THE DUNKL-WILLIAMS CONSTANT OF SYMMETRIC OCTAGONAL NORMS ON \mathbb{R}^{2}

HIROYASU MIZUGUCHI, KICHI-SUKE SAITO, AND RYOTARO TANAKA

Abstract

Recently, we constructed a new calculation method for the DunklWilliams constant $D W(X)$ of a normed linear space X. In this paper, we determine the Dunkl-Williams constant of symmetric octagonal norms on \mathbb{R}^{2} by using our method.

1. Introduction

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(a, b)\|=\|(|a|,|b|)\|$ for all $(a, b) \in$ \mathbb{R}^{2}, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The set of all absolute normalized norms on \mathbb{R}^{2} is denoted by $A N_{2}$. Bonsall and Duncan [4] showed the following characterization of absolute normalized norms on \mathbb{R}^{2}. Namely, the set $A N_{2}$ of all absolute normalized norms on \mathbb{R}^{2} is in a one-to-one correspondence with the set Ψ_{2} of all convex functions ψ on $[0,1]$ satisfying $\max \{1-t, t\} \leq \psi(t) \leq 1$ for all $t \in[0,1]$ (cf. [24]). The correspondence is given by the equation $\psi(t)=\|(1-t, t)\|$ for all $t \in[0,1]$. Note that the norm $\|\cdot\|_{\psi}$ associated with the function $\psi \in \Psi_{2}$ is given by

$$
\|(a, b)\|_{\psi}= \begin{cases}(|a|+|b|) \psi\left(\frac{|b|}{|a|+|b|}\right) & \text { if }(a, b) \neq(0,0) \\ 0 & \text { if }(a, b)=(0,0)\end{cases}
$$

[^0]For each $\beta \in(1 / 2,1)$, let $\psi_{\beta}(t)=\max \{1-t, t, \beta\}$. Then, $\psi_{\beta} \in \Psi_{2}$, and the norm $\|\cdot\|_{\beta}$ associated with ψ_{β} is given by

$$
\begin{aligned}
\|(a, b)\|_{\beta} & =\max \{|a|,|b|, \beta(|a|+|b|)\} \\
& = \begin{cases}|a| & \left(|b| \leq \frac{1-\beta}{\beta}|a|\right) \\
\beta(|a|+|b|) & \left(\frac{1-\beta}{\beta}|a| \leq|b| \leq \frac{\beta}{1-\beta}|a|\right), \\
|b| & \left(\frac{\beta}{1-\beta}|a| \leq|b|\right)\end{cases}
\end{aligned}
$$

Remark that the unit sphere of $\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)$ is an octagon, and that the norm $\|\cdot\|_{\beta}$ is symmetric, that is, $\|(a, b)\|_{\beta}=\|(b, a)\|_{\beta}$ for all $(a, b) \in \mathbb{R}^{2}$. Hence, in this paper, the norm $\|\cdot\|_{\beta}$ is said to be a symmetric octagonal norm on \mathbb{R}^{2}.

Throughout this paper, the term "normed linear space" always means a real normed linear space which has two or more dimension. Let X be a normed linear space. In 1964, Dunkl and Williams [8] showed that the inequality

$$
\begin{equation*}
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \leq \frac{4\|x-y\|}{\|x\|+\|y\|} \tag{1}
\end{equation*}
$$

holds for all $x, y \in X \backslash\{0\}$, and that if X admits an inner product, the stronger inequality

$$
\begin{equation*}
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \leq \frac{2\|x-y\|}{\|x\|+\|y\|} \tag{2}
\end{equation*}
$$

holds for all $x, y \in X \backslash\{0\}$. These inequalities are so called the Dunkl-Williams inequality. There are many results related to this inequality (cf. [1, 5, 6, 7, 16, 17, $21,22,23,25,26]$, and so on).

In [8], it was also proved that for any $\varepsilon>0$ there exist $x, y \in\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$ such that

$$
\left\|\frac{x}{\|x\|_{1}}-\frac{y}{\|y\|_{1}}\right\|_{1}>(4-\varepsilon) \frac{\|x-y\|_{1}}{\|x\|_{1}+\|y\|_{1}} .
$$

This means that the constant 4 is the best possible choice for the Dunkl-Williams inequality in the space $\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$. A bit later, Kirk and Smiley [15] completed this result by showing that inequality (2) characterizes inner product spaces.

Thus, the best possible choice for the Dunkl-Williams inequality measures "how much" the space is close (or far) to be an inner product space. Motivated by this fact, Jiménez-Melado et al. [14] defined the Dunkl-Williams constant $D W(X)$ of a normed linear space X as the best constant for the Dunkl-Williams inequality, that is,

$$
D W(X)=\sup \left\{\frac{\|x\|+\|y\|}{\|x-y\|}\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|: x, y \in X \backslash\{0\}, x \neq y\right\}
$$

We collect some basic properties of the Dunkl-Williams constant. Let X be a normed linear space. Then, the following hold:
(i) $2 \leq D W(X) \leq 4$.
(ii) X is an inner product space if and only if $D W(X)=2$.
(iii) X is uniformly non-square if and only if $D W(X)<4$ (cf. [2, 14]).

However, the Dunkl-Williams constant is very hard to calculate. It is not known for almost all normed linear spaces. We cannot compute $D W(X)$ even if $X=\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)$. In [20], it was shown that $D W\left(\ell_{2}-\ell_{\infty}\right)=2 \sqrt{2}$, where $\ell_{2}-\ell_{\infty}$ is the space \mathbb{R}^{2} endowed with the norm $\|\cdot\|_{2, \infty}$ defined by

$$
\|(a, b)\|_{2, \infty}= \begin{cases}\left(|a|^{2}+|b|^{2}\right)^{1 / 2} & \text { if } a b \geq 0 \\ \max \{|a|,|b|\} & \text { if } a b \leq 0\end{cases}
$$

for all $(a, b) \in \mathbb{R}^{2}$. This is the only nontrivial example that the Dunkl-Williams constant was precisely determined.

In this paper, we determine the Dunkl-Williams constant of the space \mathbb{R}^{2} endowed with a symmetric octagonal norm $\|\cdot\|_{\beta}$ by using a calculation method which was constructed in [20].

