INTERPOLATION PROBLEM FOR ℓ^1 AND AN *F*-SPACE

TAKAHIKO NAKAZI

ABSTRACT. Let B be an F-space and B_1^* the unit ball of the dual space. A sequence (ϕ_n) in B_1^* is called ℓ^1 -interpolating if for every sequence (w_n) in ℓ^1 there exists an element f in B such that $\phi_n(f) = w_n$ for all n. In order to study an interpolation problem for ℓ^1 , we introduce two quantities ρ_n and $\prod_{k\neq n} \sigma(\phi_n, \phi_k)$. For arbitrary Banach space, we show that (ϕ_n) is an ℓ^1 -interpolating sequence if and only if $\inf_n \rho_n > 0$. Moreover, when a Banach space has a predual, we show that if $\inf_n \prod_{k\neq n} \sigma(\phi_n, \phi_k) > 0$ then (ϕ_n) is an ℓ^1 -interpolating sequence. When (ϕ_n) is embedded in the open unit disc in the complex plane, we show that (ϕ_n) is an ℓ^1 -interpolating sequence if and only if $\inf_n \prod_{k\neq n} \sigma(\phi_n, \phi_k) > 0$, for a Hardy space $H^p(D)(1 \leq p \leq \infty)$ and the Smirnov class $N_+(D)$.

1. Introduction

Let *B* be an *F*-space with an invariant metric *d* and *B*^{*} its dual space. B_1^* denotes the unit ball of *B*^{*}. Throughout this paper we assume that (ϕ_n) is an infinite sequence of distinct points in *B*^{*}. Let ℓ be a sequence space of (w_n) where $w_n \in \mathcal{C}$. A sequence (ϕ_n) is called ℓ -interpolating if for every sequence (w_n) in ℓ there exists an element *f* in *B* such that $\phi_n(f) = w_n$ for all *n*. For (ϕ_n) in *B*^{*} put

$$J = \{ f \in B ; f = 0 \text{ on } (\phi_k) \}, J_n = \{ f \in B ; f = 0 \text{ on } (\phi_k)_{k \neq n} \}, \rho_n = \sup\{ |\phi_n(f)| ; f \in J_n, d(f, 0) \le 1 \}$$

and

$$\sigma(\phi_n, \phi_k) = \sup\{ |\phi_n(f)| ; \phi_k(f) = 0, d(f, 0) \le 1 \}.$$

In general, $\rho_n > 0$ if and only if $J_n \supset J$ and $J_n \neq J$. Hence $\rho_n > 0$ if and only if there exists an element f_n in B such that $\phi_k(f_n) = \delta_{kn}$. In this paper, we assume that $\rho_n > 0$ for all n and so $J_n = \langle f_n \rangle + J$.

In this paper, we study an ℓ^1 -interpolation problem for an *F*-space. The following two natural problems will be considered.

²⁰⁰⁰ Mathematics Subject Classification. Primary 32A35, 46J15.

Key words and phrases. Interpolation, ℓ^1 , F-space, Hardy space, Smirnov class.

The author is partially supported by the Grant-in-Aid for Scientific Research, Japan Society for Promotion of Science.

Problem 1 For a given F-space, prove that (ϕ_n) is an ℓ^1 -interpolation sequence if and only if $\inf_n \rho_n > 0$.

Problem 2 For a given *F*-space, suppose that (ϕ_n) is in B_1^* . Then, prove that (ϕ_n) is an ℓ^1 -interpolation sequence if and only if $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$.

In this paper, we solve Problem 1 for arbitrary Banach space and the Smirnov class $N_+(D)$ on the open unit disc D. Problem 2 is studied for arbitrary Banach space with the predual space and the Smirnov class $N_+(D)$.

The first contribution for an ℓ^1 -interpolation problem was by Shapiro and Shields [7]. In fact they solved Problem 2 for a Hardy space $H^1(D)$. Snyder [8] has solved Problem 2 for a Hardy space $H^{\infty}(D)$. Hatori [3] has solved Problem 2 for a Hardy space $H^p(D)$ when $1 . In fact he proved it for a Hardy space <math>H^p$ on a finite connected domain. In the previous paper [6], we have solved Problem 1 for arbitrary uniform algebra A when (ϕ_n) is in the maximal ideal space. Moreover we have solved Problem 2 for several special uniform algebras.

