APPROXIMATION OF COMMON SOLUTIONS FOR MONOTONE INCLUSION PROBLEMS AND EQUILIBRIUM PROBLEMS IN HILBERT SPACES

MAYUMI HOJO AND WATARU TAKAHASHI

Abstract

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H. Let B be a maximal monotone operator on H and let F be a maximal monotone operator on H such that the domain of F is included in C. Let $(A+B)^{-1} 0$ and $F^{-1} 0$ be the sets of zero points of $A+B$ and F, respectively. In this paper, we prove a strong convergence theorem for finding a point $z_{0} \in$ $(A+B)^{-1} 0 \cap F^{-1} 0$ which is a unique fixed point of a nonlinear operator and also a unique solution of a variational inequality. Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in Nonlinear Analysis and Optimization.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let T be a mapping of C into H. We denote by $F(T)$ the set of fixed points of T. A mapping $g: H \rightarrow H$ is a contraction if there exists $k \in(0,1)$ such that $\|g(x)-g(y)\| \leq k\|x-y\|$ for all $x, y \in H$. We call such g a k-contraction. A linear bounded operator $G: H \rightarrow H$ is called strongly positive if there exists $\bar{\gamma}>0$ such that $\langle G x, x\rangle \geq \bar{\gamma}\|x\|^{2}$ for all $x \in H$. We call such G a strongly positive operator with coefficient $\bar{\gamma}>0$. Let \mathbb{N} and \mathbb{R} be the sets of positive integers and real numbers, respectively. A mapping $U: C \rightarrow H$ is a strict pseudo-contraction [6] if there exists $r \in \mathbb{R}$ with $0 \leq r<1$ such that

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+r\|(I-U) x-(I-U) y\|^{2}, \quad \forall x, y \in C .
$$

We call such U an r-strict pseudo-contraction. For $\alpha>0$, a mapping $A: C \rightarrow H$ is called α-inverse-strongly monotone if

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C .
$$

2010 Mathematics Subject Classification. 47H05, 47H10, 58E35.
Key words and phrases. Equilibrium problem, fixed point, inverse-strongly monotone mapping, iteration procedure, maximal monotone operator, resolvent, strict pseudo-contraction.

Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction and let A be a mapping of C into H. A generalized equilibrium problem (with respect to C) is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y)+\langle A \hat{x}, y-\hat{x}\rangle \geq 0, \quad \forall y \in C . \tag{1.1}
\end{equation*}
$$

The set of such solutions \hat{x} is denoted by $E P(f, A)$, i.e.,

$$
E P(f, A)=\{\hat{x} \in C: f(\hat{x}, y)+\langle A \hat{x}, y-\hat{x}\rangle \geq 0, \forall y \in C\}
$$

In the case of $A=0, E P(f, A)$ is denoted by $E P(f)$. In the case of $f=0, E P(f, A)$ is also denoted by $V I(C, A)$. This is the set of solutions of the variational inequality for A; see [14] and [18]. For solving the equilibrium problem, let us assume that the bifunction $f: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for all $x, y, z \in C$,

$$
\limsup _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y) ;
$$

(A4) for all $x \in C, f(x, \cdot)$ is convex and lower semicontinuous.
Recently, Liu [10] proved the following theorem.
Theorem 1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $r \in \mathbb{R}$ with $0 \leq r<1$ and let U be an r-strict pseudo-contraction of C into H. Let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) - (A4). Let $0<k<1$ and let g be a k-contraction of H into itself. Let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$ and suppose $F(U) \cap E P(f) \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
\begin{gathered}
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
x_{n+1}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right)\left\{\left(1-t_{n}\right) U+t_{n} I\right\} u_{n}
\end{gathered}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{t_{n}\right\} \subset[0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\alpha_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty \\
r \leq t_{n} \leq b<1, \quad \lim _{n \rightarrow \infty} t_{n}=b, \quad \sum_{n=1}^{\infty}\left|t_{n}-t_{n+1}\right|<\infty \\
\quad \liminf _{n \rightarrow \infty} r_{n}>0, \quad \text { and } \quad \sum_{n=1}^{\infty}\left|r_{n}-r_{n+1}\right|<\infty .
\end{gathered}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point z_{0} of $F(U) \cap E P(f)$, where $z_{0} \in F(U) \cap E P(f)$ is a unique fixed point of $P_{F(U) \cap E P(f)}(I-G+\gamma g)$. This point $z_{0} \in F(U) \cap E P(f)$ is also a unique solution of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in F(U) \cap E P(f)
$$

Let f be a bifunction of $C \times C$ into \mathbb{R} satisfying $(A 1)-(A 4)$. Defining a set-valued mapping $A_{f} \subset H \times H$ by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \quad \forall y \in C\}, \quad \forall x \in C, \\
\emptyset, \quad \forall x \notin C,
\end{array}\right.
$$

we have from [19] that A_{f} is a maximal monotone operator such that the domain is included in C; see Lemma 12 in Section 4 for more details. On the other hand, putting $A=I-U$ for an r-strict pseudo-contraction $U: C \rightarrow H$ with $0 \leq r<1$, we have that $A: C \rightarrow H$ is $\frac{1-r}{2}$-inverse-strongly monotone; see, for example, [13].

In this paper, motivated by these results, we prove a strong convergence theorem for finding a point $z_{0} \in(A+B)^{-1} 0 \cap F^{-1} 0$ which is a unique fixed point of $P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g)$, where A is an α-inverse-strongly monotone mapping of C into H with $\alpha>0, B$ is a maximal monotone operator on H, F is a maximal monotone operator on H such that the domain of F is included in C, g is a k-contraction of H into itself with $0<k<1, G$ is a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$ and γ is a real number with $0<\gamma<\frac{\bar{\gamma}}{k}$. Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in Nonlinear Analysis and Optimization.

2. Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers, let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. When $\left\{x_{n}\right\}$ is a sequence in H, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. We have from [22] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$,

$$
\begin{gather*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.1}\\
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{2.2}
\end{gather*}
$$

Furthermore we have that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} . \tag{2.3}
\end{equation*}
$$

All Hilbert spaces satisfy Opial's condition, that is,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|x_{n}-u\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-v\right\| \tag{2.4}
\end{equation*}
$$

if $x_{n} \rightharpoonup u$ and $u \neq v$; see [16]. Let C be a nonempty closed convex subset of a Hilbert space H. A mapping $T: C \rightarrow H$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. If $T: C \rightarrow H$ is nonexpansive, then $F(T)$ is closed and convex; see [22]. For a nonempty closed convex subset D of H, the nearest point projection of H onto D is denoted by P_{D}, that is, $\left\|x-P_{D} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in D$. Such P_{D} is called the metric projection of H onto D. We know that the metric projection P_{D} is firmly nonexpansive; $\left\|P_{D} x-P_{D} y\right\|^{2} \leq\left\langle P_{D} x-P_{D} y, x-y\right\rangle$ for all $x, y \in H$. Further $\left\langle x-P_{D} x, y-P_{D} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in D$; see [20].

If A is α-inverse-strongly monotone, then we have that $\langle x-y, A x-A y\rangle \geq 0$ and $\|A x-A y\| \leq(1 / \alpha)\|x-y\|$ for all $x, y \in C$; see, for example, $[15,24]$ for inversestrongly monotone mappings. Let B be a mapping of H into 2^{H}. The effective domain of B is denoted by $\operatorname{dom}(B)$, that is, $\operatorname{dom}(B)=\{x \in H: B x \neq \emptyset\}$. A multivalued mapping B is said to be a monotone operator on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in \operatorname{dom}(B), u \in B x$, and $v \in B y$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow \operatorname{dom}(B)$, which is called the resolvent of B for r. We denote by $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$ the Yosida approximation of B for $r>0$. We know from [21] that

$$
\begin{equation*}
A_{r} x \in B J_{r} x, \quad \forall x \in H, r>0 . \tag{2.5}
\end{equation*}
$$

Let B be a maximal monotone operator on H and let $B^{-1} 0=\{x \in H: 0 \in B x\}$. It is known that $B^{-1} 0=F\left(J_{r}\right)$ for all $r>0$ and the resolvent J_{r} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|J_{r} x-J_{r} y\right\|^{2} \leq\left\langle x-y, J_{r} x-J_{r} y\right\rangle, \quad \forall x, y \in H \tag{2.6}
\end{equation*}
$$

We also know the following lemma from [19].
Lemma 2. Let H be a real Hilbert space and let B be a maximal monotone operator on H. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
From Lemma 2, we have that

$$
\left\|J_{\lambda} x-J_{\mu} x\right\| \leq(|\lambda-\mu| / \lambda)\left\|x-J_{\lambda} x\right\|
$$

for all $\lambda, \mu>0$ and $x \in H$; see also $[8,20]$.
To prove our main result, we need the following lemmas:

Lemma 3 ([2]; see also [27]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers, let $\left\{\alpha_{n}\right\}$ be a sequence of $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, let $\left\{\beta_{n}\right\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and let $\left\{\gamma_{n}\right\}$ be a sequence of real numbers with $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq 0$. Suppose that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \gamma_{n}+\beta_{n}
$$

for all $n=1,2, \ldots$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 4 ([11]). Let $\left\{\Gamma_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\}$ of $\left\{\Gamma_{n}\right\}$ which satisfies $\Gamma_{n_{i}}<\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. Define the sequence $\{\tau(n)\}_{n \geq n_{0}}$ of integers as follows:

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\}
$$

where $n_{0} \in \mathbb{N}$ such that $\left\{k \leq n_{0}: \Gamma_{k}<\Gamma_{k+1}\right\} \neq \emptyset$. Then, the following hold:
(i) $\tau\left(n_{0}\right) \leq \tau\left(n_{0}+1\right) \leq \ldots$ and $\tau(n) \rightarrow \infty$;
(ii) $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_{n} \leq \Gamma_{\tau(n)+1}, \forall n \geq n_{0}$.

3. Strong Convergence Theorem

Let C be a nonempty closed and convex subset of a Hilbert space H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H. If $0<\lambda \leq 2 \alpha$, then $I-\lambda A: C \rightarrow H$ is nonexpansive. In fact, we have that for all $x, y \in C$,

$$
\begin{aligned}
\|(I-\lambda A) x & -(I-\lambda A) y\left\|^{2}=\right\| x-y-\lambda(A x-A y) \|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+(\lambda)^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda \alpha\|A x-A y\|^{2}+(\lambda)^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

Thus, $I-\lambda A: C \rightarrow H$ is nonexpansive. A mapping $g: H \rightarrow H$ is a contraction if there exists $k \in(0,1)$ such that $\|g(x)-g(y)\| \leq k\|x-y\|$ for all $x, y \in H$. We also call such a mapping g a k-contraction. A linear bounded self-adjoint operator $G: H \rightarrow H$ is called strongly positive if there exists $\bar{\gamma}>0$ such that $\langle G x, x\rangle \geq \bar{\gamma}\|x\|^{2}$ for all $x \in H$. In general, a nonlinear operator $T: H \rightarrow H$ is called strongly monotone if there exists $\bar{\gamma}>0$ such that $\langle x-y, T x-T y\rangle \geq \bar{\gamma}\|x-y\|^{2}$ for all $x, y \in H$. Such T is also called $\bar{\gamma}$-strongly monotone. We know the following result from Marino and Xu [12].

Lemma 5. Let H be a Hilbert space and let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. If $0<\gamma \leq\|G\|^{-1}$, then $\|I-\gamma G\| \leq$ $1-\gamma \bar{\gamma}$.

For proving the main theorem, we also need the following lemma which is proved simply by Takahashi [23].