2. Calculation method

In this section, we describe a calculation method used in this paper. Let X be a normed linear space, and let B_{X} and S_{X} denote the unit ball and the unit sphere of X, respectively. When we make use of the calculation method, the notion of Birkhoff orthogonality plays an important role. We recall that $x \in X$ is said to be Birkhoff orthogonal to $y \in X$, denoted by $x \perp_{B} y$, if $\|x+\lambda y\| \geq\|x\|$ for all $\lambda \in \mathbb{R}$. Obviously, Birkhoff orthogonality is always homogeneous, that is, $x \perp_{B} y$ implies $\alpha x \perp_{B} \beta y$ for all $\alpha, \beta \in \mathbb{R}$. More details about Birkhoff orthogonality can be found in Birkhoff [3], Day [9, 10] and James [11, 12, 13].

To construct a calculation method, we introduced some notations in [20]. Suppose that X is a normed linear space. For each $x \in S_{X}$, let $V(x)$ be a subset of X defined by $V(x)=\left\{y \in X: x \perp_{B} y\right\}$. For each $x \in S_{X}$ and each $y \in V(x)$, we define $\Gamma(x, y)$ and $m(x, y)$ by

$$
\Gamma(x, y)=\left\{\frac{\lambda+\mu}{2}: \lambda \leq 0 \leq \mu,\|x+\lambda y\|=\|x+\mu y\|\right\}
$$

and $m(x, y)=\sup \{\|x+\gamma y\|: \gamma \in \Gamma(x, y)\}$, respectively. Furthermore, let

$$
M(x)=\sup \{m(x, y): y \in V(x)\} .
$$

Using these notions, we obtained a calculation method for the Dunkl-Williams constant.

Theorem 2.1 ([20]). Let X be a normed linear space. Then,

$$
D W(X)=2 \sup \left\{M(x): x \in S_{X}\right\} .
$$

For two-dimensional spaces, Theorem 2.1 has the following improvement.
Theorem 2.2 ([20]). Let X be a two-dimensional normed linear space. Then,

$$
D W(X)=2 \sup \left\{M(x): x \in \operatorname{ext}\left(B_{X}\right)\right\}
$$

where $\operatorname{ext}\left(B_{X}\right)$ denotes the set of all extreme points of B_{X}.
For each nonzero element x of a normed linear space X, an element f of X^{*} is said to be a norming functional of x if $\|f\|=1$ and $f(x)=\|x\|$. Let $D(X, x)$ denote the set of all norming functionals of x. The following is an important characterization of Birkhoff orthogonality.

Lemma 2.3 (James, 1947 [12]). Let X be a normed linear space, and let x and y be two elements of X. Then, $x \perp_{B} y$ if and only if there exists a norming functional f of x such that $f(y)=0$.

From this result, one can easily have that $V(x)=\bigcup\{\operatorname{ker} f: f \in D(X, x)\}$ for each unit vector x in a normed linear space X.

When we put the method into practice, the following results are needed.
Lemma 2.4. Let X be a normed linear space, and let $x \in S_{X}$. Then, the following hold:
(i) $m(x, 0)=1$.
(ii) $m(x, \alpha y)=m(x, y)$ for all $y \in V(x)$ and all $\alpha \in \mathbb{R} \backslash\{0\}$.

Proposition 2.5. Let X and Y be normed linear spaces, and let T be an isometric isomorphism from X onto Y. Then, the following hold:
(i) $m(T x, T y)=m(x, y)$ for all $x \in S_{X}$ and all $y \in V(x)$.
(ii) $M(T x)=M(x)$ for all $x \in S_{X}$.

Lemma 2.6. Let X be a normed linear space. Suppose that $x \in S_{X}$, and that $y \in V(x)$. Then, $m(x, y)=\max \{\|x+\alpha y\|,\|x+\beta y\|\}$, where $\alpha=\inf \Gamma(x, y)$ and $\beta=\sup \Gamma(x, y)$.

Lemma 2.7. Let X be a normed linear space, and let $x \in S_{X}$. Suppose that D is a dense subset of $V(x)$. Then, $M(x)=\{m(x, y): y \in D\}$.

All of these results can be found in [20].

3. The Dunkl-Williams constant of $\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)$

The following is the main theorem in this paper.
Theorem 3.1. Let $\beta \in(1 / 2,1)$. Then, the following hold:
(i) If $\beta \in(1 / 2,1 / \sqrt{2}]$, then

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)\right)=\frac{2}{\beta^{2}}\left((1-\beta)^{2}+\beta^{2}\right)
$$

(ii) If $\beta \in[1 / \sqrt{2}, 1)$, then

$$
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)\right)=4\left((1-\beta)^{2}+\beta^{2}\right) .
$$

Once it has been proved that (i) holds, one can show (ii) easily. Indeed, for each $\beta \in(1 / 2,1)$, it is easy to check that $\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)$ is isometrically isomorphic to $\left(\mathbb{R}^{2},\|\cdot\|_{1 / 2 \beta}\right)$ under the identification

$$
\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right) \ni\left(x_{1}, x_{2}\right) \longleftrightarrow \beta\left(x_{1}+x_{2}, x_{1}-x_{2}\right) \in\left(\mathbb{R}^{2},\|\cdot\|_{1 / 2 \beta}\right)
$$

since $\max \left\{\left|x_{1}+x_{2}\right|,\left|x_{1}-x_{2}\right|\right\}=\left|x_{1}\right|+\left|x_{2}\right|$ for all $x_{1}, x_{2} \in \mathbb{R}$. If $\beta \in[1 / \sqrt{2}, 1)$, then $1 / 2 \beta \in(1 / 2,1 / \sqrt{2}]$ and hence

$$
\begin{aligned}
D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)\right) & =D W\left(\left(\mathbb{R}^{2},\|\cdot\|_{1 / 2 \beta}\right)\right) \\
& =\frac{2}{(1 / 2 \beta)^{2}}\left((1-(1 / 2 \beta))^{2}+(1 / 2 \beta)^{2}\right) \\
& =4\left((1-\beta)^{2}+\beta^{2}\right)
\end{aligned}
$$

by Theorem 3.1 (i).
Thus, to prove Theorem 3.1, the case of $\beta \in(1 / 2,1 / \sqrt{2}]$ is essential. Henceforth, we assume that $\beta \in(1 / 2,1 / \sqrt{2}]$ unless otherwise stated. Put $X_{\beta}=\left(\mathbb{R}^{2},\|\cdot\|_{\beta}\right)$ and $k_{\beta}=(1-\beta) / \beta$ for short. We remark that $\sqrt{2}-1 \leq k_{\beta}<1$ since $1 / 2<\beta \leq 1 / \sqrt{2}$, and that $\beta=1 /\left(1+k_{\beta}\right)$.