In Section 2, we show that (ϕ_n) is an ℓ^1 -interpolating sequence if and only if $\inf_n \rho_n > 0$ for arbitrary Banach space. We also study an ℓ^p -interpolating sequence when $0 . Moreover, when a Banach space has a predual, we show that if <math>\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$ and (ϕ_n) is in the predual then (ϕ_n) is an ℓ^1 -interpolating sequence. In Section 3, we solve Problem 1 for the Smirnov class $N_+(D)$ when (ϕ_n) is embedded in D. In Section 4, we solve Problem 2 for $N_+(D)$ when (ϕ_n) is embedded in D. This is a little bit surprising because we have not a complete interpolation theorem for $N_+(D)$.

2. General theorem for *F*-space

Corollary 2.1 generalizes Theorem 2.1 in the previous paper [6].

Lemma 2.1 Let B an F-space with an invariant metric d. If (ϕ_n) is an ℓ^p -interpolating sequence and $0 then <math>\sup_n d(f_n + J, 0) < \infty$.

Proof. Put $S = (\phi_n)$. Then there exists a sequence (f_n) in B such that $\phi_k(f_n) = \delta_{nk}$. For $(w_n) \in \ell^p$, put

$$T(w_n) = \sum_{n=1}^{\infty} w_n(f_n \mid S)$$

then by the hypothesis there exists f in B such that $T(w_n) = f \mid S$. Since $B \mid S$ is isomorphic to the quotient space B/J, we put the quotient norm of B/J on $B \mid S$. By the closed graph theorem, T is bounded from ℓ^p to $B \mid S$ and so

$$d(f_k + J, 0) \le \parallel T \parallel$$

because $T((\delta_{nk})_n) = f_k \mid S$. This implies that $\sup_n d(f_n + J, 0) < \infty$.

Lemma 2.2 Let B be an F-space with an invariant metric d and $d(\alpha f, 0) = |\alpha|^p$ d(f, 0) $(f \in B, \alpha \in \mathcal{C})$ for some p with $0 . If <math>\sup_n d(f_n + J, 0) < \infty$ then (ϕ_n) is an ℓ^p -interpolating sequence.

Proof. Suppose that $M = \sup_n d(f_n + J, 0) < \infty$. Let ε be arbitrary positive constant. For each *n* there exists g_n in *J* such that $d(f_n + g_n, 0) \leq M + \varepsilon$. If $(w_n) \in \ell^p$, put

$$f = \sum_{n=1}^{\infty} w_n (f_n + g_n)$$

then f belongs to B and $\phi_k(f) = w_k$ for $k = 1, 2, \ldots$

Lemma 2.3 Let B be an F-space with an invariant metric d. If (ϕ_n) is a sequence in B^{*} such that $\phi_k(f_n) = \delta_{nk}$, then $d(f_n + J, 0) = 1/\rho_n$ for n = 1, 2, ...

Proof. Note that $J_n = \langle f_n \rangle + J$ for any n. By the definition of ρ_n , $1 = |\phi_n(f_n)| \le \rho_n d(f_n + J, 0)$. On the other hand, for any $\varepsilon > 0$ there exists $F_{\varepsilon} \in J_n$ such that $|\phi_n(F_{\varepsilon})| + \varepsilon \ge \rho_n d(F_{\varepsilon} + J, 0)$. Since $f_n + J = F_{\varepsilon} + J$, this implies that $1 + \varepsilon \ge \rho_n d(f_n + J, 0)$ and so $1 \ge \rho_n d(f_n + J, 0)$ as $\varepsilon \to 0$.

Theorem 2.1 Let B be an F-space and (ϕ_n) in B^* and 0 .

- (i) If (ϕ_n) is an ℓ^p -interpolating sequence then $\inf_n \rho_n > 0$.
- (ii) If $d(\alpha f, 0) = |\alpha|^p d(f, 0)$ $(f \in B, \alpha \in \mathcal{L})$ and $\inf_n \rho_n > 0$ then (ϕ_n) is an ℓ^p -interpolating sequence.

Proof. Lemmas 2.1 and 2.3 imply (i). Lemmas 2.2 and 2.3 imply (ii). \Box

Corollary 2.1 Let B be a Banach space and (ϕ_n) in B^* . Then (ϕ_n) is an ℓ^1 -interpolating sequence if and only if $\inf_n \rho_n > 0$.

