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THE DUNKL-WILLIAMS CONSTANT OF
SYMMETRIC OCTAGONAL NORMS ON R2

HIROYASU MIZUGUCHI, KICHI-SUKE SAITO, AND RYOTARO TANAKA

Abstract. Recently, we constructed a new calculation method for the Dunkl-

Williams constant DW (X) of a normed linear space X. In this paper, we deter-

mine the Dunkl-Williams constant of symmetric octagonal norms on R2 by using

our method.

1. Introduction

A norm ∥ · ∥ on R2 is said to be absolute if ∥(a, b)∥ = ∥(|a|, |b|)∥ for all (a, b) ∈
R2, and normalized if ∥(1, 0)∥ = ∥(0, 1)∥ = 1. The set of all absolute normalized

norms on R2 is denoted by AN2. Bonsall and Duncan [4] showed the following

characterization of absolute normalized norms on R2. Namely, the set AN2 of all

absolute normalized norms on R2 is in a one-to-one correspondence with the set Ψ2

of all convex functions ψ on [0, 1] satisfying max{1− t, t} ≤ ψ(t) ≤ 1 for all t ∈ [0, 1]

(cf. [24]). The correspondence is given by the equation ψ(t) = ∥(1 − t, t)∥ for all

t ∈ [0, 1]. Note that the norm ∥ · ∥ψ associated with the function ψ ∈ Ψ2 is given by

∥(a, b)∥ψ =

 (|a|+ |b|)ψ
(
|b|

|a|+ |b|

)
if (a, b) ̸= (0, 0),

0 if (a, b) = (0, 0).
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For each β ∈ (1/2, 1), let ψβ(t) = max{1 − t, t, β}. Then, ψβ ∈ Ψ2, and the norm

∥ · ∥β associated with ψβ is given by

∥(a, b)∥β = max{|a|, |b|, β(|a|+ |b|)}

=



|a|
(
|b| ≤ 1− β

β
|a|
)
,

β(|a|+ |b|)
(
1− β
β
|a| ≤ |b| ≤ β

1− β
|a|
)
,

|b|
(

β

1− β
|a| ≤ |b|

)
.

Remark that the unit sphere of (R2, ∥ · ∥β) is an octagon, and that the norm ∥ · ∥β
is symmetric, that is, ∥(a, b)∥β = ∥(b, a)∥β for all (a, b) ∈ R2. Hence, in this paper,

the norm ∥ · ∥β is said to be a symmetric octagonal norm on R2.

Throughout this paper, the term “normed linear space” always means a real

normed linear space which has two or more dimension. Let X be a normed linear

space. In 1964, Dunkl and Williams [8] showed that the inequality∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≤ 4∥x− y∥
∥x∥+ ∥y∥

(1)

holds for all x, y ∈ X \ {0}, and that if X admits an inner product, the stronger

inequality ∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≤ 2∥x− y∥
∥x∥+ ∥y∥

(2)

holds for all x, y ∈ X \ {0}. These inequalities are so called the Dunkl-Williams

inequality. There are many results related to this inequality (cf. [1, 5, 6, 7, 16, 17,

21, 22, 23, 25, 26], and so on).

In [8], it was also proved that for any ε > 0 there exist x, y ∈ (R2, ∥ · ∥1) such that∥∥∥∥ x

∥x∥1
− y

∥y∥1

∥∥∥∥
1

> (4− ε) ∥x− y∥1
∥x∥1 + ∥y∥1

.

This means that the constant 4 is the best possible choice for the Dunkl-Williams

inequality in the space (R2, ∥ · ∥1). A bit later, Kirk and Smiley [15] completed this

result by showing that inequality (2) characterizes inner product spaces.

Thus, the best possible choice for the Dunkl-Williams inequality measures “how

much” the space is close (or far) to be an inner product space. Motivated by this

fact, Jiménez-Melado et al. [14] defined the Dunkl-Williams constant DW (X) of a

normed linear space X as the best constant for the Dunkl-Williams inequality, that

is,

DW (X) = sup

{
∥x∥+ ∥y∥
∥x− y∥

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ : x, y ∈ X \ {0}, x ̸= y

}
.
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We collect some basic properties of the Dunkl-Williams constant. Let X be a

normed linear space. Then, the following hold:

(i) 2 ≤ DW (X) ≤ 4.

(ii) X is an inner product space if and only if DW (X) = 2.

(iii) X is uniformly non-square if and only if DW (X) < 4 (cf. [2, 14]).

However, the Dunkl-Williams constant is very hard to calculate. It is not known for

almost all normed linear spaces. We cannot computeDW (X) even ifX = (R2, ∥·∥p).
In [20], it was shown that DW (ℓ2-ℓ∞) = 2

√
2, where ℓ2-ℓ∞ is the space R2 endowed

with the norm ∥ · ∥2,∞ defined by

∥(a, b)∥2,∞ =

{
(|a|2 + |b|2)1/2 if ab ≥ 0,

max{|a|, |b|} if ab ≤ 0,

for all (a, b) ∈ R2. This is the only nontrivial example that the Dunkl-Williams

constant was precisely determined.

In this paper, we determine the Dunkl-Williams constant of the space R2 endowed

with a symmetric octagonal norm ∥ · ∥β by using a calculation method which was

constructed in [20].