We start the proof of Theorem 3.1 with the following lemma.
Lemma 3.2. $D W\left(X_{\beta}\right)=2 M\left(\left(1, k_{\beta}\right)\right)$.
Proof. It is easy to see that $\operatorname{ext}\left(B_{X_{\beta}}\right)$ is the set of all vertices of the octagon $S_{X_{\beta}}$, that is,

$$
\operatorname{ext}\left(B_{X_{\beta}}\right)=\left\{\left(\varepsilon_{1}, \varepsilon_{2} k_{\beta}\right):\left|\varepsilon_{1}\right|=\left|\varepsilon_{2}\right|=1\right\} \cup\left\{\left(\varepsilon_{1} k_{\beta}, \varepsilon_{2}\right):\left|\varepsilon_{1}\right|=\left|\varepsilon_{2}\right|=1\right\}
$$

Since $\|\cdot\|_{\beta}$ is a symmetric absolute normalized norm on \mathbb{R}^{2}, both of the maps $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1},-x_{2}\right)$ and $\left(x_{1}, x_{2}\right) \mapsto\left(x_{2}, x_{1}\right)$ are isometric isomorphism from X_{β} onto itself. Hence, we have

$$
M\left(\left(\varepsilon_{1}, \varepsilon_{2} k_{\beta}\right)\right)=M\left(\left(\varepsilon_{1} k_{\beta}, \varepsilon_{2}\right)\right)=M\left(\left(1, k_{\beta}\right)\right)
$$

by Proposition 2.5, which and Theorem 2.2 together imply that

$$
\begin{aligned}
D W\left(X_{\beta}\right) & =2 \sup \left\{M(x): x \in \operatorname{ext}\left(B_{X_{\beta}}\right)\right\} \\
& =2 M\left(\left(1, k_{\beta}\right)\right) .
\end{aligned}
$$

This completes the proof.
Put $x_{\beta}=\left(1, k_{\beta}\right)$. Next, we determine the set $V\left(x_{\beta}\right)$. To do this, we make use of the following lemma found in [4] (cf. [19]).

Lemma 3.3 (Bonsall-Duncan, 1973 [4]; Mitani-Saito-Suzuki, 2003 [19]). Let $\psi \in \Psi_{2}$ and let $x(t)=(1-t, t) / \psi(t)$ for each $t \in[0,1]$. Then,

$$
\begin{aligned}
& D\left(\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right), x(t)\right) \\
& = \begin{cases}\left\{(1, c(1+a)): a \in\left[-1, \psi_{R}^{\prime}(0)\right],|c|=1\right\} & (t=0), \\
\left\{(\psi(t)-a t, \psi(t)+a(1-t)): a \in\left[\psi_{L}^{\prime}(t), \psi_{R}^{\prime}(t)\right]\right\} & (0<t<1), \\
\left\{(c(1-a), 1): a \in\left[\psi_{L}^{\prime}(1), 1\right],|c|=1\right\} & (t=1),\end{cases}
\end{aligned}
$$

where $\psi_{L}^{\prime}(t)$ and $\psi_{R}^{\prime}(t)$ are, respectively, the left-hand and right-hand derivative of ψ at $t \in[0,1]$.

Using this result, we have the following lemma.
Lemma 3.4. $V\left(x_{\beta}\right)=\left\{\alpha\left(1+a,-1+k_{\beta} a\right): a \in[-1,0], \alpha \in \mathbb{R}\right\}$.
Proof. First, we note that $x_{\beta}=(\beta, 1-\beta) / \psi_{\beta}(1-\beta)$. Since $\left(\psi_{\beta}\right)_{L}^{\prime}(1-\beta)=-1$ and $\left(\psi_{\beta}\right)_{R}^{\prime}(1-\beta)=0$, we have

$$
D\left(X_{\beta}, x_{\beta}\right)=\{(\beta-a(1-\beta), \beta+a \beta): a \in[-1,0]\} .
$$

Thus,

$$
\begin{aligned}
V\left(x_{\beta}\right) & =\bigcup\left\{\operatorname{ker} f: f \in D\left(X_{\beta}, x_{\beta}\right)\right\} \\
& =\{\alpha(\beta+a \beta,-\beta+a(1-\beta)): a \in[-1,0], \alpha \in \mathbb{R}\} \\
& =\left\{\alpha\left(1+a,-1+k_{\beta} a\right): a \in[-1,0], \alpha \in \mathbb{R}\right\} .
\end{aligned}
$$

The proof is complete.
To reduce the amount of calculation, we make use of Lemmas 2.4 and 2.7.
Lemma 3.5. $M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta},(1,-t)\right): t \in(1, \infty) \backslash\left\{1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}\right\}$.
Proof. It is clear that $\left\{\alpha\left(1+a,-1+k_{\beta} a\right): a \in(-1,0), \alpha \in \mathbb{R}\right\}$ is a dense subset of $V\left(x_{\beta}\right)$ by the preceding lemma. On the other hand,

$$
\begin{aligned}
& \left\{\alpha\left(1+a,-1+k_{\beta} a\right): a \in(-1,0), \alpha \in \mathbb{R}\right\} \\
& =\left\{\alpha\left(1, \frac{-1+k_{\beta} a}{1+a}\right): a \in(-1,0), \alpha \in \mathbb{R}\right\} .
\end{aligned}
$$

Since the function $a \mapsto\left(-1+k_{\beta} a\right) /(1+a)$ is continuous and increasing, it maps $(-1,0)$ onto $(-\infty,-1)$. Thus, one has that

$$
\left\{\alpha\left(1, \frac{-1+k_{\beta} a}{1+a}\right): a \in(-1,0), \alpha \in \mathbb{R}\right\}=\{\alpha(1,-t): t \in(1, \infty), \alpha \in \mathbb{R}\}
$$

From this, it follows that $\left\{\alpha(1,-t): t \in(1, \infty) \backslash\left\{1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}, \alpha \in \mathbb{R}\right\}$ is also a dense subset of $V\left(x_{\beta}\right)$. Thus, by Lemma 2.7, we obtain

$$
M\left(x_{\beta}\right)=\sup \left\{m\left(x_{\beta}, \alpha(1,-t)\right): t \in(1, \infty) \backslash\left\{1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}, \alpha \in \mathbb{R}\right\}
$$

Finally, applying Lemma 2.4, we have the lemma.
For each $t \in \mathbb{R}$, put $y_{t}=(1,-t)$. Next, we give the formula of $\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}$ for all $t \in(1, \infty) \backslash\left\{1 / k_{\beta}\right\}$ and all $\lambda \in \mathbb{R}$.