For (ϕ_n) in B^* where B is an F-space, $\ell(B, (\phi_n))$ is a sequence space as the following:

$$\ell(B, (\phi_n)) = \left\{ (w_n) \; ; \; \sum_{n=1}^{\infty} d(w_n f_n + J, 0) < \infty \right\}.$$

If B is a Banach space then

$$\ell(B, (\phi_n)) = \left\{ (w_n) \; ; \; \sum_{n=1}^{\infty} | w_n | d(f_n + J, 0) < \infty \right\} \\ = \left\{ (w_n) \; ; \; \sum_{n=1}^{\infty} | w_n | /\rho_n < \infty \right\}$$

-77-

/

by Lemma 2.3. If $d(\alpha f, 0) = |\alpha|^p d(f, 0)$ then

$$\ell(B, (\phi_n)) = \left\{ (w_n) \; ; \; \sum_{n=1}^{\infty} \mid w_n \mid^p / \rho_n < \infty \right\}.$$

Proposition 2.1 Let B be an F-space with an invariant metric d. Then for any (ϕ_n) in B^* , (ϕ_n) is an $\ell(B, (\phi_n))$ -interpolating sequence, that is, for any (w_n) in $\ell(B, (\phi_n))$, there exists f in B such that $\phi_n(f) = w_n$ (n = 1, 2, ...).

Proof. For each n, there exists g_n in J such that

$$d(w_n f_n + g_n, 0) \le d(w_n f_n + J, 0) + \frac{1}{n^2}$$

Put

$$f = \sum_{n=1}^{\infty} (w_n f_n + g_n),$$

then

$$d(f,0) \le \sum_{n=1}^{\infty} d(w_n f_n + g_n, 0) \le \sum_{n=1}^{\infty} d(w_n f_n + J, 0) + \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Hence f belongs to B and $\phi_k(f) = w_k$ for $k = 1, 2, \ldots$

Lemma 2.4 Let B be an F-space with an invariant metric d and (ϕ_n) in B^* . Then $\rho_n \leq \sigma(\phi_n, \phi_k)$ if $n \neq k$.

Proof. For any $n \ge 1$,

$$\rho_n = \sup\{ | \phi_n(f) | ; f \in J_n, d(f,0) \le 1 \} \\
\le \sup\{ | \phi_n(f) | ; \phi_k(f) = 0, d(f,0) \le 1 \} \\
= \sigma(\phi_n, \phi_k)$$

if $n \neq k$.

Proposition 2.2 et *B* be a Banach space and (ϕ_n) be in B^* . Then if (ϕ_n) is an ℓ^1 -interpolating sequence, then $\inf_{\substack{n \ k \neq n}} \sigma(\phi_n, \phi_k) > 0$.

Proof. It is a result of Lemma 2.4 and Corollary 2.1.

Theorem 2.2 Let B be a Banach space whose predual is E, that is, $E^* = B$. If (ϕ_n) is in E and $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$ then (ϕ_n) is an ℓ^1 -interpolating sequence.

Proof. By Corollary 2.1 it is enough to prove that if $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$ then $\inf_n \rho_n > 0$. For $1 \leq n \leq \ell < \infty$, put

$$J_n^{\ell} = \{ f \in B \ ; \ \phi_k(f) = 0 \ \text{ if } \ 1 \le k \le \ell, \ k \ne n \}$$

and

$$\rho_{n,\ell} = \sup\{ |\phi_n(f)| \; ; \; f \in J_n^\ell, \| f \| \le 1 \}.$$

Claim 1. For any $\ell \geq 1$, $\rho_{n,\ell} \geq \prod_{k\neq n}^{\ell} \sigma(\phi_n, \phi_k)$. For if ε is any positive constant then for each k with $1 \leq k \leq \ell$, there exists f_k^{ε} in B such that

$$\sigma(\phi_n, \phi_k) \ge |\phi_n(f_k^{\varepsilon})| \ge \sigma(\phi_n, \phi_k) - \varepsilon,$$

 $\prod_{k\neq n}^{\ell} f_k^{\varepsilon} \in \text{the unit ball of } B \text{ and } \phi_j(\prod_{k\neq n}^{\ell} f_k^{\varepsilon}) = 0 \text{ if } j \neq n. \text{ Put } f^{\varepsilon} = \prod_{k\neq n}^{\ell} f_k^{\varepsilon} \text{ then } f^{\varepsilon} \in J_n^{\ell} \text{ and } \parallel f^{\varepsilon} \parallel \leq 1. \text{ Then }$

$$\rho_{n,\ell} \ge |\phi_n(f^{\varepsilon})| \ge \prod_{k \ne n}^{\ell} \{\sigma(\phi_n, \phi_k) - \varepsilon\}.$$

As $\varepsilon \to 0 \ \rho_{n,\ell} \ge \prod_{k \ne n}^{\ell} \sigma(\phi_n, \phi_k)$ for any $\ell \ge 1$.