2. Calculation method

In this section, we describe a calculation method used in this paper. Let X be a

normed linear space, and let BX and SX denote the unit ball and the unit sphere

of X, respectively. When we make use of the calculation method, the notion of

Birkhoff orthogonality plays an important role. We recall that x ∈ X is said to be

Birkhoff orthogonal to y ∈ X, denoted by x ⊥B y, if ∥x+ λy∥ ≥ ∥x∥ for all λ ∈ R.
Obviously, Birkhoff orthogonality is always homogeneous, that is, x ⊥B y implies

αx ⊥B βy for all α, β ∈ R. More details about Birkhoff orthogonality can be found

in Birkhoff [3], Day [9, 10] and James [11, 12, 13].

To construct a calculation method, we introduced some notations in [20]. Suppose

that X is a normed linear space. For each x ∈ SX , let V (x) be a subset of X defined

by V (x) = {y ∈ X : x ⊥B y}. For each x ∈ SX and each y ∈ V (x), we define Γ(x, y)

and m(x, y) by

Γ(x, y) =

{
λ+ µ

2
: λ ≤ 0 ≤ µ, ∥x+ λy∥ = ∥x+ µy∥

}
and m(x, y) = sup{∥x+ γy∥ : γ ∈ Γ(x, y)}, respectively. Furthermore, let

M(x) = sup{m(x, y) : y ∈ V (x)}.

Using these notions, we obtained a calculation method for the Dunkl-Williams con-

stant.
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Theorem 2.1 ([20]). Let X be a normed linear space. Then,

DW (X) = 2 sup{M(x) : x ∈ SX}.

For two-dimensional spaces, Theorem 2.1 has the following improvement.

Theorem 2.2 ([20]). Let X be a two-dimensional normed linear space. Then,

DW (X) = 2 sup{M(x) : x ∈ ext(BX)},

where ext(BX) denotes the set of all extreme points of BX .

For each nonzero element x of a normed linear space X, an element f of X∗ is said

to be a norming functional of x if ∥f∥ = 1 and f(x) = ∥x∥. Let D(X, x) denote the

set of all norming functionals of x. The following is an important characterization

of Birkhoff orthogonality.

Lemma 2.3 (James, 1947 [12]). Let X be a normed linear space, and let x and y

be two elements of X. Then, x ⊥B y if and only if there exists a norming functional

f of x such that f(y) = 0.

From this result, one can easily have that V (x) =
∪
{ker f : f ∈ D(X, x)} for

each unit vector x in a normed linear space X.

When we put the method into practice, the following results are needed.

Lemma 2.4. Let X be a normed linear space, and let x ∈ SX . Then, the following
hold:

(i) m(x, 0) = 1.

(ii) m(x, αy) = m(x, y) for all y ∈ V (x) and all α ∈ R \ {0}.

Proposition 2.5. Let X and Y be normed linear spaces, and let T be an isometric

isomorphism from X onto Y . Then, the following hold:

(i) m(Tx, Ty) = m(x, y) for all x ∈ SX and all y ∈ V (x).

(ii) M(Tx) =M(x) for all x ∈ SX .

Lemma 2.6. Let X be a normed linear space. Suppose that x ∈ SX , and that

y ∈ V (x). Then, m(x, y) = max{∥x + αy∥, ∥x + βy∥}, where α = inf Γ(x, y) and

β = supΓ(x, y).

Lemma 2.7. Let X be a normed linear space, and let x ∈ SX . Suppose that D is

a dense subset of V (x). Then, M(x) = {m(x, y) : y ∈ D}.

All of these results can be found in [20].

— 96 —



3. The Dunkl-Williams constant of (R2, ∥ · ∥β)
The following is the main theorem in this paper.

Theorem 3.1. Let β ∈ (1/2, 1). Then, the following hold:

(i) If β ∈ (1/2, 1/
√
2], then

DW ((R2, ∥ · ∥β)) =
2

β2

(
(1− β)2 + β2

)
.

(ii) If β ∈ [1/
√
2, 1), then

DW ((R2, ∥ · ∥β)) = 4
(
(1− β)2 + β2

)
.

Once it has been proved that (i) holds, one can show (ii) easily. Indeed, for

each β ∈ (1/2, 1), it is easy to check that (R2, ∥ · ∥β) is isometrically isomorphic to

(R2, ∥ · ∥1/2β) under the identification

(R2, ∥ · ∥β) ∋ (x1, x2)←→ β(x1 + x2, x1 − x2) ∈ (R2, ∥ · ∥1/2β)

since max{|x1 + x2|, |x1− x2|} = |x1|+ |x2| for all x1, x2 ∈ R. If β ∈ [1/
√
2, 1), then

1/2β ∈ (1/2, 1/
√
2] and hence

DW ((R2, ∥ · ∥β)) = DW ((R2, ∥ · ∥1/2β))

=
2

(1/2β)2
(
(1− (1/2β))2 + (1/2β)2

)
= 4

(
(1− β)2 + β2

)
by Theorem 3.1 (i).