Lemma 6. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let $0<k<1$ and let g be a k-contraction of H into itself. Let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Let γ be a real number with $0<\gamma<\frac{\bar{\gamma}}{k}$. Then for any nonempty closed convex subset C of $H, P_{C}(I-G+\gamma g)$ has a unique fixed point z_{0} in C. This point $z_{0} \in C$ is also a unique solution of the variational inequality

$$
\left\langle(G-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in C .
$$

In particular, the set $(A+B)^{-1} 0 \cap F^{-1} 0$ is a nonempty closed and convex subset of H and $P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g)$ has a unique fixed point z_{0} in $(A+B)^{-1} 0 \cap F^{-1} 0$.

Using Lemmas 5 and 6, we prove the following strong convergence theorem of Halpern's type [9] in a Hilbert space.

Theorem 7. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H. Let B be a maximal monotone operator on H and let F be a maximal monotone operator on H such that the domain of F is included in C. Let $J_{\lambda}=$ $(I+\lambda B)^{-1}$ and let $T_{r}=(I+r F)^{-1}$ be the resolvents of B and F for $\lambda>0$ and $r>0$, respectively. Let $0<k<1$ and let g be a k-contraction of H into itself. Let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$ and suppose $(A+B)^{-1} 0 \cap F^{-1} 0 \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty),\left\{\beta_{n}\right\} \subset(0,1),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1, \\
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \text { and } \quad \liminf _{n \rightarrow \infty} r_{n}>0 .
\end{aligned}
$$

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to a point z_{0} of $(A+B)^{-1} 0 \cap F^{-1} 0$, where $z_{0}=P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g) z_{0}$.

Proof. Let $z \in(A+B)^{-1} 0 \cap F^{-1} 0$. Then, $z=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z$ and $z=T_{r_{n}} z$. Putting $z_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}$ and $u_{n}=T_{r_{n}} x_{n}$, we obtain that

$$
\begin{align*}
\left\|z_{n}-z\right\| & =\left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}-z\right\| \\
& =\left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} z\right\| \tag{3.1}\\
& \leq\left\|x_{n}-z\right\| .
\end{align*}
$$

Putting $y_{n}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}$, from $z=\alpha_{n} G z+z-\alpha_{n} G z$ and Lemma 5 we have that

$$
\begin{aligned}
\left\|y_{n}-z\right\| & =\left\|\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z\right)+\left(I-\alpha_{n} G\right)\left(z_{n}-z\right)\right\| \\
& \leq \alpha_{n} \gamma k\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-G z\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|z_{n}-z\right\| \\
& \leq\left\{1-\alpha_{n}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-G z\| .
\end{aligned}
$$

Using this, we get

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|= & \left\|\beta_{n}\left(x_{n}-z\right)+\left(1-\beta_{n}\right)\left(y_{n}-z\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\|+\left(1-\beta_{n}\right)\left\|y_{n}-z\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\| \\
& \quad+\left(1-\beta_{n}\right)\left(\left\{1-\alpha_{n}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-G z\|\right) \\
= & \left\{1-\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k)\right\}\left\|x_{n}-z\right\| \\
& \quad+\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k) \frac{\|\gamma g(z)-G z\|}{\bar{\gamma}-\gamma k} .
\end{aligned}
$$

Putting $K=\max \left\{\left\|x_{1}-z\right\|, \frac{\|\gamma g(z)-G z\|}{\bar{\gamma}-\gamma k}\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{u_{n}\right\},\left\{z_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded.

Using Lemma 6, we can take $z_{0} \in(A+B)^{-1} 0 \cap F^{-1} 0$ such that

$$
z_{0}=P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g) z_{0} .
$$

From the definition of $\left\{x_{n}\right\}$, we have that

$$
x_{n+1}-x_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) z_{n}\right\}-x_{n}
$$

and hence

$$
\begin{gathered}
x_{n+1}-x_{n}-\left(1-\beta_{n}\right) \alpha_{n} \gamma g\left(x_{n}\right)=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left(I-\alpha_{n} G\right) z_{n}-x_{n} \\
=\left(1-\beta_{n}\right)\left\{\left(I-\alpha_{n} G\right) z_{n}-x_{n}\right\} \\
=\left(1-\beta_{n}\right)\left\{z_{n}-x_{n}-\alpha_{n} G z_{n}\right\} .
\end{gathered}
$$

Thus we have that

$$
\begin{align*}
& \left\langle x_{n+1}-x_{n}-\left(1-\beta_{n}\right) \alpha_{n} \gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& \quad=\left(1-\beta_{n}\right)\left\langle z_{n}-x_{n}, x_{n}-z_{0}\right\rangle-\left(1-\beta_{n}\right)\left\langle\alpha_{n} G z_{n}, x_{n}-z_{0}\right\rangle \tag{3.2}
\end{align*}
$$

$$
=-\left(1-\beta_{n}\right)\left\langle x_{n}-z_{n}, x_{n}-z_{0}\right\rangle-\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle .
$$

From (2.3) and (3.1), we have that

$$
\begin{align*}
2\left\langle x_{n}-z_{n}, x_{n}-z_{0}\right\rangle & =\left\|x_{n}-z_{0}\right\|^{2}+\left\|z_{n}-x_{n}\right\|^{2}-\left\|z_{n}-z_{0}\right\|^{2} \\
& \geq\left\|x_{n}-z_{0}\right\|^{2}+\left\|z_{n}-x_{n}\right\|^{2}-\left\|x_{n}-z_{0}\right\|^{2} \tag{3.3}\\
& =\left\|z_{n}-x_{n}\right\|^{2} .
\end{align*}
$$

From (3.2) and (3.3), we have that

$$
\begin{align*}
-2\left\langle x_{n}\right. & \left.-x_{n+1}, x_{n}-z_{0}\right\rangle=2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -2\left(1-\beta_{n}\right)\left\langle x_{n}-z_{n}, x_{n}-z_{0}\right\rangle-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle \tag{3.4}\\
\leq & 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle .
\end{align*}
$$

