +N)

[
∥y0∥+M1M2T +

m∑
k=1

b2k
]]
.
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Theorem 3.1. If the assumptions (A1)−(A12) are satisfied, then the system (3.1)−
(3.4) is controllable on J .

Proof. Consider the space Z = PC1(J,X) with norm ∥x∥∗ = max {∥x∥, ∥x′∥}.
Using the assumption (A4), for an arbitrary function x(·), define the control

u(t) = W−1

[
z1 +

∂

∂s
S(T, s)

∣∣∣
s=0

x0 − S(T, 0)y0 −
∫ T

0

S(T, s)f(s, x(s), x′(s))ds

−
∫ T

0

∫ s

0

S(T, s)h(s, τ, x(τ), x′(τ))dτds+
m∑
k=1

∂

∂s
S(T, tk)Ik(x(tk), x

′(t−k ))

−
m∑
k=1

S(T, tk)Jk(x(tk), x
′(t−k ))

]
(t).

Using this control we shall now show that the operator Φ : Z → Z defined by

(Φx)(t) = − ∂

∂s
S(t, s)

∣∣∣
s=0

x0 + S(t, 0)y0 +

∫ t

0

S(t, η)BW−1

[
z1

+
∂

∂s
S(T, s)

∣∣∣
s=0

x0 − S(T, 0)y0 −
∫ T

0

S(T, s)f(s, x(s), x′(s))ds

−
∫ T

0

∫ s

0

S(T, s)h(s, τ, x(τ), x′(τ))dτds

+
m∑
k=1

∂

∂s
S(T, tk)Ik(x(tk), x

′(t−k ))−
m∑
k=1

S(T, tk)Jk(x(tk), x
′(t−k ))

]
(η)dη

+

∫ t

0

S(t, s)f(s, x(s), x′(s))ds+

∫ t

0

∫ s

0

S(t, s)h(s, τ, x(τ), x′(τ))dτds

−
∑

0<tk<t

∂

∂s
S(t, tk)Ik(x(tk), x

′(t−k )) +
∑

0<tk<t

S(t, tk)Jk(x(tk), x
′(t−k )),

t ∈ J, has a fixed point. This fixed point is then a mild solution of the system

(3.1)− (3.4).

Clearly, (Φx)(T ) = z1, which means that the control u steers the system from the

initial state x0 to z1 in time T , provided we can obtain a fixed point of the operator

Φ which implies that the system is controllable.

In order to study the controllability problem for system (3.1)− (3.4), we have to

apply the Schaefer fixed-point theorem to the following operator equation,

x(t) = λΦx(t), λ ∈ (0, 1).
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Let σ(t) = sup
s∈[0,t]

∥x(s)∥ and τ(t) = sup
s∈[0,t]

∥x′(s)∥. Then from

x(t) = −λ ∂
∂s
S(t, s)

∣∣∣
s=0

x0 + λS(t, 0)y0 + λ

∫ t

0

S(t, η)BW−1

[
z1

+
∂

∂s
S(T, s)

∣∣∣
s=0

x0 − S(T, 0)y0 −
∫ T

0

S(T, s)f(s, x(s), x′(s))ds

−
∫ T

0

∫ s

0

S(T, s)h(s, τ, x(τ), x′(τ))dτds

+
m∑
k=1

∂

∂s
S(T, tk)Ik(x(tk), x

′(t−k ))−
m∑
k=1

S(T, tk)Jk(x(tk), x
′(t−k ))

]
(η)dη

+ λ

∫ t

0

S(t, s)f(s, x(s), x′(s))ds+ λ

∫ t

0

∫ s

0

S(t, s)h(s, τ, x(τ), x′(τ))dτds

− λ
∑

0<tk<t

∂

∂s
S(t, tk)Ik(x(tk), x

′(t−k )) + λ
∑

0<tk<t

S(t, tk)Jk(x(tk), x
′(t−k )), t ∈ J.