Thus, to prove Theorem 3.1, the case of β ∈ (1/2, 1/
√
2] is essential. Henceforth,

we assume that β ∈ (1/2, 1/
√
2] unless otherwise stated. Put Xβ = (R2, ∥ · ∥β) and

kβ = (1− β)/β for short. We remark that
√
2− 1 ≤ kβ < 1 since 1/2 < β ≤ 1/

√
2,

and that β = 1/(1 + kβ).

We start the proof of Theorem 3.1 with the following lemma.

Lemma 3.2. DW (Xβ) = 2M((1, kβ)).

Proof. It is easy to see that ext(BXβ
) is the set of all vertices of the octagon SXβ

,

that is,

ext(BXβ
) = {(ε1, ε2kβ) : |ε1| = |ε2| = 1} ∪ {(ε1kβ, ε2) : |ε1| = |ε2| = 1}.

Since ∥ · ∥β is a symmetric absolute normalized norm on R2, both of the maps

(x1, x2) 7→ (x1,−x2) and (x1, x2) 7→ (x2, x1) are isometric isomorphism from Xβ

onto itself. Hence, we have

M((ε1, ε2kβ)) =M((ε1kβ, ε2)) =M((1, kβ))

— 97 —



by Proposition 2.5, which and Theorem 2.2 together imply that

DW (Xβ) = 2 sup{M(x) : x ∈ ext(BXβ
)}

= 2M((1, kβ)).

This completes the proof. �

Put xβ = (1, kβ). Next, we determine the set V (xβ). To do this, we make use of

the following lemma found in [4] (cf. [19]).

Lemma 3.3 (Bonsall-Duncan, 1973 [4]; Mitani-Saito-Suzuki, 2003 [19]). Let ψ ∈ Ψ2

and let x(t) = (1− t, t)/ψ(t) for each t ∈ [0, 1]. Then,

D((R2, ∥ · ∥ψ), x(t))

=


{(1, c(1 + a)) : a ∈ [−1, ψ′

R(0)], |c| = 1} (t = 0),

{(ψ(t)− at, ψ(t) + a(1− t)) : a ∈ [ψ′
L(t), ψ

′
R(t)]} (0 < t < 1),

{(c(1− a), 1) : a ∈ [ψ′
L(1), 1], |c| = 1} (t = 1),

where ψ′
L(t) and ψ

′
R(t) are, respectively, the left-hand and right-hand derivative of

ψ at t ∈ [0, 1].

Using this result, we have the following lemma.

Lemma 3.4. V (xβ) = {α(1 + a,−1 + kβa) : a ∈ [−1, 0], α ∈ R}.

Proof. First, we note that xβ = (β, 1− β)/ψβ(1− β). Since (ψβ)
′
L(1− β) = −1 and

(ψβ)
′
R(1− β) = 0, we have

D(Xβ, xβ) = {(β − a(1− β), β + aβ) : a ∈ [−1, 0]}.

Thus,

V (xβ) =
∪
{ker f : f ∈ D(Xβ, xβ)}

= {α(β + aβ,−β + a(1− β)) : a ∈ [−1, 0], α ∈ R}
= {α(1 + a,−1 + kβa) : a ∈ [−1, 0], α ∈ R}.

The proof is complete. �

To reduce the amount of calculation, we make use of Lemmas 2.4 and 2.7.

Lemma 3.5. M(xβ) = sup{m(xβ, (1,−t)) : t ∈ (1,∞) \ {1/kβ, (1 + kβ)/(1− kβ)}}.

Proof. It is clear that {α(1+ a,−1+ kβa) : a ∈ (−1, 0), α ∈ R} is a dense subset of

V (xβ) by the preceding lemma. On the other hand,

{α(1 + a,−1 + kβa) : a ∈ (−1, 0), α ∈ R}

=

{
α

(
1,
−1 + kβa

1 + a

)
: a ∈ (−1, 0), α ∈ R

}
.
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Since the function a 7→ (−1 + kβa)/(1 + a) is continuous and increasing, it maps

(−1, 0) onto (−∞,−1). Thus, one has that{
α

(
1,
−1 + kβa

1 + a

)
: a ∈ (−1, 0), α ∈ R

}
= {α(1,−t) : t ∈ (1,∞), α ∈ R}.

From this, it follows that {α(1,−t) : t ∈ (1,∞) \ {1/kβ, (1 + kβ)/(1− kβ)}, α ∈ R}
is also a dense subset of V (xβ). Thus, by Lemma 2.7, we obtain

M(xβ) = sup{m(xβ, α(1,−t)) : t ∈ (1,∞) \ {1/kβ, (1 + kβ)/(1− kβ)}, α ∈ R}.

Finally, applying Lemma 2.4, we have the lemma. �

For each t ∈ R, put yt = (1,−t). Next, we give the formula of ∥xβ + λyt∥β for all

t ∈ (1,∞) \ {1/kβ} and all λ ∈ R.

Lemma 3.6. Let t ∈ (1,∞) \ {1/kβ}, and let

at =
2kβ
t− kβ

, bt =
k2β − 1

1 + kβt
and ct =

1 + k2β
kβt− 1

.

Then, the following hold:

(i) If t ∈ (1, 1/kβ), then ct < bt < 0 < at and

∥xβ + λyt∥β =



kβ − 1− (1 + t)λ

1 + kβ
(λ ≤ ct),

kβ − tλ (ct ≤ λ ≤ bt),

1 + kβ + (1− t)λ
1 + kβ

(bt ≤ λ ≤ 0),

1 + λ (0 ≤ λ ≤ at),

1− kβ + (1 + t)λ

1 + kβ
(at ≤ λ).