Furthermore using (2.3) and (3.4), we have that

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2}- & \left\|x_{n}-x_{n+1}\right\|^{2}-\left\|x_{n}-z_{0}\right\|^{2} \\
\leq & 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& \quad-\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle .
\end{aligned}
$$

Setting $\Gamma_{n}=\left\|x_{n}-z_{0}\right\|^{2}$, we have that

$$
\begin{align*}
\Gamma_{n+1}-\Gamma_{n}- & \left\|x_{n}-x_{n+1}\right\|^{2} \\
\leq & 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \tag{3.5}\\
& -\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle .
\end{align*}
$$

Noting that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\left(1-\beta_{n}\right) \alpha_{n}\left(\gamma g\left(x_{n}\right)-G z_{n}\right)+\left(1-\beta_{n}\right)\left(z_{n}-x_{n}\right)\right\| \tag{3.6}\\
& \leq\left(1-\beta_{n}\right)\left(\left\|z_{n}-x_{n}\right\|+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|\right)
\end{align*}
$$

and hence

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|^{2} \leq\left(1-\beta_{n}\right)^{2}\left(\left\|z_{n}-x_{n}\right\|+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|\right)^{2} \\
& \quad=\left(1-\beta_{n}\right)^{2}\left\|z_{n}-x_{n}\right\|^{2} \tag{3.7}\\
& \quad+\left(1-\beta_{n}\right)^{2}\left(2 \alpha_{n}\left\|z_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|+\alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|^{2}\right) .
\end{align*}
$$

Thus we have from (3.5) and (3.7) that

$$
\begin{aligned}
\Gamma_{n+1}-\Gamma_{n} & \leq\left\|x_{n}-x_{n+1}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|z_{n}-x_{n}\right\|^{2} \\
& +\left(1-\beta_{n}\right)^{2}\left(2 \alpha_{n}\left\|z_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|+\alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle-\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2} \\
& -2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle
\end{aligned}
$$

and hence

$$
\begin{align*}
\Gamma_{n+1}- & \Gamma_{n}+\beta_{n}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|^{2} \\
& \leq \tag{3.8}\\
& \left(1-\beta_{n}\right)^{2}\left(2 \alpha_{n}\left\|z_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|+\alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\|^{2}\right) \\
& +2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle G z_{n}, x_{n}-z_{0}\right\rangle
\end{align*}
$$

We will divide the proof into two cases.
Case 1: Suppose that $\Gamma_{n+1} \leq \Gamma_{n}$ for all $n \in \mathbb{N}$. In this case, $\lim _{n \rightarrow \infty} \Gamma_{n}$ exists and then $\lim _{n \rightarrow \infty}\left(\Gamma_{n+1}-\Gamma_{n}\right)=0$. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\limsup _{n \rightarrow \infty} \beta_{n}<1$, we have from (3.8) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

From (3.6), we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

We also have that

$$
\begin{align*}
\left\|y_{n}-z_{n}\right\| & =\left\|\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) z_{n}-z_{n}\right\| \tag{3.11}\\
& =\alpha_{n}\left\|\gamma g\left(x_{n}\right)-G z_{n}\right\| \rightarrow 0 .
\end{align*}
$$

Furthermore, from $\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\|$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

For $z_{0} \in(A+B)^{-1} 0 \cap F^{-1} 0$, we have from (2.6) that

$$
\begin{aligned}
2\left\|u_{n}-z_{0}\right\|^{2} & =2\left\|T_{r_{n}} x_{n}-T_{r_{n}} z_{0}\right\|^{2} \\
& \leq 2\left\langle x_{n}-z_{0}, u_{n}-z_{0}\right\rangle \\
& =\left\|x_{n}-z_{0}\right\|^{2}+\left\|u_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\left\|u_{n}-z_{0}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2} .
$$

Then we have that

$$
\begin{equation*}
\left\|z_{n}-z_{0}\right\|^{2} \leq\left\|u_{n}-z_{0}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2} . \tag{3.13}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
\left\|u_{n}-x_{n}\right\|^{2} & \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|z_{n}-z_{0}\right\|^{2} \\
& \leq\left\|x_{n}-z_{n}\right\|\left(\left\|x_{n}-z_{0}\right\|+\left\|z_{n}-z_{0}\right\|\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

Then we have from (3.12) and (3.14) that

$$
\begin{equation*}
\left\|y_{n}-u_{n}\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\| \rightarrow 0 . \tag{3.15}
\end{equation*}
$$

Furthermore, we have from (3.9) and (3.14) that

$$
\begin{equation*}
\left\|z_{n}-u_{n}\right\| \leq\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\| \rightarrow 0 \tag{3.16}
\end{equation*}
$$

Take $\lambda_{0} \in[a, 2 \alpha]$ arbitrarily. Put $w_{n}=u_{n}-\lambda_{n} A u_{n}$, where $u_{n}=T_{r_{n}} x_{n}$. Using

$$
z_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n} \text { and } y_{n}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n},
$$

we have from Lemma 2 and $z_{n}=\alpha_{n} G z_{n}+z_{n}-\alpha_{n} G z_{n}$ that

$$
\begin{align*}
\| \alpha_{n} \gamma g\left(x_{n}\right)+ & \left(I-\alpha_{n} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-z_{n} \| \\
= & \left\|\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z_{n}\right)+\left(I-\alpha_{n} G\right)\left(J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-z_{n}\right)\right\| \\
\leq & \alpha_{n}\left(\gamma k\left\|x_{n}-z_{n}\right\|+\left\|\gamma g\left(z_{n}\right)-G z_{n}\right\|\right) \\
& \quad+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-z_{n}\right\| \\
\leq & \alpha_{n}\left(\gamma k\left\|x_{n}-z_{n}\right\|+\left\|\gamma g\left(z_{n}\right)-G z_{n}\right\|\right) \tag{3.17}\\
\quad & \quad\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-J_{\lambda_{0}}\left(I-\lambda_{n} A\right) u_{n}+J_{\lambda_{0}} w_{n}-J_{\lambda_{n}} w_{n}\right\| \\
\leq & \alpha_{n}\left(\gamma k\left\|x_{n}-z_{n}\right\|+\left\|\gamma g\left(z_{n}\right)-G z_{n}\right\|\right) \\
\quad & \quad+\left|\lambda_{0}-\lambda_{n}\right|\left\|A u_{n}\right\|+\frac{\left|\lambda_{0}-\lambda_{n}\right|}{\lambda_{0}}\left\|w_{n}-J_{\lambda_{0}} w_{n}\right\| .
\end{align*}
$$