we have,

∥x(t)∥ ≤ M∗∥x0∥+M∥y0∥+M

∫ t

0

∥BW−1∥

[
∥z1∥+M∗∥x0∥+M∥y0∥

+M

∫ T

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds+M

∫ T

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds

+
m∑
k=1

(M∗a2k +Mb2k) +
m∑
k=1

(M∗a1k +Mb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)]
dη

+M

∫ t

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds+M

∫ t

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds

+
∑

0<tk<t

(M∗a2k +Mb2k) +
∑

0<tk<t

(M∗a1k +Mb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)
,

which implies that

σ(t) ≤ M∗∥x0∥+M∥y0∥+MM1M2T +M

∫ t

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds

+M

∫ t

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds+
m∑
k=1

(M∗a2k +Mb2k)

+
m∑
k=1

(M∗a1k +Mb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)
.
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On the other hand,

x′(t) = −λ ∂
∂t

∂

∂s
S(t, s)

∣∣∣
s=0

x0 + λ
∂

∂t
S(t, 0)y0 + λ

∫ t

0

∂

∂t
S(t, η)BW−1

[
z1

+
∂

∂s
S(T, s)

∣∣∣
s=0

x0 − S(T, 0)y0 −
∫ T

0

S(T, s)f(s, x(s), x′(s))ds

−
∫ T

0

∫ s

0

S(T, s)h(s, τ, x(τ), x′(τ))dτds

+
m∑
k=1

∂

∂s
S(T, tk)Ik(x(tk), x

′(t−k ))−
m∑
k=1

S(T, tk)Jk(x(tk), x
′(t−k ))

]
(η)dη

+ λ

∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds+ λ

∫ t

0

∫ s

0

∂

∂t
S(t, s)h(s, τ, x(τ), x′(τ))dτds

− λ
∑

0<tk<t

∂

∂t

∂

∂s
S(t, tk)Ik(x(tk), x

′(t−k ))

+ λ
∑

0<tk<t

∂

∂t
S(t, tk)Jk(x(tk), x

′(t−k )), t ∈ J.

Thus we have,

∥x′(t)∥ ≤ N∗∥x0∥+N∥y0∥+N

∫ t

0

∥BW−1∥

[
∥z1∥+M∗∥x0∥+M∥y0∥

+M

∫ T

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds+M

∫ T

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds

+
m∑
k=1

(M∗a2k +Mb2k) +
m∑
k=1

(M∗a1k +Mb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)]
dη

+N

∫ t

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds+N

∫ t

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds

+
∑

0<tk<t

(N∗a2k +Nb2k) +
∑

0<tk<t

(N∗a1k +Nb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)
,

and hence

τ(t) ≤ N∗∥x0∥+N∥y0∥+NM1M2T +N

∫ t

0

p(s)Ω(∥x(s)∥+ ∥x′(s)∥)ds

+N

∫ t

0

q(s)Ω0(∥x(s)∥+ ∥x′(s)∥)ds+
m∑
k=1

(N∗a2k +Nb2k)

+
m∑
k=1

(N∗a1k +Nb1k)
(
∥x(tk)∥+ ∥x′(t−k )∥

)
.
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From the assumption on µ and the previous estimates, it follows that

σ(t) + τ(t) ≤ c+
1

1− µ

[
(M +N)

[ ∫ t

0

p(s)Ω(σ(s) + τ(s))ds

+

∫ t

0

q(s)Ω0(σ(s) + τ(s))ds
]]

Let ρ(t) = σ(t) + τ(t), t ∈ J . Then ρ(0) = c and

ρ′(t) ≤ 1

1− µ

[
(M +N)

[
p(t)Ω(σ(t) + τ(t)) + q(t)Ω0(σ(t) + τ(t))

]]
= ϕ̂(t)(M +N)

[
Ω(ρ(t)) + Ω0(ρ(t))

]
, t ∈ J.

This implies∫ ρ(t)

ρ(0)

ds

Ω(s) + Ω0(s)
≤ (M +N)

∫ T

0

ϕ̂(s)ds <

∫ ∞

c

ds

Ω(s) + Ω0(s)
, t ∈ J.

This inequality implies that there is a constant K such that

σ(t) + τ(t) = ρ(t) ≤ K, t ∈ J.

and hence

∥x∥∗ = max {∥x∥, ∥x′∥} ≤ K,

where K depends only on T and on the functions p, q,Ω and Ω0.