(ii) If t ∈ (1/kβ,∞), then bt < 0 < at < ct and

∥xβ + λyt∥β =



kβ − tλ (λ ≤ bt),

1 + kβ + (1− t)λ
1 + kβ

(bt ≤ λ ≤ 0),

1 + λ (0 ≤ λ ≤ at),

1− kβ + (1 + t)λ

1 + kβ
(at ≤ λ ≤ ct),

tλ− kβ (ct ≤ λ).
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Proof. First, we note that

−1 < bt < 0 < kβ/t < at

for all t ∈ (1,∞) \ {1/kβ}. If t ∈ (1, 1/kβ), then one can easily have

ct < −1 < bt < 0 < kβ/t < at.

If t ∈ (1/kβ,∞), then we obtain

−1 < bt < 0 < kβ/t < at < ct

since

ct − at =
(1− k2β)(kβ + t)

(t− kβ)(kβt− 1)
> 0.

Now, it follows from the definition of ∥ · ∥β that

∥xβ + λyt∥β

=


|1 + λ| (|kβ − tλ| ≤ kβ|1 + λ|),
|1 + λ|+ |kβ − tλ|

1 + kβ
(kβ|1 + λ| ≤ |kβ − tλ| ≤ k−1

β |1 + λ|),

|kβ − tλ| (k−1
β |1 + λ| ≤ |kβ − tλ|).

On the other hand, we have

(kβ − tλ)2 − k2β(1 + λ)2 = (t+ kβ)(t− kβ)(λ− at)λ, and
k−2
β (1 + λ)2 − (kβ − tλ)2 = k−2

β (1 + tkβ)(1− tkβ)(λ− bt)(λ− ct).

From these facts, one can obtain the lemma. �

The following lemma is needed in the sequel.

Lemma 3.7. Let t ∈ (1,∞). Then, the function λ 7→ ∥xβ + λyt∥β is strictly

decreasing on (−∞, 0], and is strictly increasing on [0,∞).

Proof. We first note that yt ∈ V (xβ), that is, x ⊥B yt. Since the function λ 7→
∥xβ + λyt∥β is convex, it is enough to show that ∥xβ + λ0yt∥β = min{∥xβ + λyt∥β :

λ ∈ R} = 1 if and only if λ0 = 0. To this end, we suppose that ∥xβ + λ0yt∥β = 1.

Then,

max{|1 + λ0|, |kβ − tλ0|, β(|1 + λ0|+ |kβ − tλ0|)} = ∥xβ + λ0yt∥β = 1.

Since |1 + λ0| ≤ 1, we have λ0 ≤ 0, whence

kβ − tλ0 = |kβ − tλ0| ≤ 1.

It follows from 0 < kβ < 1 and t > 1 that

λ0 ≥
kβ − 1

t
> kβ − 1 > −1,
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which implies that

1 ≥ β(|1 + λ0|+ |kβ − tλ0|)
= β((1 + λ0) + (kβ − tλ0))
= 1− β(t− 1)λ0.

Thus, we also have λ0 ≥ 0. This completes the proof. �

We clarify the relationship among ∥xβ + atyt∥β, ∥xβ + btyt∥β, and ∥xβ + ctyt∥β.
We note that

1 + kβ
1− kβ

=
1

2β − 1
≥ β

1− β
=

1

kβ

since β ∈ (1/2, 1/
√
2].

Lemma 3.8. Let t ∈ (1,∞) \ {1/kβ, (1 + kβ)/(1− kβ)}. Then, the following hold:

(i) If t ∈ (1, 1/kβ), then ∥xβ + btyt∥β < ∥xβ + atyt∥β < ∥xβ + ctyt∥β.
(ii) If t ∈ (1/kβ, (1+kβ)/(1−kβ)), then ∥xβ+btyt∥β < ∥xβ+atyt∥β < ∥xβ+ctyt∥β.
(iii) If t ∈ ((1+kβ)/(1−kβ),∞), then ∥xβ+atyt∥β < ∥xβ+btyt∥β < ∥xβ+ctyt∥β.

Proof. By Lemma 3.6 (i) and (ii), we have

∥xβ + atyt∥β = 1 + at and ∥xβ + btyt∥β =
1 + kβ + (1− t)bt

1 + kβ
,

which implies that

∥xβ + atyt∥β − ∥xβ + btyt∥β =
(1− kβ)(kβ + t)

(t− kβ)(1 + kβt)

(
1 + kβ
1− kβ

− t
)
.

Thus, ∥xβ + atyt∥β > ∥xβ + btyt∥β if t < (1 + kβ)/(1 − kβ), and ∥xβ + atyt∥β <
∥xβ + btyt∥β if t > (1 + kβ)/(1− kβ).

Suppose that t ∈ (1, 1/kβ). Then, as mentioned above, ∥xβ+btyt∥β < ∥xβ+atyt∥β.
Moreover, by Lemma 3.6 (i), we have

∥xβ + atyt∥β =
1− kβ + (1 + t)at

1 + kβ
and ∥xβ + ctyt∥β =

kβ − 1− (1 + t)ct
1 + kβ

,

and so

∥xβ + ctyt∥β − ∥xβ + atyt∥β

=
1

1 + kβ

(
2(kβ − 1) + (1 + t)

(
1 + k2β
1− kβt

− 2kβ
t− kβ

))
.