Claim 2. $\lim_{\ell \to \infty} \rho_{n,\ell} = \rho_n$ for any $n \ge 1$. For $\rho_{n,\ell} \ge \rho_{n,\ell+1}$ and $\lim_{\ell \to \infty} \rho_{n,\ell} \ge \rho_n$ for any $n \ge 1$. If $\lim_{\ell \to \infty} \rho_{n,\ell} > \varepsilon > 0$, then for each ℓ there exists $g_\ell \in J_n^\ell$ such that $|| g_\ell || \le 1$ and $| \phi_n(g_\ell) |\ge \varepsilon > 0$. Then there exists $g \in J_n$ such that $|| g || \le 1$ and $g_\ell \to g$ weak star in B. Then $| \phi_n(g) |\ge \varepsilon > 0$ because ϕ_n is continuous in the weak star topology. Thus $\lim_{\ell \to \infty} \rho_{n,\ell} \le \rho_n$ and so $\lim_{\ell \to \infty} \rho_{n,\ell} = \rho_n$.

Claims 1 and 2 imply that $\rho_n \ge \prod_{k \ne n}^{\infty} \sigma(\phi_n, \phi_k)$.

3. Answer for Problem 1

In this section we study Problem 1 for concrete examples which are F-spaces defined by analytic functions. For $0 <math>H^p(G)$ denotes a Hardy space on G and $L^p_a(G)$ denotes a Bergman space on G, where G is a domain in \mathcal{L}^n . When $1 \leq p \leq \infty$, $H^p(G)$ and $L^p_a(G)$ are Banach spaces and so we can apply Corollary 2.1 for them. When 0 , we could not solve it but Corollary 3.1 solves it partially.

Corollary 3.1 Let $0 and let <math>B = H^p(G)$ or $L^p_a(G)$. If (ϕ_n) is in B^* , then (ϕ_n) is an ℓ^p -interpolating sequence if and only if $\inf_n \rho_n > 0$.

Proof. Since $d(f,g) = || f - g ||_p^p$, $d(\alpha f, 0) = |\alpha|^p d(f, 0)$ for $f \in B$ and $\alpha \in \mathcal{C}$. The corollary is a result of Theorem 2.1.

Let *D* be the open unit disc in \mathscr{L} and $N_+(D)$ denotes the Smirnov class on *D*. Then $d(f,g) = \int_0^{2\pi} \log(1+|f(e^{i\theta}) - g(e^{i\theta})|) d\theta/2\pi$ is an invariant metric on $N_+(D)$. For *a* in *D*, $\gamma(a)$ denotes the norm of the evaluation functional on $N_+(D)$. **Lemma 3.1** Let $B = N_+(D)$ and (a_n) in D. If $\phi_n(f) = f(a_n)/\gamma(a_n)$ for $n = 1, 2, \ldots$ and $\sum_n (1 - |a_n|) < \infty$ then

$$\rho_n = \prod_{j \neq n} \left| \frac{a_n - a_j}{1 - \bar{a}_j a_n} \right|.$$

Proof. Since $J = QN_+(D)$ and $J_n = Q_nN_+(D)$ where

$$Q(z) = \prod_{j=1}^{\infty} -\frac{a_j}{|a_j|} \frac{z - a_j}{1 - \bar{a}_j z}$$

and

$$Q_n(z) = Q(z) / \frac{z - a_n}{1 - \bar{a}_n z},$$

$$\rho_n = \sup\{|f(a_n) / \gamma(a_n)| ; f \in Q_n N_+(D), d(f, 0) \le 1\}$$

$$= \sup\{|Q_n(a_n) h(a_n) / \gamma(a_n)| ; h \in N_+(D), d(h, 0) \le 1\}$$

$$= \prod_{j \ne n} \left|\frac{a_n - a_j}{1 - \bar{a}_j a_n}\right|.$$

Theorem 3.1 Let $B = N_+(D)$ and (a_n) in D. Suppose $\phi_n(f) = f(a_n)/\gamma(a_n)$ (n = 1, 2, ...), then the following (i)–(iv) are equivalent.