In the second step we prove that the operator Φ : Z → Z is a completely contin-

uous operator. Let Bk = {x ∈ Z : ∥x∥∗ ≤ k} for some k ≥ 1. We first show that

Φ maps Bk into an equicontinuous family. Let x ∈ Bk and t1, t2 ∈ J . Then, if

0 < t1 < t2 ≤ T , we have

∥(Φx)(t1)− (Φx)(t2)∥

≤
∥∥∥ ∂
∂s

[S(t1, s)− S(t2, s)]
∣∣∣
s=0

x0

∥∥∥+ ∥[S(t1, 0)− S(t2, 0)]y0∥

+

∫ t1

0

∥S(t1, η)− S(t2, η)∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥
+ ∥S(T, 0)y0∥+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds

+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥[a1k(σ(t) + τ(t)) + a2k
]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t2

t1

∥S(t2, η)∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥+ ∥S(T, 0)y0∥
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+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥
×

[
a1k(σ(t) + τ(t)) + a2k

]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t1

0

∥S(t1, s)− S(t2, s)∥αk(s)ds+

∫ t2

t1

∥S(t2, s)∥αk(s)ds

+

∫ t1

0

∥S(t1, s)− S(t2, s)∥βk(s)ds+
∫ t2

t1

∥S(t2, s)∥βk(s)ds

+
∑

0<tk<t1

∥∥∥ ∂
∂s

[S(t1, tk)− S(t2, tk)]
∥∥∥[a1k(σ(t) + τ(t)) + a2k

]
+

∑
t1≤tk<t2

∥∥∥ ∂
∂s
S(t2, tk)

∥∥∥
×

[
a1k(σ(t) + τ(t)) + a2k

]
+

∑
0<tk<t1

∥S(t1, tk)− S(t2, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]
+

∑
t1≤tk<t2

∥S(t2, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]
→ 0 as t1 → t2,

and similarly,

∥(Φx)′(t1)− (Φx)′(t2)∥

≤
∥∥∥ ∂
∂s

[ ∂

∂t1
S(t1, s)−

∂

∂t2
S(t2, s)

]∣∣∣
s=0

x0

∥∥∥+
∥∥∥[ ∂

∂t1
S(t1, 0)−

∂

∂t2
S(t2, 0)

]
y0

∥∥∥
+

∫ t1

0

∥∥∥[ ∂

∂t1
S(t1, η)−

∂

∂t2
S(t2, η)

]∥∥∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥
+ ∥S(T, 0)y0∥+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds

+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥[a1k(σ(t) + τ(t)) + a2k
]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t2

t1

∥∥∥ ∂

∂t2
S(t2, η)

∥∥∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥+ ∥S(T, 0)y0∥

+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥
×

[
a1k(σ(t) + τ(t)) + a2k

]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t1

0

∥∥∥[ ∂

∂t1
S(t1, s)−

∂

∂t2
S(t2, s)

]∥∥∥αk(s)ds+

∫ t2

t1

∥∥∥ ∂

∂t2
S(t2, s)

∥∥∥αk(s)ds

— 38 —



+

∫ t1

0

∥∥∥[ ∂

∂t1
S(t1, s)−

∂

∂t2
S(t2, s)

]∥∥∥βk(s)ds+ ∫ t2

t1

∥∥∥ ∂

∂t2
S(t2, s)

∥∥∥βk(s)ds
+

∑
0<tk<t1

∥∥∥ ∂
∂s

[ ∂

∂t1
S(t1, tk)−

∂

∂t2
S(t2, tk)

]∥∥∥[a1k(σ(t) + τ(t)) + a2k
]

+
∑

t1≤tk<t2

∥∥∥ ∂
∂s

[ ∂

∂t2
S(t2, tk)

]∥∥∥[a1k(σ(t) + τ(t)) + a2k
]

+
∑

0<tk<t1

∥∥∥ ∂

∂t1
S(t1, tk)−

∂

∂t2
S(t2, tk)

∥∥∥[b1k(σ(t) + τ(t)) + b2k
]

+
∑

t1≤tk<t2

∥∥∥ ∂

∂t2
S(t2, tk)

∥∥∥[b1k(σ(t) + τ(t)) + b2k
]

→ 0 as t1 → t2.

Thus, Φ maps Bk into an equicontinuous family of functions. It is easy to see that

the family ΦBk is uniformly bounded.