On the other hand, since 1− kβt < 1− kβ < t− kβ, we obtain

1 + k2β
1− kβt

− 2kβ
t− kβ

>
1 + k2β
1− kβ

− 2kβ
1− kβ

= 1− kβ,
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which implies that

∥xβ + ctyt∥β − ∥xβ + atyt∥β >
(t− 1)(1− kβ)

1 + kβ
> 0.

This shows (i).

Next, we suppose that t ∈ (1/kβ, (1+kβ)/(1−kβ)). Then, we have ∥xβ+btyt∥β <
∥xβ + atyt∥β. Furthermore, we obtain 0 < at < ct by Lemma 3.6 (ii). Thus,

Lemma 3.7 assures that ∥xβ + atyt∥β < ∥xβ + ctyt∥β.
Finally, we assume that t ∈ ((1+ kβ)/(1− kβ),∞). Then, we have ∥xβ + atyt∥β <

∥xβ + btyt∥β as mentioned in the first paragraph. Moreover, since

∥xβ + btyt∥β = kβ − tbt and ∥xβ + ctyt∥β = tct − kβ,

it follows that

∥xβ + ctyt∥β − ∥xβ + btyt∥β =
2(kβ + t)

k2βt
2 − 1

> 0.

Thus, one has that ∥xβ + btyt∥β < ∥xβ + ctyt∥β. This proves (iii). �

Let t ∈ (1,∞). Then, the intermediate value theorem guarantees that the function

λ 7→ ∥xβ + λyt∥β maps (−∞, 0] onto [1,∞) and [0,∞) onto [1,∞). Thus, for any

µ ∈ [0,∞), there exists a λ ∈ (−∞, 0] such that ∥xβ + λyt∥β = ∥xβ + µyt∥β.
Furthermore, by Lemma 3.7, this gives a one-to-one correspondence between [0,∞)

and (−∞, 0]. Now, let pt, qt, rt be real numbers such that pt < 0 < qt, ctrt < 0,

∥xβ + atyt∥β = ∥xβ + ptyt∥β, ∥xβ + btyt∥β = ∥xβ + qtyt∥β, and ∥xβ + ctyt∥β =

∥xβ + rtyt∥β. Then, we have the following lemma.

Lemma 3.9. Let t ∈ (1,∞) \ {1/kβ, (1 + kβ)/(1− kβ)}. Then, the following hold:

(i) If t ∈ (1, 1/kβ), then ct < pt < bt < 0 < qt < at < rt and

pt =
kβ − 1− at

t
, qt =

(1− t)bt
1 + kβ

and rt =
2(kβ − 1)

t+ 1
− ct.

(ii) If t ∈ (1/kβ, (1 + kβ)/(1− kβ)), then rt < pt < bt < 0 < qt < at < ct and

pt =
kβ − 1− at

t
, qt =

(1− t)bt
1 + kβ

and rt =
2kβ
t
− ct.

(iii) If t ∈ ((1 + kβ)/(1− kβ),∞), then rt < bt < pt < 0 < at < qt < ct and

pt =
(1 + kβ)at

1− t
, qt =

2kβ + (1− t)bt
t+ 1

and rt =
2kβ
t
− ct.

Proof. Suppose that t ∈ (1, 1/kβ). Then, ct < bt < 0 < at by Lemma 3.6. Using

Lemma 3.8, we have the following diagram:

+ : ∥xβ + qtyt∥β < ∥xβ + atyt∥β < ∥xβ + rtyt∥β

= = =

− : ∥xβ + btyt∥β < ∥xβ + ptyt∥β < ∥xβ + ctyt∥β
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Thus, by Lemma 3.7, it follows that ct < pt < bt < 0 < qt < at < rt. Then, we have

kβ − tpt = ∥xβ + ptyt∥β = ∥xβ + atyt∥β = 1 + at,

1 + qt = ∥xβ + qtyt∥β = ∥xβ + btyt∥β =
1 + kβ + (1− t)bt

1 + kβ
, and

1− kβ + (1 + t)rt
1 + kβ

= ∥xβ + rtyt∥β = ∥xβ + ctyt∥β =
kβ − 1− (1 + t)ct

1 + kβ
.

This shows (i).

Similarly, one can prove (ii) and (iii). �

Next, we consider the set Γ(xβ, yt). As was mentioned in the paragraph preceding

Lemma 3.9, for each µ ∈ [0,∞) there exists a unique λµ ∈ (−∞, 0] such that

∥xβ + λµyt∥β = ∥xβ + µyt∥β. Then, it follows that

Γ(xβ, yt) =

{
λµ + µ

2
: µ ∈ [0,∞)

}
.

Remark that

1 <
kβ(1 + kβ)

3kβ − 1
=

1− β
β(3− 4β)

<
β

1− β
=

1

kβ

since β ∈ (1/2, 1/
√
2].