We also have

$$
\begin{align*}
& \left\|u_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\| \\
& \leq\left\|u_{n}-z_{n}\right\|+\left\|z_{n}-\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\}\right\| \\
& \quad \quad+\left\|\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\| \tag{3.18}\\
& =\left\|u_{n}-z_{n}\right\|+\left\|z_{n}-\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\}\right\| \\
& \quad+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-G J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\| .
\end{align*}
$$

We will use (3.17) and (3.18) later.
For a unique fixed point z_{0} of $P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g)$ in $(A+B)^{-1} 0 \cap F^{-1} 0$, let us show that

$$
\limsup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{n}-z_{0}\right\rangle \geq 0
$$

Put $l=\lim \sup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{n}-z_{0}\right\rangle$. Without loss of generality, there exists a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that $l=\lim _{i \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{n_{i}}-z_{0}\right\rangle$ and $\left\{y_{n_{i}}\right\}$ converges weakly to some point $w \in H$. From $\left\|y_{n}-u_{n}\right\| \rightarrow 0$, we also have that $\left\{u_{n_{i}}\right\}$ converges weakly to $w \in C$. On the other hand, since $0<a \leq \lambda_{n_{i}} \leq 2 \alpha$,
there exists a subsequence $\left\{\lambda_{n_{i_{j}}}\right\}$ of $\left\{\lambda_{n_{i}}\right\}$ such that $\left\{\lambda_{n_{i_{j}}}\right\}$ converges to a number $\lambda_{0} \in[a, 2 \alpha]$. Using (3.17), we have that

$$
\left\|\alpha_{n_{i_{j}}} \gamma g\left(x_{n_{i_{j}}}\right)+\left(I-\alpha_{n_{i_{j}}} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i_{j}}}-z_{n_{i_{j}}}\right\| \rightarrow 0 .
$$

Furthermore, using (3.18), we have that

$$
\begin{aligned}
\| u_{n_{i_{j}}} & -J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i_{j}}} \| \\
\leq & \left\|u_{n_{i_{j}}}-z_{n_{i_{j}}}\right\|+\left\|z_{n_{i_{j}}}-\left\{\alpha_{n_{i_{j}}} \gamma g\left(x_{n_{i_{j}}}\right)+\left(I-\alpha_{n_{i_{j}}} G\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i_{j}}}\right\}\right\| \\
& +\alpha_{n_{i_{j}}}\left\|\gamma g\left(x_{n_{i_{j}}}\right)-G J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i_{j}}}\right\| \rightarrow 0 .
\end{aligned}
$$

Since $J_{\lambda_{0}}\left(I-\lambda_{0} A\right)$ is nonexpansive, we have $w=J_{\lambda_{0}}\left(I-\lambda_{0} A\right) w$. This means that $0 \in A w+B w$. We show $w \in F^{-1} 0$. Since $\frac{x_{n_{i_{j}}}-T_{r_{n_{i}}} x_{n_{i_{j}}}}{r_{n_{i_{j}}}} \in F T_{r_{n_{i_{j}}}} x_{n_{i_{j}}}$ and F is a monotone operator, we have that for any $(u, v) \in F$,

$$
\left\langle u-u_{n_{i_{j}}}, v-\frac{x_{n_{i_{j}}}-u_{n_{i_{j}}}}{r_{n_{i_{j}}}}\right\rangle \geq 0 .
$$

Since $\lim \inf _{n \rightarrow \infty} r_{n}>0, u_{n_{i_{j}}} \rightharpoonup w$ and $x_{n_{i_{j}}}-u_{n_{i_{j}}} \rightarrow 0$, we have

$$
\langle u-w, v\rangle \geq 0
$$

Since F is a maximal monotone operator, we have $0 \in F w$ and hence $w \in F^{-1} 0$. Thus we have $w \in(A+B)^{-1} 0 \cap F^{-1} 0$. So, we have

$$
\begin{equation*}
l=\lim _{j \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{n_{i_{j}}}-z_{0}\right\rangle=\left\langle(G-\gamma g) z_{0}, w-z_{0}\right\rangle \geq 0 \tag{3.19}
\end{equation*}
$$

Since $y_{n}-z_{0}=\alpha_{n}\left(\gamma g\left(x_{n}\right)-G z_{0}\right)+\left(I-\alpha_{n} G\right)\left(J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n}-z_{0}\right)$, we have

$$
\left\|y_{n}-z_{0}\right\|^{2} \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, y_{n}-z_{0}\right\rangle
$$

Thus we have

$$
\begin{aligned}
\left\|y_{n}-z_{0}\right\|^{2} & \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|u_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, y_{n}-z_{0}\right\rangle \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, y_{n}-z_{0}\right\rangle
\end{aligned}
$$