Next we show ΦBk is compact. Since we have shown ΦBk is an equicontinuous

collection, it suffices by the Arzela-Ascoli theorem to show that Φ maps Bk into a

precompact set in X. Let 0 < t ≤ T be fixed and ϵ be a real number satisfying

0 < ϵ < t. For x ∈ Bk, we define

(Φϵx)(t) = − ∂

∂s
S(t, s)

∣∣∣
s=0

x0 + S(t, 0)y0 +

∫ t−ϵ

0

S(t, η)BW−1

[
z1

+
∂

∂s
S(T, s)

∣∣∣
s=0

x0 − S(T, 0)y0 −
∫ T

0

S(T, s)f(s, x(s), x′(s))ds

−
∫ T

0

∫ s

0

S(T, s)h(s, τ, x(τ), x′(τ))dτds+
m∑
k=1

∂

∂s
S(T, tk)Ik(x(tk), x

′(t−k ))

−
m∑
k=1

S(T, tk)Jk(x(tk), x
′(t−k ))

]
(η)dη +

∫ t−ϵ

0

S(t, s)f(s, x(s), x′(s))ds

+

∫ t−ϵ

0

∫ s

0

S(t, s)h(s, τ, x(τ), x′(τ))dτds−
∑

0<tk<t

∂

∂s
S(t, tk)Ik(x(tk), x

′(t−k ))

+
∑

0<tk<t

S(t, tk)Jk(x(tk), x
′(t−k )), t ∈ J.

Since S(t, s) is a compact operator, the set Yϵ(t) = {(Φϵx)(t) : x ∈ Bk} is precom-

pact in X, for every ϵ, 0 < ϵ < t. Moreover, for every x ∈ Bk, we have
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∥(Φx)(t)− (Φϵx)(t)∥

≤
∫ t

t−ϵ

∥S(t, η)∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥+ ∥S(T, 0)y0∥

+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥
×

[
a1k(σ(t) + τ(t)) + a2k

]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t

t−ϵ

∥S(t, s)∥αk(s)ds+

∫ t

t−ϵ

∥S(t, s)∥βk(s)ds → 0 as ϵ→ 0,

and

∥(Φx)′(t)− (Φϵx)
′(t)∥

≤
∫ t

t−ϵ

∥∥∥ ∂
∂t
S(t, η)

∥∥∥∥BW−1∥

[
∥z1∥+

∥∥∥ ∂
∂s
S(T, s)

∣∣∣
s=0

x0

∥∥∥+ ∥S(T, 0)y0∥

+

∫ T

0

∥S(T, s)∥αk(s)ds+

∫ T

0

∥S(T, s)∥βk(s)ds+
m∑
k=1

∥∥∥ ∂
∂s
S(T, tk)

∥∥∥
×
[
a1k(σ(t) + τ(t)) + a2k

]
+

m∑
k=1

∥S(T, tk)∥
[
b1k(σ(t) + τ(t)) + b2k

]]
dη

+

∫ t

t−ϵ

∥∥∥ ∂
∂t
S(t, s)

∥∥∥αk(s)ds+

∫ t

t−ϵ

∥∥∥ ∂
∂t
S(t, s)

∥∥∥βk(s)ds → 0 as ϵ→ 0.

Therefore, there are precompact sets arbitrarily close to the set {(Φx)(t) : x ∈ Bk}.
Hence, the set {(Φϵx)(t) : x ∈ Bk} is precompact in X.

It remains to show that Φ : Z → Z is continuous. Let {xn}∞0 ⊆ Z with xn → x

in Z. Then there is an integer r such that ∥xn(t)∥ ≤ r, ∥x′n(t)∥ ≤ r for all n and

t ∈ J , so ∥x(t)∥ ≤ r, ∥x′(t)∥ ≤ r and x, x′ ∈ Br. By A(5) and A(11), we have

(i) Ik and Jk, k = 1, 2, . . . ,m are continuous.

(ii) f(t, xn(t), x
′
n(t)) → f(t, x(t), x′(t)) for each t ∈ J and since

∥f(t, xn(t), x′n(t))− f(t, x(t), x′(t))∥ ≤ 2αr(t).