Lemma 3.10. Let t ∈ (1, 1/kβ). Then,

Γ(xβ, yt) =


[
ct + rt

2
, 0

] (
1 < t ≤ kβ(1 + kβ)

3kβ − 1

)
,[

ct + rt
2

,
at + pt

2

] (
kβ(1 + kβ)

3kβ − 1
≤ t <

1

kβ

)
.

Proof. By Lemma 3.9 (i), we have ct < pt < bt < 0 < qt < at < rt. Suppose that

0 ≤ µ ≤ qt. Then, Lemma 3.7 guarantees that bt ≤ λµ ≤ 0, and so

1 + kβ + (1− t)λµ
1 + kβ

= ∥xβ + λµyt∥β = ∥xβ + µyt∥β = 1 + µ.

Hence, we have

λµ =
(1 + kβ)µ

1− t
,

which implies that
λµ + µ

2
=

(t− 2− kβ)µ
2(t− 1)

.

Since t ∈ (1, 1/kβ), we have t− 2−kβ < 0. Indeed, it follows from kβ ≥
√
2− 1 that

2 + kβ − t > 2 + kβ −
1

kβ
=

1

kβ
(k2β + 2kβ − 1) ≥ 0.
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Thus, the function µ 7→ (λµ + µ)/2 is decreasing on [0, qt], and therefore{
λµ + µ

2
: µ ∈ [0, qt]

}
=

[
bt + qt

2
, 0

]
.

Next, we suppose that qt ≤ µ ≤ at. Then, we have pt ≤ λµ ≤ bt, and so

kβ − tλµ = ∥xβ + λµyt∥β = ∥xβ + µyt∥β = 1 + µ.

From this, we obtain

λµ =
kβ − 1− µ

t

and
λµ + µ

2
=
kβ − 1 + (t− 1)µ

2t
.

This shows that the function µ 7→ (λµ + µ)/2 is increasing on [qt, at], which implies

that {
λµ + µ

2
: µ ∈ [qt, at]

}
=

[
bt + qt

2
,
at + pt

2

]
.

In the case of at ≤ µ ≤ rt, we have ct ≤ λµ ≤ pt. Then, we obtain

kβ − tλµ = ∥xβ + λµyt∥β = ∥xβ + µyt∥β =
1− kβ + (1 + t)µ

1 + kβ
.

It follows that

λµ =
k2β + 2kβ − 1− (1 + t)µ

t(1 + kβ)

and
λµ + µ

2
=
k2β + 2kβ − 1 + (kβt− 1)µ

2t(1 + kβ)
.

Since t ∈ (1, 1/kβ), the function µ 7→ (λµ + µ)/2 is decreasing on [at, rt], and hence{
λµ + µ

2
: µ ∈ [at, rt]

}
=

[
ct + rt

2
,
at + pt

2

]
.

Finally, we assume that rt ≤ µ. Then, it follows from λµ ≤ ct that

kβ − 1− (1 + t)λµ
1 + kβ

= ∥xβ + λµyt∥β = ∥xβ + µyt∥β =
1− kβ + (1 + t)µ

1 + kβ
.

So we have

λµ =
2(kβ − 1)

1 + t
− µ,

which implies that
λµ + µ

2
=
kβ − 1

1 + t
=
ct + rt

2
.
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Now, since the function µ 7→ (λµ + µ)/2 is continuous, one has that

Γ(xβ, yt)

=

{
λµ + µ

2
: µ ∈ [0,∞)

}
=

[
bt + qt

2
, 0

]
∪
[
bt + qt

2
,
at + pt

2

]
∪
[
ct + rt

2
,
at + pt

2

]
=

[
min

{
bt + qt

2
,
ct + rt

2

}
,max

{
0,
at + pt

2

}]
.

However, since

bt + qt
2
− ct + rt

2
=

(t− 1)(kβ + t)(1− kβ)
2(1 + t)(1 + kβt)

> 0

and

at + pt
2

=
3kβ − 1

2t(t− kβ)

(
t− kβ(1 + kβ)

3kβ − 1

)
,

we have the lemma. �

We remark that

1

kβ
≤ 2 + kβ ≤

1 + kβ
1− kβ

since kβ ≥
√
2− 1.

Lemma 3.11. Let t ∈ (1/kβ, (1 + kβ)/(1− kβ)). Then,

Γ(xβ, yt) =


[
bt + qt

2
,
ct + rt

2

] (
1

kβ
< t ≤ 2 + kβ

)
,[

0,
ct + rt

2

] (
2 + kβ ≤ t <

1 + kβ
1− kβ

)
.

Proof. In the case of t ∈ (1/kβ, (1 + kβ)/(1− kβ)), we have rt < pt < bt < 0 < qt <

at < ct by Lemma 3.9 (ii). Suppose that 0 ≤ µ ≤ qt. Then, we have bt ≤ λµ ≤ 0,

and so

1 + kβ + (1− t)λµ
1 + kβ

= ∥xβ + λµyt∥β = ∥xβ + µyt∥β = 1 + µ.

As in the proof of the preceding lemma, we obtain

λµ + µ

2
=

(t− 2− kβ)µ
2(t− 1)

,
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which implies that µ 7→ (λµ + µ)/2 is decreasing on [0, qt] if t ≤ 2 + kβ, and is

increasing if t ≥ 2 + kβ. Hence, we have

{
λµ + µ

2
: µ ∈ [0, qt]

}
=


[
bt + qt

2
, 0

] (
1

kβ
< t ≤ 2 + kβ

)
,[

0,
bt + qt

2

] (
2 + kβ ≤ t <

1 + kβ
1− kβ

)
.