Lemma 3.6. Let $t \in(1, \infty) \backslash\left\{1 / k_{\beta}\right\}$, and let

$$
a_{t}=\frac{2 k_{\beta}}{t-k_{\beta}}, \quad b_{t}=\frac{k_{\beta}^{2}-1}{1+k_{\beta} t} \quad \text { and } \quad c_{t}=\frac{1+k_{\beta}^{2}}{k_{\beta} t-1} .
$$

Then, the following hold:
(i) If $t \in\left(1,1 / k_{\beta}\right)$, then $c_{t}<b_{t}<0<a_{t}$ and

$$
\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}= \begin{cases}\frac{k_{\beta}-1-(1+t) \lambda}{1+k_{\beta}} & \left(\lambda \leq c_{t}\right) \\ k_{\beta}-t \lambda & \left(c_{t} \leq \lambda \leq b_{t}\right) \\ \frac{1+k_{\beta}+(1-t) \lambda}{1+k_{\beta}} & \left(b_{t} \leq \lambda \leq 0\right) \\ 1+\lambda & \left(0 \leq \lambda \leq a_{t}\right) \\ \frac{1-k_{\beta}+(1+t) \lambda}{1+k_{\beta}} & \left(a_{t} \leq \lambda\right)\end{cases}
$$

(ii) If $t \in\left(1 / k_{\beta}, \infty\right)$, then $b_{t}<0<a_{t}<c_{t}$ and

$$
\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}= \begin{cases}k_{\beta}-t \lambda & \left(\lambda \leq b_{t}\right) \\ \frac{1+k_{\beta}+(1-t) \lambda}{1+k_{\beta}} & \left(b_{t} \leq \lambda \leq 0\right) \\ 1+\lambda & \left(0 \leq \lambda \leq a_{t}\right) \\ \frac{1-k_{\beta}+(1+t) \lambda}{1+k_{\beta}} & \left(a_{t} \leq \lambda \leq c_{t}\right) \\ t \lambda-k_{\beta} & \left(c_{t} \leq \lambda\right)\end{cases}
$$

Proof. First, we note that

$$
-1<b_{t}<0<k_{\beta} / t<a_{t}
$$

for all $t \in(1, \infty) \backslash\left\{1 / k_{\beta}\right\}$. If $t \in\left(1,1 / k_{\beta}\right)$, then one can easily have

$$
c_{t}<-1<b_{t}<0<k_{\beta} / t<a_{t} .
$$

If $t \in\left(1 / k_{\beta}, \infty\right)$, then we obtain

$$
-1<b_{t}<0<k_{\beta} / t<a_{t}<c_{t}
$$

since

$$
c_{t}-a_{t}=\frac{\left(1-k_{\beta}^{2}\right)\left(k_{\beta}+t\right)}{\left(t-k_{\beta}\right)\left(k_{\beta} t-1\right)}>0 .
$$

Now, it follows from the definition of $\|\cdot\|_{\beta}$ that

$$
\begin{aligned}
& \left\|x_{\beta}+\lambda y_{t}\right\|_{\beta} \\
& = \begin{cases}|1+\lambda| & \left(\left|k_{\beta}-t \lambda\right| \leq k_{\beta}|1+\lambda|\right), \\
\frac{|1+\lambda|+\left|k_{\beta}-t \lambda\right|}{1+k_{\beta}} & \left(k_{\beta}|1+\lambda| \leq\left|k_{\beta}-t \lambda\right| \leq k_{\beta}^{-1}|1+\lambda|\right), \\
\left|k_{\beta}-t \lambda\right| & \left(k_{\beta}^{-1}|1+\lambda| \leq\left|k_{\beta}-t \lambda\right|\right) .\end{cases}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left(k_{\beta}-t \lambda\right)^{2}-k_{\beta}^{2}(1+\lambda)^{2} & =\left(t+k_{\beta}\right)\left(t-k_{\beta}\right)\left(\lambda-a_{t}\right) \lambda, \text { and } \\
k_{\beta}^{-2}(1+\lambda)^{2}-\left(k_{\beta}-t \lambda\right)^{2} & =k_{\beta}^{-2}\left(1+t k_{\beta}\right)\left(1-t k_{\beta}\right)\left(\lambda-b_{t}\right)\left(\lambda-c_{t}\right) .
\end{aligned}
$$

From these facts, one can obtain the lemma.
The following lemma is needed in the sequel.
Lemma 3.7. Let $t \in(1, \infty)$. Then, the function $\lambda \mapsto\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}$ is strictly decreasing on $(-\infty, 0]$, and is strictly increasing on $[0, \infty)$.

Proof. We first note that $y_{t} \in V\left(x_{\beta}\right)$, that is, $x \perp_{B} y_{t}$. Since the function $\lambda \mapsto$ $\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}$ is convex, it is enough to show that $\left\|x_{\beta}+\lambda_{0} y_{t}\right\|_{\beta}=\min \left\{\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}\right.$: $\lambda \in \mathbb{R}\}=1$ if and only if $\lambda_{0}=0$. To this end, we suppose that $\left\|x_{\beta}+\lambda_{0} y_{t}\right\|_{\beta}=1$. Then,

$$
\max \left\{\left|1+\lambda_{0}\right|,\left|k_{\beta}-t \lambda_{0}\right|, \beta\left(\left|1+\lambda_{0}\right|+\left|k_{\beta}-t \lambda_{0}\right|\right)\right\}=\left\|x_{\beta}+\lambda_{0} y_{t}\right\|_{\beta}=1
$$