(iii) h(t, s, xn(s), x
′
n(s)) → h(t, s, x(s), x′(s)) for each t, s ∈ J and since∥∥∥∫ t

0

[h(t, s, xn(s), x
′
n(s))− h(t, s, x(s), x′(s))]ds

∥∥∥ ≤ 2βr(t).

we have by dominated convergence theorem,
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∥Φxn − Φx∥

≤
∫ t

0

∥∥∥∥∥S(t, η)BW−1

[∫ T

0

S(T, s)
[
f(s, xn(s), x

′
n(s))− f(s, x(s), x′(s))

]
ds

+

∫ T

0

∫ s

0

S(T, s)
[
h(s, τ, xn(τ), x

′
n(τ))− h(s, τ, x(τ), x′(τ))

]
dτds

+
m∑
k=1

∂

∂s
S(T, tk)

[
Ik(xn(tk), x

′
n(t

−
k ))− Ik(x(tk), x

′(t−k ))
]

+
m∑
k=1

S(T, tk)
[
Jk(xn(tk), x

′
n(t

−
k ))− Jk(x(tk), x

′(t−k ))
]]

(η)

∥∥∥∥∥dη
+

∫ t

0

∥S(t, s)
[
f(s, xn(s), x

′
n(s))− f(s, x(s), x′(s))

]
∥ds

+

∫ t

0

∫ s

0

∥S(t, s)
[
h(s, τ, xn(τ), x

′
n(τ))− h(s, τ, x(τ), x′(τ))

]
∥dτds

+
∑

0<tk<t

∥∥∥ ∂
∂s
S(t, tk)

[
Ik(xn(tk), x

′
n(t

−
k ))− Ik(x(tk), x

′(t−k ))
]∥∥∥

+
∑

0<tk<t

∥S(t, tk)
[
Jk(xn(tk), x

′
n(t

−
k ))− Jk(x(tk), x

′(t−k ))
]
∥

→ 0 as n → ∞,

and similarly,

∥(Φxn)′ − (Φx)′∥

≤
∫ t

0

∥∥∥∥∥ ∂∂tS(t, η)BW−1

[∫ T

0

S(T, s)
[
f(s, xn(s), x

′
n(s))− f(s, x(s), x′(s))

]
ds

+

∫ T

0

∫ s

0

S(T, s)
[
h(s, τ, xn(τ), x

′
n(τ))− h(s, τ, x(τ), x′(τ))

]
dτds

+
m∑
k=1

∂

∂s
S(T, tk)

[
Ik(xn(tk), x

′
n(t

−
k ))− Ik(x(tk), x

′(t−k ))
]

+
m∑
k=1

S(T, tk)
[
Jk(xn(tk), x

′
n(t

−
k ))− Jk(x(tk), x

′(t−k ))
]]

(η)

∥∥∥∥∥dη
+

∫ t

0

∥∥∥ ∂
∂t
S(t, s)

[
f(s, xn(s), x

′
n(s))− f(s, x(s), x′(s))

]∥∥∥ds
+

∫ t

0

∫ s

0

∥∥∥ ∂
∂t
S(t, s)

[
h(s, τ, xn(τ), x

′
n(τ))− h(s, τ, x(τ), x′(τ))

]∥∥∥dτds
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+
∑

0<tk<t

∥∥∥ ∂
∂t

∂

∂s
S(t, tk)

[
Ik(xn(tk), x

′
n(t

−
k ))− Ik(x(tk), x

′(t−k ))
]∥∥∥

+
∑

0<tk<t

∥∥∥ ∂
∂t
S(t, tk)

[
Jk(xn(tk), x

′
n(t

−
k ))− Jk(x(tk), x

′(t−k ))
]∥∥∥

→ 0 as n → ∞.

Thus, Φ is continuous. This completes the proof that Φ is completely continuous.

Finally the set ζ(Φ) = {x ∈ Z : x = λΦx, λ ∈ (0, 1)} is bounded, as we proved in

the first step. Hence, by the Schaefer fixed-point theorem, the operator Φ has a fixed

point in Z. This means that any fixed point of Φ is a mild solution of (3.1)−(3.4) on

J satisfying (Φx)(t) = x(t). Thus the system (3.1)− (3.4) is controllable on J . □
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