Thus we have that

$$
\begin{aligned}
\| x_{n+1}- & z_{0}\left\|^{2} \leq \beta_{n}\right\| x_{n}-z_{0}\left\|^{2}+\left(1-\beta_{n}\right)\right\| y_{n}-z_{0} \|^{2} \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left(\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, y_{n}-z_{0}\right\rangle\right) \\
= & \left(\beta_{n}+\left(1-\beta_{n}\right)\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-G z_{0}, y_{n}-z_{0}\right\rangle \\
\leq & \left(1-\left(1-\beta_{n}\right)\left(2 \alpha_{n} \bar{\gamma}-\left(\alpha_{n} \bar{\gamma}\right)^{2}\right)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n} \gamma k\left\|x_{n}-z_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{n}-z_{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \left(1-2\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left(\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{n}-z_{0}\right\rangle \\
\leq & \left(1-2\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k)\left(\frac{\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-z_{0}\right\|^{2}}{2(\bar{\gamma}-\gamma k)}+\frac{\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{n}-z_{0}\right\rangle}{\bar{\gamma}-\gamma k}\right) .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} 2\left(1-\beta_{n}\right) \alpha_{n}(\bar{\gamma}-\gamma k)=\infty$, from (3.19) and Lemma 3, we obtain that $x_{n} \rightarrow z_{0}$, where $z_{0}=P_{(A+B)^{-1} 0 \cap F^{-1} 0}(I-G+\gamma g) z_{0}$.

Case 2: Suppose that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\} \subset\left\{\Gamma_{n}\right\}$ such that $\Gamma_{n_{i}}<$ $\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. In this case, define the sequence $\{\tau(n)\}_{n \geq n_{0}}$ as follows:

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\}
$$

where $n_{0} \in \mathbb{N}$ such that $\left\{k \leq n_{0}: \Gamma_{k}<\Gamma_{k+1}\right\} \neq \emptyset$. Then we have from Lemma 4 that $\Gamma_{\tau(n)}<\Gamma_{\tau(n)+1}$. Thus we have from (3.8) that for all $n \in \mathbb{N}$,

$$
\begin{align*}
\beta_{\tau(n)}(1- & \left.\beta_{\tau(n)}\right)\left\|z_{\tau(n)}-x_{\tau(n)}\right\|^{2} \\
& \leq\left(1-\beta_{\tau(n)}\right)^{2} 2 \alpha_{\tau(n)}\left\|z_{\tau(n)}-x_{\tau(n)}\right\|\left\|\gamma g\left(x_{\tau(n)}\right)-G z_{\tau(n)}\right\| \\
& +\left(1-\beta_{\tau(n)}\right)^{2} \alpha_{\tau(n)}^{2}\left\|\gamma g\left(x_{\tau(n)}\right)-G z_{\tau(n)}\right\|^{2} \tag{3.20}\\
& +2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(x_{\tau(n)}\right), x_{\tau(n)}-z_{0}\right\rangle \\
& -2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle G z_{\tau(n)}, x_{\tau(n)}-z_{0}\right\rangle .
\end{align*}
$$

Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$, we have from (3.20) and Lemma 4 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{\tau}(n)-x_{\tau}(n)\right\|=0 \tag{3.21}
\end{equation*}
$$

As in the proof of Case 1 we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{\tau(n)}-x_{\tau(n)}\right\|=0 \tag{3.22}
\end{equation*}
$$

Since $\left\|y_{\tau(n)}-u_{\tau(n)}\right\| \leq\left\|y_{\tau(n)}-x_{\tau(n)}\right\|+\left\|x_{\tau(n)}-u_{\tau(n)}\right\|$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{\tau(n)}-u_{\tau(n)}\right\|=0 \tag{3.23}
\end{equation*}
$$

Let us show that

$$
\limsup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{\tau(n)}-z_{0}\right\rangle \geq 0
$$

Put $l=\lim \sup _{n \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{\tau(n)}-z_{0}\right\rangle$. Without loss of generality, there exists a subsequence $\left\{y_{\tau\left(n_{i}\right)}\right\}$ of $\left\{y_{\tau(n)}\right\}$ such that $l=\lim _{i \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{\tau\left(n_{i}\right)}-z_{0}\right\rangle$ and $\left\{y_{\tau\left(n_{i}\right)}\right\}$ converges weakly some point $w \in H$. From $\left\|y_{n}-u_{n}\right\| \rightarrow 0$, we also have that $\left\{u_{\tau\left(n_{i}\right)}\right\}$ converges weakly to $w \in C$. As in the proof of Case 1 we have that
$w \in(A+B)^{-1} 0$. Since F is a maximal monotone operator, as in the proof of Case 1 we can also show $w \in F^{-1} 0$. Thus we have $w \in(A+B)^{-1} 0 \cap F^{-1} 0$. Then we have

$$
l=\lim _{i \rightarrow \infty}\left\langle(G-\gamma g) z_{0}, y_{\tau\left(n_{i}\right)}-z_{0}\right\rangle=\left\langle(G-\gamma g) z_{0}, w-z_{0}\right\rangle \geq 0
$$

As in the proof of Case 1, we also have that

$$
\left\|y_{\tau(n)}-z_{0}\right\|^{2} \leq\left(1-\alpha_{\tau(n)} \bar{\gamma}\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2 \alpha_{\tau(n)}\left\langle\gamma g\left(x_{\tau(n)}\right)-G z_{0}, y_{\tau(n)}-z_{0}\right\rangle
$$

and then

$$
\begin{aligned}
& \left\|x_{\tau(n)+1}-z_{0}\right\|^{2} \leq\left(1-2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}(\bar{\gamma}-\gamma k)\right)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \quad+\left(1-\beta_{\tau(n)}\right)\left(\alpha_{\tau(n)} \bar{\gamma}\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

From $\Gamma_{\tau(n)}<\Gamma_{\tau(n)+1}$, we have that

$$
\begin{aligned}
& \left.2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}(\bar{\gamma}-\gamma k)\right)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \quad \leq\left(1-\beta_{\tau(n)}\right)\left(\alpha_{\tau(n)} \bar{\gamma}\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

Since $\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}>0$, we have that

$$
\begin{aligned}
2(\bar{\gamma}-\gamma k) & \left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \leq \alpha_{\tau(n)} \bar{\gamma}^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left\langle\gamma g\left(z_{0}\right)-G z_{0}, y_{\tau(n)}-z_{0}\right\rangle .
\end{aligned}
$$

Thus we have that

$$
\limsup _{n \rightarrow \infty} 2(\bar{\gamma}-\gamma k)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \leq 0
$$

and hence $\left\|x_{\tau(n)}-z_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. From (3.6), we have also that $x_{\tau(n)}-x_{\tau(n)+1} \rightarrow$ 0 . Thus $\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Using Lemma 4 again, we obtain that

$$
\left\|x_{n}-z_{0}\right\| \leq\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. This completes the proof.