Assume that qt ≤ µ ≤ at. Then, we have pt ≤ µ ≤ bt and

kβ − tλµ = ∥xβ + λµyt∥β = ∥xβ + µyt∥β = 1 + µ,

which implies that

λµ + µ

2
=
kβ − 1 + (t− 1)µ

2t
.

Since the function µ 7→ (λµ + µ)/2 is increasing on [qt, at], which implies that{
λµ + µ

2
: µ ∈ [qt, at]

}
=

[
bt + qt

2
,
at + pt

2

]
.

We suppose that at ≤ µ ≤ ct. In this case, we obtain

kβ − tλµ = ∥xβ + λµyt∥β = ∥xβ + µyt∥β =
1− kβ + (1 + t)µ

1 + kβ

since rt ≤ λµ ≤ pt. It follows that

λµ + µ

2
=
k2β + 2kβ − 1 + (kβt− 1)µ

2t(1 + kβ)
.

Since t ∈ (1/kβ, (1 + kβ)/(1 − kβ)), the function µ 7→ (λµ + µ)/2 is increasing on

[at, ct], and hence {
λµ + µ

2
: µ ∈ [at, ct]

}
=

[
at + pt

2
,
ct + rt

2

]
.

In the case of ct ≤ µ, it follows that λµ ≤ rt, and that

kβ − tλµ = ∥xβ + λµyt∥β = ∥xβ + µyt∥β = tµ− kβ.

Then, we obtain

λµ =
2kβ
t
− µ

and
λµ + µ

2
=
kβ
t

=
ct + rt

2
.
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Finally, if 1/kβ < t ≤ 2 + kβ, then

Γ(xβ, yt)

=

{
λµ + µ

2
: µ ∈ [0,∞)

}
=

[
bt + qt

2
, 0

]
∪
[
bt + qt

2
,
at + pt

2

]
∪
[
at + pt

2
,
ct + rt

2

]
=

[
bt + qt

2
,
ct + rt

2

]
since (ct + rt)/2 > 0. On the other hand, if 2 + kβ ≤ t < (1 + kβ)/(1− kβ), then

Γ(xβ, yt)

=

{
λµ + µ

2
: µ ∈ [0,∞)

}
=

[
0,
bt + qt

2

]
∪
[
bt + qt

2
,
at + pt

2

]
∪
[
at + pt

2
,
ct + rt

2

]
=

[
0,
ct + rt

2

]
.

This completes the proof. �

Lemma 3.12. Let t ∈ ((1 + kβ)/(1− kβ),∞). Then,

Γ(xβ, yt) =

[
0,
ct + rt

2

]
.

Proof. First, we note that rt < bt < pt < 0 < at < qt < ct by Lemma 3.9 (iii). In

the case of 0 ≤ µ ≤ at, we have pt ≤ λ ≤ 0, and hence

λµ + µ

2
=

(t− 2− kβ)µ
2(t− 1)

.

Then, the function µ 7→ (λµ + µ)/2 is increasing on [0, at], which implies that{
λµ + µ

2
: µ ∈ [0, at]

}
=

[
0,
at + pt

2

]
.

If at ≤ µ ≤ qt, then bt ≤ λµ ≤ pt, and so we obtain

1 + kβ + (1− t)λµ
1 + kβ

= ∥xβ + λµyt∥β = ∥xβ + µyt∥β =
1− kβ + (1 + t)µ

1 + kβ
.

It follows from

λµ =
(1 + t)µ− 2kβ

1− t
that

λµ + µ

2
=
kβ − µ
t− 1

.
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This shows that the function µ 7→ (λµ + µ)/2 is decreasing on [at, qt], and therefore{
λµ + µ

2
: µ ∈ [at, qt]

}
=

[
bt + qt

2
,
at + pt

2

]
.

Next, we assume that qt ≤ µ ≤ ct. Then, we obtain rt ≤ λµ ≤ bt and

λµ + µ

2
=
k2β + 2kβ − 1 + (kβt− 1)µ

2t(1 + kβ)
.

As in the proof of Lemma 3.11, we have{
λµ + µ

2
: µ ∈ [qt, ct]

}
=

[
bt + qt

2
,
ct + rt

2

]
.

Let ct ≤ µ. Then, it follows that λµ ≤ rt, and then

λµ + µ

2
=
kβ
t

=
ct + rt

2
.

Thus, one has that

Γ(xβ, yt)

=

{
λµ + µ

2
: µ ∈ [0,∞)

}
=

[
0,
at + pt

2

]
∪
[
bt + qt

2
,
at + pt

2

]
∪
[
bt + qt

2
,
ct + rt

2

]
=

[
min

{
0,
bt + qt

2

}
,max

{
at + pt

2
,
ct + rt

2

}]
.

On the other hand, we have

bt + qt
2

=
k2β + k2βt+ kβ − 1

(1 + t)(1 + kβt)
> 0.

Indeed, since β ≤ 1/
√
2 and t > 1/kβ, it follows that

k2β + k2βt+ kβ − 1 > k2β + 2kβ − 1 ≥ 0.