- (i) (ϕ_n) is an ℓ^1 -interpolating sequence.
- (ii) (ϕ_n) is an ℓ^p -interpolating sequence for any 0 .
- (iii) (ϕ_n) is an ℓ^p -interpolating sequence for some 0 .
- (iv) $\inf_n \rho_n > 0.$

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) is clear. (iii) \Rightarrow (iv) is a result of (i) in Theorem 2.1. We show (iv) \Rightarrow (i). By Lemma 3.1

$$\rho_n = \prod_{j \neq n} \left| \frac{a_n - a_j}{1 - \bar{a}_j z_n} \right|$$

and so $\inf_n \rho_n > 0$ implies that (a_n) is an ℓ^1 -interpolating sequence for $H^{\infty}(D)$ by Corollary 2.1. Since $N_+(D) \supset H^{\infty}(D)$, (iv) implies (i).

4. Answer for Problem 2

In this section we study Problem 2 for concrete examples which are F-spaces defined by analytic functions, $H^p(G)$, $N_+(G)$ and $L^p_a(G)$ where G is a domain in \mathbb{C}^n , $1 \le p \le \infty$ and (ϕ_n) is embedded in G. When $H^p(G)$ or $L^p_a(G)$ has a predual, we can apply Theorem 2.2. Theorem 4.1 is a result of Shapiro and Shields [7] for $H^1(D)$, one of Snyder [8] for $H^{\infty}(D)$ and one of Hatori [3] for $H^p(D)$ (1), essentially. $Proposition 4.1 is a result of Kabaila [4]. Theorem 4.1 for <math>N_+(D)$ is a main theorem in this paper. We could not solve Problem 2 for $H^p(D)$ (0).

When $B = H^p(D)$ or $N_+(D)$, if (a_n) is in D and $\phi_n(f) = f(a_n)$ $(f \in B)$ for n = 1, 2, ... then

$$\sigma(\phi_n, \phi_k) = \gamma(a_n) \left| \frac{a_n - a_k}{1 - \bar{a}_k a_n} \right|$$

and so

$$\prod_{k \neq n} \sigma(\phi_n, \phi_k) = \prod_{k \neq n} \gamma(a_n) \left| \frac{a_n - a_k}{1 - \bar{a}_k a_n} \right| = \rho_n$$

where $\gamma(a)$ denotes the norm of the evaluation functional at a on *B*. In order to study Problem 2, we assume that $\phi_n(f) = f(a_n)/\gamma(a_n)$.

Theorem 4.1 Let $B = H^p(D)$ $(1 \le p \le \infty)$ or $N_+(D)$ and let (a_n) be in D. If $\phi_n(f) = f(a_n)/\gamma(a_n)$ $(f \in B)$ for n = 1, 2, ..., then (ϕ_n) is an ℓ^1 -interpolation sequence if and only if $\inf_n \prod_{k \ne n} \sigma(\phi_n, \phi_k) > 0$.

Proof. By Corollary 2.1 and Theorem 3.1, if (ϕ_n) is an ℓ^1 -interpolation sequence then $\inf_n \rho_n > 0$. When $B = H^p(D)$ or $N_+(D)$, if

$$Q_k = Q / \frac{z - a_k}{1 - \bar{a}_k z}$$

and

$$Q = \prod_{j=1}^{\infty} -\frac{a_j}{\mid a_j \mid} \frac{z - a_j}{1 - \bar{a}_j z}$$

then for any $k \geq 1$

$$\{f \in B ; f = 0 \text{ on } (a_n)_{n \neq k}\} = Q_k B.$$

Hence $J_k = Q_k B$ and so

$$\rho_{k} = \sup\{ | \phi_{k}(f) | ; f \in Q_{k}B, d(f,0) \leq 1 \} \\
= | \phi_{k}(Q_{k}) | \sup\{ | \phi_{k}(h) | ; h \in B, d(h,0) \leq 1 \} \\
= \prod_{n \neq k} \left| \frac{a_{n} - a_{k}}{1 - \bar{a}_{k}a_{n}} \right|$$

because $\parallel \phi_k \parallel = 1$ where $d(f, 0) = \parallel f \parallel_p$ or

$$d(f,0) = \int_0^{2\pi} \log(1 + |f(e^{i\theta})|) d\theta / 2\pi.$$

Since

$$\{f \in B ; \phi_k(f) = 0\} = \frac{z - a_k}{1 - \bar{a}_k z} B, \ \sigma(\phi_n, \phi_k) = \left| \frac{a_n - a_k}{1 - \bar{a}_k a_n} \right|$$

and so $\rho_n = \prod_{k \neq n} \sigma(\phi_n, \phi_k)$. Hence $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$.

Conversely if $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$ then $\inf_n \rho_n > 0$ by the equality above. Hence (ϕ_n) is an ℓ^1 -interpolation sequence by Corollary 2.1 and Theorem 3.1.