4. Applications

In this section, using Theorem 7, we can obtain well-known and new strong convergence theorems for in a Hilbert space. Let H be a Hilbert space and let f be a proper lower semicontinuous convex function of H into $(-\infty, \infty]$. The subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), \forall y \in H\}
$$

for all $x \in H$. From Rockafellar [17], we know that ∂f is a maximal monotone operator. Let C be a nonempty closed convex subset of H and let i_{C} be the indicator
function of C, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Then i_{C} is a proper lower semicontinuous convex function on H and then the subdifferential ∂i_{C} of i_{C} is a maximal monotone operator. Thus we can define the resolvent J_{λ} of ∂i_{C} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We have that for any $x \in H$ and $u \in C$,

$$
\begin{aligned}
u=J_{\lambda} x & \Longleftrightarrow x \in u+\lambda \partial i_{C} u \Longleftrightarrow x \in u+\lambda N_{C} u \\
& \Longleftrightarrow x-u \in \lambda N_{C} u \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-u, v-u\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\langle x-u, v-u\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow u=P_{C} x,
\end{aligned}
$$

where $N_{C} u$ is the normal cone to C at u, i.e.,

$$
N_{C} u=\{z \in H:\langle z, v-u\rangle \leq 0, \forall v \in C\} .
$$

Using Theorem 7, we first prove a strong convergence theorem for inverse-strongly monotone operators in a Hilbert space.

Theorem 8. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse-strongly monotone mapping of C into H. Let $0<k<1$ and let g be a k-contraction of H into itself. Let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$ and suppose $V I(C, A) \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right) P_{C}\left(I-\lambda_{n} A\right) P_{C} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty),\left\{\beta_{n}\right\} \subset(0,1)$, and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{gathered}
0<a \leq \lambda_{n} \leq 2 \alpha, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1, \\
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty .
\end{gathered}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point z_{0} of $V I(C, A)$, where $z_{0}=$ $P_{V I(C, A)}(I-G+\gamma g) z_{0}$.

Proof. Put $B=F=\partial i_{C}$ in Theorem 7. Then we have that for $\lambda_{n}>0$ and $r_{n}>0$,

$$
J_{\lambda_{n}}=T_{r_{n}}=P_{C} .
$$

Furthermore, we have $\left(\partial i_{C}\right)^{-1} 0=C$ and $\left(A+\partial i_{C}\right)^{-1} 0=V I(C, A)$. In fact, we have that for $z \in C$,

$$
\begin{aligned}
z \in\left(A+\partial i_{C}\right)^{-1} 0 & \Longleftrightarrow 0 \in A z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in A z+N_{C} z \\
& \Longleftrightarrow-A z \in N_{C} z \\
& \Longleftrightarrow\langle-A z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\langle A z, v-z\rangle \geq 0, \forall v \in C \\
& \Longleftrightarrow z \in V I(C, A) .
\end{aligned}
$$

Thus we obtain the desired result by Theorem 7 .
Let C be a nonempty closed convex subset of H. Then, $U: C \rightarrow H$ is called a widely strict pseudo-contraction if there exists $r \in \mathbb{R}$ with $r<1$ such that

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+r\|(I-U) x-(I-U) y\|^{2}, \quad \forall x, y \in C .
$$

We call such U a widely r-strict pseudo-contraction. If $0 \leq r<1$, then U is a strict pseudo-contraction. Furthermore, if $r=0$, then U is nonexpansive. Conversely, let $T: C \rightarrow H$ be a nonexpansive mapping and define $U: C \rightarrow H$ by $U=\frac{1}{1+n} T+\frac{n}{1+n} I$ for all $x \in C$ and $n \in \mathbb{N}$. Then U is a widely $(-n)$-strict pseudo-contraction. In fact, from the definition of U, it follows that $T=(1+n) U-n I$. Since T is nonexpansive, we have that for any $x, y \in C$,

$$
\|(1+n) U x-n x-((1+n) U y-n y)\|^{2} \leq\|x-y\|^{2}
$$

and hence

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}-n\|(I-U) x-(I-U) y\|^{2} .
$$

Using Theorem 7, we obtain the following strong convergence theorem [28] which is related to Zhou's result [28] in a Hilbert space.

Theorem 9. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $r \in \mathbb{R}$ with $r<1$ and let U be a widely r-strict pseudo-contraction of C into H such that $F(U) \neq \emptyset$. Let $x_{1}=x \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} u+\left(1-\alpha_{n}\right) P_{C}\left\{\left(1-t_{n}\right) U+t_{n} I\right\} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{t_{n}\right\} \subset(-\infty, 1),\left\{\beta_{n}\right\} \subset(0,1)$, and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
r \leq t_{n} \leq b<1, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to a point z_{0} of $F(U)$, where $z_{0}=P_{F(U)} u$.
Proof. Put $B=F=\partial i_{C}$ and $A=I-U$ in Theorem 7. Furthermore, put $g(x)=u$ and $G(x)=x$ for all $x \in H$. Then