Since $\left|1+\lambda_{0}\right| \leq 1$, we have $\lambda_{0} \leq 0$, whence

$$
k_{\beta}-t \lambda_{0}=\left|k_{\beta}-t \lambda_{0}\right| \leq 1 .
$$

It follows from $0<k_{\beta}<1$ and $t>1$ that

$$
\lambda_{0} \geq \frac{k_{\beta}-1}{t}>k_{\beta}-1>-1,
$$

which implies that

$$
\begin{aligned}
1 & \geq \beta\left(\left|1+\lambda_{0}\right|+\left|k_{\beta}-t \lambda_{0}\right|\right) \\
& =\beta\left(\left(1+\lambda_{0}\right)+\left(k_{\beta}-t \lambda_{0}\right)\right) \\
& =1-\beta(t-1) \lambda_{0} .
\end{aligned}
$$

Thus, we also have $\lambda_{0} \geq 0$. This completes the proof.
We clarify the relationship among $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta},\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}$, and $\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$. We note that

$$
\frac{1+k_{\beta}}{1-k_{\beta}}=\frac{1}{2 \beta-1} \geq \frac{\beta}{1-\beta}=\frac{1}{k_{\beta}}
$$

since $\beta \in(1 / 2,1 / \sqrt{2}]$.
Lemma 3.8. Let $t \in(1, \infty) \backslash\left\{1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}$. Then, the following hold:
(i) If $t \in\left(1,1 / k_{\beta}\right)$, then $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$.
(ii) If $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$, then $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$.
(iii) If $t \in\left(\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right), \infty\right)$, then $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$.

Proof. By Lemma 3.6 (i) and (ii), we have

$$
\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}=1+a_{t} \quad \text { and } \quad\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=\frac{1+k_{\beta}+(1-t) b_{t}}{1+k_{\beta}}
$$

which implies that

$$
\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}-\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=\frac{\left(1-k_{\beta}\right)\left(k_{\beta}+t\right)}{\left(t-k_{\beta}\right)\left(1+k_{\beta} t\right)}\left(\frac{1+k_{\beta}}{1-k_{\beta}}-t\right) .
$$

Thus, $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}>\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}$ if $t<\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)$, and $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<$ $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}$ if $t>\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)$.

Suppose that $t \in\left(1,1 / k_{\beta}\right)$. Then, as mentioned above, $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}$. Moreover, by Lemma 3.6 (i), we have

$$
\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}=\frac{1-k_{\beta}+(1+t) a_{t}}{1+k_{\beta}} \quad \text { and }\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}=\frac{k_{\beta}-1-(1+t) c_{t}}{1+k_{\beta}}
$$

and so

$$
\begin{aligned}
& \left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}-\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta} \\
& =\frac{1}{1+k_{\beta}}\left(2\left(k_{\beta}-1\right)+(1+t)\left(\frac{1+k_{\beta}^{2}}{1-k_{\beta} t}-\frac{2 k_{\beta}}{t-k_{\beta}}\right)\right) .
\end{aligned}
$$

On the other hand, since $1-k_{\beta} t<1-k_{\beta}<t-k_{\beta}$, we obtain

$$
\frac{1+k_{\beta}^{2}}{1-k_{\beta} t}-\frac{2 k_{\beta}}{t-k_{\beta}}>\frac{1+k_{\beta}^{2}}{1-k_{\beta}}-\frac{2 k_{\beta}}{1-k_{\beta}}=1-k_{\beta},
$$

which implies that

$$
\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}-\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}>\frac{(t-1)\left(1-k_{\beta}\right)}{1+k_{\beta}}>0
$$

This shows (i).
Next, we suppose that $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$. Then, we have $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<$ $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}$. Furthermore, we obtain $0<a_{t}<c_{t}$ by Lemma 3.6 (ii). Thus, Lemma 3.7 assures that $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$.

Finally, we assume that $t \in\left(\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right), \infty\right)$. Then, we have $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}<$ $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}$ as mentioned in the first paragraph. Moreover, since

$$
\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=k_{\beta}-t b_{t} \quad \text { and } \quad\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}=t c_{t}-k_{\beta}
$$

it follows that

$$
\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}-\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=\frac{2\left(k_{\beta}+t\right)}{k_{\beta}^{2} t^{2}-1}>0 .
$$

Thus, one has that $\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}<\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}$. This proves (iii).
Let $t \in(1, \infty)$. Then, the intermediate value theorem guarantees that the function $\lambda \mapsto\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}$ maps $(-\infty, 0]$ onto $[1, \infty)$ and $[0, \infty)$ onto $[1, \infty)$. Thus, for any $\mu \in[0, \infty)$, there exists a $\lambda \in(-\infty, 0]$ such that $\left\|x_{\beta}+\lambda y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}$. Furthermore, by Lemma 3.7, this gives a one-to-one correspondence between $[0, \infty)$ and $(-\infty, 0]$. Now, let p_{t}, q_{t}, r_{t} be real numbers such that $p_{t}<0<q_{t}, c_{t} r_{t}<0$, $\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}=\left\|x_{\beta}+p_{t} y_{t}\right\|_{\beta},\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=\left\|x_{\beta}+q_{t} y_{t}\right\|_{\beta}$, and $\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}=$ $\left\|x_{\beta}+r_{t} y_{t}\right\|_{\beta}$. Then, we have the following lemma.
Lemma 3.9. Let $t \in(1, \infty) \backslash\left\{1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}$. Then, the following hold:
(i) If $t \in\left(1,1 / k_{\beta}\right)$, then $c_{t}<p_{t}<b_{t}<0<q_{t}<a_{t}<r_{t}$ and

$$
p_{t}=\frac{k_{\beta}-1-a_{t}}{t}, \quad q_{t}=\frac{(1-t) b_{t}}{1+k_{\beta}} \quad \text { and } \quad r_{t}=\frac{2\left(k_{\beta}-1\right)}{t+1}-c_{t} .
$$

(ii) If $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$, then $r_{t}<p_{t}<b_{t}<0<q_{t}<a_{t}<c_{t}$ and

$$
p_{t}=\frac{k_{\beta}-1-a_{t}}{t}, \quad q_{t}=\frac{(1-t) b_{t}}{1+k_{\beta}} \quad \text { and } \quad r_{t}=\frac{2 k_{\beta}}{t}-c_{t} .
$$

(iii) If $t \in\left(\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right), \infty\right)$, then $r_{t}<b_{t}<p_{t}<0<a_{t}<q_{t}<c_{t}$ and

$$
p_{t}=\frac{\left(1+k_{\beta}\right) a_{t}}{1-t}, \quad q_{t}=\frac{2 k_{\beta}+(1-t) b_{t}}{t+1} \text { and } r_{t}=\frac{2 k_{\beta}}{t}-c_{t} .
$$