Proposition 4.1 Let $B = H^p(D)$ $(0 and let <math>(a_n)$ be in D. If $\phi_n(f) = f(a_n)/\gamma(a_n)(f \in B)$ for n = 1, 2, ..., then (ϕ_n) is an ℓ^p -interpolation sequence if and only if $\inf_n \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$.

Proof. By Corollary 3.1, (ϕ_n) is an ℓ^p -interpolation sequence if and only if $\inf_n \rho_n > 0$. By the proof of Lemma 3.1,

$$\rho_n = \prod_{k \neq n} \left| \frac{a_n - a_k}{1 - \bar{a}_k a_n} \right| = \prod_{k \neq n} \sigma(\phi_n, \phi_k).$$

This implies the proposition.

5. Remarks

Let B be an F-space of analytic functions on D and let (a_n) in D. Suppose $\phi_n(f) = f(a_n)/\gamma(a_n)$ $(f \in B)$ for n = 1, 2, ... where $\gamma(a_n)$ denotes the norm of the evaluation functional on B. It will be nice to give a big sequence space ℓ_B such that (ϕ_n) is an ℓ_B -interpolation sequence if and only if $\inf \prod_{k \neq n} \sigma(\phi_n, \phi_k) > 0$. When $B = H^{\infty}(D)$, Carleson [1] showed that $\ell_B = \ell^{\infty}$. When $B = H^p(D)$ $(1 \le p < \infty)$, Shapiro and Shields [7] proved that $\ell_B = \ell^p$. When $B = H^p(D)$ $(0 , Kabaila [4] proved that <math>\ell_B = \ell^p$. When $B = H^p(D)$ $(0 , Kabaila [4] proved that <math>\ell_B = \ell^p$. When $B = H^p(D)$ is an interpolation problem for $N_+(D)$ and he gave a sufficient condition when $\phi_n(f) = f(a_n)$ but not $\phi_n(f) = f(a_n)/\gamma(a_n)$ (see [2]). That is, if $\inf_n \rho_n > 0$ and (w_n) satisfies $\sum_{n=1}^{\infty} (1 - |a_n|) \log^+ |w_n| < \infty$ then there exists a function f in $N_+(D)$ such that $f(a_n) = w_n(n = 1, 2, ...)$. It is clear that

$$\ell^{\infty} \subset \{(w_n) : \sum_{n=1}^{\infty} (1 - |a_n|) \log^+ |w_n| < \infty\}.$$

If $1 \leq p \leq \infty$ then $\ell^1 \subset \ell^p$ and if $0 then <math>\ell^p \subset \ell^1$. We could not prove that if $\inf_k \prod_{n \neq k} \sigma(\phi_n, \phi_k) > 0$ then (ϕ_n) is an ℓ^1 -interpolation sequence for

 H^p (0 \phi_n) is an ℓ^1 -interpolation sequence for $N_+(D)$ if and only if $\inf_k \prod_{n \neq k} \sigma(\phi_n, \phi_k) > 0$.

Acknowledgments. The author thanks the referee for pointing out an error in the first draft of the manuscript.

References

- L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
- [2] A. Hartmann, X. Massaneda, A. Nicolau and P. Thomas, Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants, J. Funct. Anal. 217 (2004), 1–37.
- [3] O. Hatori, *The Shapiro-Shields theorem on finite connected domains*, Surikaisekikenkyūsho Kōkyūroku **1049** (1998), 21–29 (in Japanese).
- [4] V. Kabaila, Interpolation sequeces for the H_p classes in the case p < 1, Litovsk. Mat. Sb. **3** (1) (1963), 141–147 (in Russian).
- [5] H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces*, 199, Springer-Verlag, New York, 2000.
- [6] T. Nakazi, Interpolation problem for ℓ^1 and a uniform algebra, J. Austral. Math. Soc. **72** (2002), 1–11.
- [7] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513–532.
- [8] A. K. Snyder, Sequence spaces and interpolation problems for analytic functions, Studia Math. 39 (1971), 137–153.
- [9] N. Yanagihara, Interpolation theorems for the class N⁺, Illinois J. Math. 18 (1974), 427–435.

(Takahiko Nakazi) Hokusei Gakuen University, 2–3–1, Ohyachi-Nishi, Atsubetu-ku, Sapporo 004–8631, Japan

E-mail address: z00547@hokusei.ac.jp

Received December 6, 2007 Revised October 3, 2008