$$
\langle G(x), x\rangle=\|x\|^{2} \geq \frac{1}{2}\|x\|^{2}
$$

Thus we have $\bar{\gamma}=\frac{1}{2}$. Since $\|g(x)-g(y)\|=0 \leq \frac{1}{3}\|x-y\|$ for all $x, y \in H$, we can take $k=\frac{1}{3}$ and hence set $\gamma=1$. Putting $a=1-b, \lambda_{n}=1-t_{n}$ and $2 \alpha=1-r$ in Theorem 7, we get from $r \leq t_{n} \leq b<1$ that $0<a \leq \lambda_{n} \leq 2 \alpha$,

$$
\sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|=\sum_{n=1}^{\infty}\left|t_{n+1}-t_{n}\right|<\infty
$$

and

$$
I-\lambda_{n} A=I-\left(1-t_{n}\right)(I-U)=\left(1-t_{n}\right) U+t_{n} I
$$

Furthermore, we have that for $z \in C$,

$$
\begin{aligned}
z \in\left(A+\partial i_{C}\right)^{-1} 0 & \Longleftrightarrow 0 \in A z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in z-U z+N_{C} z \\
& \Longleftrightarrow U z-z \in N_{C} z \\
& \Longleftrightarrow\langle U z-z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow P_{C} U z=z
\end{aligned}
$$

Since $F(U) \neq \emptyset$, we get, as in the proof of [28, Fact 3], that $F\left(P_{C} U\right)=F(U)$. We also have $z_{0}=P_{F(U)}(I-G+\gamma g) z_{0}=P_{F(U)}\left(z_{0}-z_{0}+1 \cdot u\right)=P_{F(U)} u$. Thus we obtain the desired result by Theorem 7 .

Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies the conditions $(A 1)-(A 4)$ in Introduction. Then, we know the following lemma which appears implicitly in Blum and Oettli [4].

Lemma 10 (Blum and Oettli). Let C be a nonempty closed convex subset of H and let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) - (A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

The following lemma was also given in Combettes and Hirstoaga [7].

Lemma 11. Assume that $f: C \times C \rightarrow \mathbb{R}$ satisfies $(A 1)-(A 4)$. For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive mapping, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We call such T_{r} the resolvent of f for $r>0$. Using Lemmas 10 and 11, Takahashi, Takahashi and Toyoda [19] obtained the following lemma. See [1] for a more general result.

Lemma 12. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ satisfy $(A 1)-(A 4)$. Let A_{f} be a set-valued mapping of H into itself defined by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \quad \forall y \in C\}, \quad \forall x \in C, \\
\emptyset, \quad \forall x \notin C .
\end{array}\right.
$$

Then, $E P(f)=A_{f}^{-1} 0$ and A_{f} is a maximal monotone operator with $\operatorname{dom}\left(A_{f}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r} of f coincides with the resolvent of A_{f}, i.e.,

$$
T_{r} x=\left(I+r A_{f}\right)^{-1} x .
$$

Using Theorem 7, we obtain the following strong convergence theorem which is related to Liu's result [10] for strict pseudo-contractions in a Hilbert space.

Theorem 13. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $r \in \mathbb{R}$ with $r<1$ and let U be a widely r-strict pseudo-contraction of C into H and let f be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) - (A4). Let T_{r} be the resolvent of f for $r>0$. Let $0<k<1$ and let g be a k-contraction of H into itself. Let G be a strongly positive bounded linear self-adjoint operator on H with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\frac{\bar{\gamma}}{k}$ and suppose $F(U) \cap E P(f) \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} G\right)\left\{\left(1-t_{n}\right) U+t_{n} I\right\} T_{r_{n}} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{t_{n}\right\} \subset(-\infty, 1),\left\{\beta_{n}\right\} \subset(0,1),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& r \leq t_{n} \leq b<1, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1 \\
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \text { and } \quad \liminf _{n \rightarrow \infty} r_{n}>0
\end{aligned}
$$

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to a point z_{0} of $F(U) \cap E P(f)$, where $z_{0}=P_{F(U) \cap E P(f)}(I-G+\gamma g) z_{0}$.

Proof. For the bifunction $f: C \times C \rightarrow \mathbb{R}$, we can define A_{f} in Lemma 12. Putting $A=I-U, B x=0$ for all $\in H$ and $F=A_{f}$ in Theorem 7, we obtain from Lemma 12 that $J_{\lambda_{n}}=I$ for all $\lambda_{n}>0$ and $T_{r_{n}}=\left(I+r_{n} A_{f}\right)^{-1}$ for all $r_{n}>0$. As in the proof of Theorem 9, the sequence $\left\{t_{n}\right\}$ and U are changed in $\left\{\lambda_{n}\right\}$ and A. We have also from Lemma 12 that $E P(f)=\left(A_{f}\right)^{-1} 0=F^{-1} 0$. Furthermore, we have that for $z \in C$,

$$
\begin{aligned}
z \in(A+B)^{-1} 0 & \Longleftrightarrow 0=A z+B z \\
& \Longleftrightarrow 0=A z \\
& \Longleftrightarrow z=U z \\
& \Longleftrightarrow z \in F(U)
\end{aligned}
$$

So, we obtain the desired result by Theorem 7 .

References

[1] K. Aoyama, Y. Kimura, and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.
[2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350-2360.
[3] \quad, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471-489.
[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
[5] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
[6] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
[7] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
[8] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.
[9] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[10] Y. Liu, A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces, Nonlinear Appl. 71 (2009), 4852-4861.
[11] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[12] G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
[13] __ Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[14] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), 37-43.
[15] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
[16] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[17] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[18] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 10251033.
[19] S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[20] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[21] \qquad , Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
[22] , Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[23] _, Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications, J. Optim. Theory Appl., to appear.
[24] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[25] W. Takahashi, J.-C. Yao, and K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
[26] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
[27] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.
[28] H. Zhou, Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), 456-462.
(Mayumi Hojo) Graduate School of Science and Technology, Niigata University, Niigata, Japan E-mail address: f07n013g@alumni.niigata-u.ac.jp
(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp

Received September 18, 2012