Proof. Suppose that $t \in\left(1,1 / k_{\beta}\right)$. Then, $c_{t}<b_{t}<0<a_{t}$ by Lemma 3.6. Using Lemma 3.8, we have the following diagram:

$$
\begin{aligned}
+:\left\|x_{\beta}+q_{t} y_{t}\right\|_{\beta} & <\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}
\end{aligned}<\left\|\begin{array}{|l}
\| \\
-:\left\|x_{\beta}+r_{t} y_{t}\right\|_{\beta} \\
-b_{t} y_{t} \|_{\beta}
\end{array}<\right\| x_{\beta}+p_{t} y_{t}\left\|_{\beta}<\right\| x_{\beta}+c_{t} y_{t} \|_{\beta}
$$

Thus, by Lemma 3.7, it follows that $c_{t}<p_{t}<b_{t}<0<q_{t}<a_{t}<r_{t}$. Then, we have

$$
\begin{aligned}
k_{\beta}-t p_{t} & =\left\|x_{\beta}+p_{t} y_{t}\right\|_{\beta}=\left\|x_{\beta}+a_{t} y_{t}\right\|_{\beta}=1+a_{t} \\
1+q_{t} & =\left\|x_{\beta}+q_{t} y_{t}\right\|_{\beta}=\left\|x_{\beta}+b_{t} y_{t}\right\|_{\beta}=\frac{1+k_{\beta}+(1-t) b_{t}}{1+k_{\beta}}, \text { and } \\
\frac{1-k_{\beta}+(1+t) r_{t}}{1+k_{\beta}} & =\left\|x_{\beta}+r_{t} y_{t}\right\|_{\beta}=\left\|x_{\beta}+c_{t} y_{t}\right\|_{\beta}=\frac{k_{\beta}-1-(1+t) c_{t}}{1+k_{\beta}} .
\end{aligned}
$$

This shows (i).
Similarly, one can prove (ii) and (iii).
Next, we consider the set $\Gamma\left(x_{\beta}, y_{t}\right)$. As was mentioned in the paragraph preceding Lemma 3.9, for each $\mu \in[0, \infty)$ there exists a unique $\lambda_{\mu} \in(-\infty, 0]$ such that $\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}$. Then, it follows that

$$
\Gamma\left(x_{\beta}, y_{t}\right)=\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} .
$$

Remark that

$$
1<\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}=\frac{1-\beta}{\beta(3-4 \beta)}<\frac{\beta}{1-\beta}=\frac{1}{k_{\beta}}
$$

since $\beta \in(1 / 2,1 / \sqrt{2}]$.
Lemma 3.10. Let $t \in\left(1,1 / k_{\beta}\right)$. Then,

$$
\Gamma\left(x_{\beta}, y_{t}\right)= \begin{cases}{\left[\frac{c_{t}+r_{t}}{2}, 0\right]} & \left(1<t \leq \frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}\right) \\ {\left[\frac{c_{t}+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right]} & \left(\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1} \leq t<\frac{1}{k_{\beta}}\right) .\end{cases}
$$

Proof. By Lemma 3.9 (i), we have $c_{t}<p_{t}<b_{t}<0<q_{t}<a_{t}<r_{t}$. Suppose that $0 \leq \mu \leq q_{t}$. Then, Lemma 3.7 guarantees that $b_{t} \leq \lambda_{\mu} \leq 0$, and so

$$
\frac{1+k_{\beta}+(1-t) \lambda_{\mu}}{1+k_{\beta}}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=1+\mu .
$$

Hence, we have

$$
\lambda_{\mu}=\frac{\left(1+k_{\beta}\right) \mu}{1-t}
$$

which implies that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{\left(t-2-k_{\beta}\right) \mu}{2(t-1)} .
$$

Since $t \in\left(1,1 / k_{\beta}\right)$, we have $t-2-k_{\beta}<0$. Indeed, it follows from $k_{\beta} \geq \sqrt{2}-1$ that

$$
2+k_{\beta}-t>2+k_{\beta}-\frac{1}{k_{\beta}}=\frac{1}{k_{\beta}}\left(k_{\beta}^{2}+2 k_{\beta}-1\right) \geq 0 .
$$

Thus, the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is decreasing on $\left[0, q_{t}\right]$, and therefore

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, q_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, 0\right] .
$$

Next, we suppose that $q_{t} \leq \mu \leq a_{t}$. Then, we have $p_{t} \leq \lambda_{\mu} \leq b_{t}$, and so

$$
k_{\beta}-t \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=1+\mu
$$

From this, we obtain

$$
\lambda_{\mu}=\frac{k_{\beta}-1-\mu}{t}
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}-1+(t-1) \mu}{2 t} .
$$

This shows that the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is increasing on $\left[q_{t}, a_{t}\right]$, which implies that

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[q_{t}, a_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

In the case of $a_{t} \leq \mu \leq r_{t}$, we have $c_{t} \leq \lambda_{\mu} \leq p_{t}$. Then, we obtain

$$
k_{\beta}-t \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=\frac{1-k_{\beta}+(1+t) \mu}{1+k_{\beta}} .
$$

It follows that

$$
\lambda_{\mu}=\frac{k_{\beta}^{2}+2 k_{\beta}-1-(1+t) \mu}{t\left(1+k_{\beta}\right)}
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}^{2}+2 k_{\beta}-1+\left(k_{\beta} t-1\right) \mu}{2 t\left(1+k_{\beta}\right)} .
$$

Since $t \in\left(1,1 / k_{\beta}\right)$, the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is decreasing on $\left[a_{t}, r_{t}\right]$, and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[a_{t}, r_{t}\right]\right\}=\left[\frac{c_{t}+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

Finally, we assume that $r_{t} \leq \mu$. Then, it follows from $\lambda_{\mu} \leq c_{t}$ that

$$
\frac{k_{\beta}-1-(1+t) \lambda_{\mu}}{1+k_{\beta}}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=\frac{1-k_{\beta}+(1+t) \mu}{1+k_{\beta}} .
$$

So we have

$$
\lambda_{\mu}=\frac{2\left(k_{\beta}-1\right)}{1+t}-\mu,
$$

which implies that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}-1}{1+t}=\frac{c_{t}+r_{t}}{2} .
$$