Finally, since
ct + rt

2
− at + pt

2
=

kβ(kβ + t)

t(t− 1)(t− kβ)
> 0,

we have the lemma. �

Now, we prove the main theorem.

Proof of Theorem 3.1. Putting

M1 = sup{m(xβ, yt) : t ∈ (1, 1/kβ)} and
M2 = sup{m(xβ, yt) : t ∈ (1/kβ,∞) \ {(1 + kβ)/(1− kβ)}},
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we have

M(xβ) = max{M1,M2}

by Lemma 3.5. First, we suppose that t ∈ (1, 1/kβ). Then, we obtain bt < (ct +

rt)/2 < 0. Indeed, one has (ct + rt)/2 = (kβ − 1)/(1 + t) < 0 and

ct + rt
2
− bt =

(1− kβ)(kβ + t)

(1 + t)(1 + kβt)
> 0.

Hence, we have

∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

= 1 +
(1− kβ)(t− 1)

(1 + kβ)(t+ 1)
.

From the fact the function t 7→ (t − 1)/(t + 1) is strictly increasing on (1,∞), it

follows that

(1− kβ)(t− 1)

(1 + kβ)(t+ 1)
<

(1− kβ)(k−1
β − 1)

(1 + kβ)(k
−1
β + 1)

=
(1− kβ)2

(1 + kβ)2
,

which in turn implies

∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

< 1 +
(1− kβ)2

(1 + kβ)2

< 1 + k2β

since kβ > (1− kβ)/(1 + kβ). Thus, for each t ∈ (1, kβ(1 + kβ)/(3kβ − 1)], we have

m(xβ, yt) = max

{∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

, ∥xβ∥β

}
< 1 + k2β

by Lemma 2.6.
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Let t ∈ [kβ(1 + kβ)/(3kβ − 1), 1/kβ). Then, as in the proof of Lemma 3.10, we

have 0 ≤ (at + pt)/2 < at. It follows that∥∥∥∥xβ + at + pt
2

yt

∥∥∥∥
β

= 1 +
1

2

(
1− 1

t

)
at −

1− kβ
2t

< 1 +
1

2

(
1− 1

k−1
β

)
at −

1− kβ
2k−1

β

= 1 +
1− kβ

2
at −

kβ(1− kβ)
2

= 1 +
kβ(1− kβ)

2

(
2

t− kβ
− 1

)
≤ 1 +

kβ(1− kβ)
2

(
2

kβ(1 + kβ)(3kβ − 1)−1 − kβ
− 1

)
= 1 +

k2β + 2kβ − 1

2

< 1 + k2β.

This shows that

m(xβ, yt)

= max

{∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

,

∥∥∥∥xβ + at + pt
2

yt

∥∥∥∥
β

}
< 1 + k2β.

Therefore, we obtain M1 ≤ 1 + k2β.

Next, we suppose that t ∈ (1/kβ,∞) \ {(1 + kβ)/(1− kβ)}. Since

at −
ct + rt

2
=
kβ(kβ + t)

t(t− kβ)
> 0,

we have 0 < (ct + rt)/2 < at. Then, it follows that∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

= 1 +
kβ
t
< 1 + k2β.

This proves that if t ≥ 2 + kβ, then

m(xβ, yt) = max

{
∥xβ∥β,

∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

}
< 1 + k2β

by Lemma 2.6.

In the case of 1/kβ < t ≤ 2 + kβ, we have bt < (bt + qt)/2 ≤ 0 since qt > 0 and

bt + qt
2

=
(2 + kβ − t)bt
2(1 + kβ)

≤ 0.
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Then, it follows that∥∥∥∥xβ + bt + qt
2

yt

∥∥∥∥
β

= 1 +
(1− kβ)(t− 1)

2(1 + kβ)
· 2 + kβ − t

1 + kβt
.

On the other hand, since

kβ −
(1− kβ)(t− 1)

2(1 + kβ)
≥ kβ −

(1− kβ)((2 + kβ)− 1)

2(1 + kβ)

=
3kβ − 1

2
> 0

and

kβ −
2 + kβ − t
1 + kβt

=
(1 + k2β)t− 2

1 + kβt

>
(1 + k2β)k

−1
β − 2

1 + kβt

=
kβ + k−1

β − 2

1 + kβt
> 0,

we obtain ∥∥∥∥xβ + bt + qt
2

yt

∥∥∥∥
β

< 1 + k2β,

which implies that

m(xβ, yt)

= max

{∥∥∥∥xβ + bt + qt
2

yt

∥∥∥∥
β

,

∥∥∥∥xβ + ct + rt
2

yt

∥∥∥∥
β

}
< 1 + k2β.

Hence, we have M2 ≤ 1 + k2β.

Finally, since

M2 ≥ m(xβ, yt) ≥ 1 +
kβ
t

for each t ∈ (1/kβ,∞)\{(1+kβ)/(1−kβ)}, it follows that M2 ≥ 1+k2β. This shows

M2 = 1 + k2β. Thus, by Lemma 3.2, one has that

DW (Xβ) = 2M(xβ) = 2M2 = 2(1 + k2β) =
2

β2

(
(1− β)2 + β2

)
.

The proof is complete. �
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