Now, since the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is continuous, one has that

$$
\begin{aligned}
& \Gamma\left(x_{\beta}, y_{t}\right) \\
& =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[\frac{b_{t}+q_{t}}{2}, 0\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{c_{t}+r_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \\
& =\left[\min \left\{\frac{b_{t}+q_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right\}, \max \left\{0, \frac{a_{t}+p_{t}}{2}\right\}\right] .
\end{aligned}
$$

However, since

$$
\frac{b_{t}+q_{t}}{2}-\frac{c_{t}+r_{t}}{2}=\frac{(t-1)\left(k_{\beta}+t\right)\left(1-k_{\beta}\right)}{2(1+t)\left(1+k_{\beta} t\right)}>0
$$

and

$$
\frac{a_{t}+p_{t}}{2}=\frac{3 k_{\beta}-1}{2 t\left(t-k_{\beta}\right)}\left(t-\frac{k_{\beta}\left(1+k_{\beta}\right)}{3 k_{\beta}-1}\right),
$$

we have the lemma.
We remark that

$$
\frac{1}{k_{\beta}} \leq 2+k_{\beta} \leq \frac{1+k_{\beta}}{1-k_{\beta}}
$$

since $k_{\beta} \geq \sqrt{2}-1$.
Lemma 3.11. Let $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$. Then,

$$
\Gamma\left(x_{\beta}, y_{t}\right)= \begin{cases}{\left[\frac{b_{t}+q_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right]} & \left(\frac{1}{k_{\beta}}<t \leq 2+k_{\beta}\right), \\ {\left[0, \frac{c_{t}+r_{t}}{2}\right]} & \left(2+k_{\beta} \leq t<\frac{1+k_{\beta}}{1-k_{\beta}}\right) .\end{cases}
$$

Proof. In the case of $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$, we have $r_{t}<p_{t}<b_{t}<0<q_{t}<$ $a_{t}<c_{t}$ by Lemma 3.9 (ii). Suppose that $0 \leq \mu \leq q_{t}$. Then, we have $b_{t} \leq \lambda_{\mu} \leq 0$, and so

$$
\frac{1+k_{\beta}+(1-t) \lambda_{\mu}}{1+k_{\beta}}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=1+\mu .
$$

As in the proof of the preceding lemma, we obtain

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{\left(t-2-k_{\beta}\right) \mu}{2(t-1)},
$$

which implies that $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is decreasing on $\left[0, q_{t}\right]$ if $t \leq 2+k_{\beta}$, and is increasing if $t \geq 2+k_{\beta}$. Hence, we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, q_{t}\right]\right\}= \begin{cases}{\left[\frac{b_{t}+q_{t}}{2}, 0\right]} & \left(\frac{1}{k_{\beta}}<t \leq 2+k_{\beta}\right) \\ {\left[0, \frac{b_{t}+q_{t}}{2}\right]} & \left(2+k_{\beta} \leq t<\frac{1+k_{\beta}}{1-k_{\beta}}\right)\end{cases}
$$

Assume that $q_{t} \leq \mu \leq a_{t}$. Then, we have $p_{t} \leq \mu \leq b_{t}$ and

$$
k_{\beta}-t \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=1+\mu
$$

which implies that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}-1+(t-1) \mu}{2 t}
$$

Since the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is increasing on $\left[q_{t}, a_{t}\right]$, which implies that

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[q_{t}, a_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

We suppose that $a_{t} \leq \mu \leq c_{t}$. In this case, we obtain

$$
k_{\beta}-t \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=\frac{1-k_{\beta}+(1+t) \mu}{1+k_{\beta}}
$$

since $r_{t} \leq \lambda_{\mu} \leq p_{t}$. It follows that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}^{2}+2 k_{\beta}-1+\left(k_{\beta} t-1\right) \mu}{2 t\left(1+k_{\beta}\right)}
$$

Since $t \in\left(1 / k_{\beta},\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right)$, the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is increasing on [a_{t}, c_{t}], and hence

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[a_{t}, c_{t}\right]\right\}=\left[\frac{a_{t}+p_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right] .
$$

In the case of $c_{t} \leq \mu$, it follows that $\lambda_{\mu} \leq r_{t}$, and that

$$
k_{\beta}-t \lambda_{\mu}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=t \mu-k_{\beta}
$$

Then, we obtain

$$
\lambda_{\mu}=\frac{2 k_{\beta}}{t}-\mu
$$

and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}}{t}=\frac{c_{t}+r_{t}}{2}
$$

Finally, if $1 / k_{\beta}<t \leq 2+k_{\beta}$, then

$$
\begin{aligned}
& \Gamma\left(x_{\beta}, y_{t}\right) \\
& =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[\frac{b_{t}+q_{t}}{2}, 0\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{a_{t}+p_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right] \\
& =\left[\frac{b_{t}+q_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right]
\end{aligned}
$$

since $\left(c_{t}+r_{t}\right) / 2>0$. On the other hand, if $2+k_{\beta} \leq t<\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)$, then

$$
\begin{aligned}
& \Gamma\left(x_{\beta}, y_{t}\right) \\
& =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[0, \frac{b_{t}+q_{t}}{2}\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{a_{t}+p_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right] \\
& =\left[0, \frac{c_{t}+r_{t}}{2}\right] .
\end{aligned}
$$

This completes the proof.
Lemma 3.12. Let $t \in\left(\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right), \infty\right)$. Then,

$$
\Gamma\left(x_{\beta}, y_{t}\right)=\left[0, \frac{c_{t}+r_{t}}{2}\right] .
$$

Proof. First, we note that $r_{t}<b_{t}<p_{t}<0<a_{t}<q_{t}<c_{t}$ by Lemma 3.9 (iii). In the case of $0 \leq \mu \leq a_{t}$, we have $p_{t} \leq \lambda \leq 0$, and hence

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{\left(t-2-k_{\beta}\right) \mu}{2(t-1)} .
$$

Then, the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is increasing on $\left[0, a_{t}\right]$, which implies that

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[0, a_{t}\right]\right\}=\left[0, \frac{a_{t}+p_{t}}{2}\right] .
$$

If $a_{t} \leq \mu \leq q_{t}$, then $b_{t} \leq \lambda_{\mu} \leq p_{t}$, and so we obtain

$$
\frac{1+k_{\beta}+(1-t) \lambda_{\mu}}{1+k_{\beta}}=\left\|x_{\beta}+\lambda_{\mu} y_{t}\right\|_{\beta}=\left\|x_{\beta}+\mu y_{t}\right\|_{\beta}=\frac{1-k_{\beta}+(1+t) \mu}{1+k_{\beta}} .
$$

It follows from

$$
\lambda_{\mu}=\frac{(1+t) \mu-2 k_{\beta}}{1-t}
$$

that

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}-\mu}{t-1} .
$$

This shows that the function $\mu \mapsto\left(\lambda_{\mu}+\mu\right) / 2$ is decreasing on $\left[a_{t}, q_{t}\right]$, and therefore

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[a_{t}, q_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] .
$$

Next, we assume that $q_{t} \leq \mu \leq c_{t}$. Then, we obtain $r_{t} \leq \lambda_{\mu} \leq b_{t}$ and

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}^{2}+2 k_{\beta}-1+\left(k_{\beta} t-1\right) \mu}{2 t\left(1+k_{\beta}\right)} .
$$

As in the proof of Lemma 3.11, we have

$$
\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in\left[q_{t}, c_{t}\right]\right\}=\left[\frac{b_{t}+q_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right] .
$$

Let $c_{t} \leq \mu$. Then, it follows that $\lambda_{\mu} \leq r_{t}$, and then

$$
\frac{\lambda_{\mu}+\mu}{2}=\frac{k_{\beta}}{t}=\frac{c_{t}+r_{t}}{2} .
$$

Thus, one has that

$$
\begin{aligned}
& \Gamma\left(x_{\beta}, y_{t}\right) \\
& =\left\{\frac{\lambda_{\mu}+\mu}{2}: \mu \in[0, \infty)\right\} \\
& =\left[0, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{a_{t}+p_{t}}{2}\right] \cup\left[\frac{b_{t}+q_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right] \\
& =\left[\min \left\{0, \frac{b_{t}+q_{t}}{2}\right\}, \max \left\{\frac{a_{t}+p_{t}}{2}, \frac{c_{t}+r_{t}}{2}\right\}\right] .
\end{aligned}
$$

On the other hand, we have

$$
\frac{b_{t}+q_{t}}{2}=\frac{k_{\beta}^{2}+k_{\beta}^{2} t+k_{\beta}-1}{(1+t)\left(1+k_{\beta} t\right)}>0 .
$$

Indeed, since $\beta \leq 1 / \sqrt{2}$ and $t>1 / k_{\beta}$, it follows that

$$
k_{\beta}^{2}+k_{\beta}^{2} t+k_{\beta}-1>k_{\beta}^{2}+2 k_{\beta}-1 \geq 0 .
$$

Finally, since

$$
\frac{c_{t}+r_{t}}{2}-\frac{a_{t}+p_{t}}{2}=\frac{k_{\beta}\left(k_{\beta}+t\right)}{t(t-1)\left(t-k_{\beta}\right)}>0,
$$

we have the lemma.
Now, we prove the main theorem.
Proof of Theorem 3.1. Putting

$$
\begin{aligned}
& M_{1}=\sup \left\{m\left(x_{\beta}, y_{t}\right): t \in\left(1,1 / k_{\beta}\right)\right\} \text { and } \\
& M_{2}=\sup \left\{m\left(x_{\beta}, y_{t}\right): t \in\left(1 / k_{\beta}, \infty\right) \backslash\left\{\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}\right\},
\end{aligned}
$$

we have

$$
M\left(x_{\beta}\right)=\max \left\{M_{1}, M_{2}\right\}
$$

by Lemma 3.5. First, we suppose that $t \in\left(1,1 / k_{\beta}\right)$. Then, we obtain $b_{t}<\left(c_{t}+\right.$ $\left.r_{t}\right) / 2<0$. Indeed, one has $\left(c_{t}+r_{t}\right) / 2=\left(k_{\beta}-1\right) /(1+t)<0$ and

$$
\frac{c_{t}+r_{t}}{2}-b_{t}=\frac{\left(1-k_{\beta}\right)\left(k_{\beta}+t\right)}{(1+t)\left(1+k_{\beta} t\right)}>0
$$

Hence, we have

$$
\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta}=1+\frac{\left(1-k_{\beta}\right)(t-1)}{\left(1+k_{\beta}\right)(t+1)} .
$$

From the fact the function $t \mapsto(t-1) /(t+1)$ is strictly increasing on $(1, \infty)$, it follows that

$$
\frac{\left(1-k_{\beta}\right)(t-1)}{\left(1+k_{\beta}\right)(t+1)}<\frac{\left(1-k_{\beta}\right)\left(k_{\beta}^{-1}-1\right)}{\left(1+k_{\beta}\right)\left(k_{\beta}^{-1}+1\right)}=\frac{\left(1-k_{\beta}\right)^{2}}{\left(1+k_{\beta}\right)^{2}},
$$

which in turn implies

$$
\begin{aligned}
\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta} & <1+\frac{\left(1-k_{\beta}\right)^{2}}{\left(1+k_{\beta}\right)^{2}} \\
& <1+k_{\beta}^{2}
\end{aligned}
$$

since $k_{\beta}>\left(1-k_{\beta}\right) /\left(1+k_{\beta}\right)$. Thus, for each $t \in\left(1, k_{\beta}\left(1+k_{\beta}\right) /\left(3 k_{\beta}-1\right)\right]$, we have

$$
m\left(x_{\beta}, y_{t}\right)=\max \left\{\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta},\left\|x_{\beta}\right\|_{\beta}\right\}<1+k_{\beta}^{2}
$$

by Lemma 2.6.

Let $t \in\left[k_{\beta}\left(1+k_{\beta}\right) /\left(3 k_{\beta}-1\right), 1 / k_{\beta}\right)$. Then, as in the proof of Lemma 3.10, we have $0 \leq\left(a_{t}+p_{t}\right) / 2<a_{t}$. It follows that

$$
\begin{aligned}
\left\|x_{\beta}+\frac{a_{t}+p_{t}}{2} y_{t}\right\|_{\beta} & =1+\frac{1}{2}\left(1-\frac{1}{t}\right) a_{t}-\frac{1-k_{\beta}}{2 t} \\
& <1+\frac{1}{2}\left(1-\frac{1}{k_{\beta}^{-1}}\right) a_{t}-\frac{1-k_{\beta}}{2 k_{\beta}^{-1}} \\
& =1+\frac{1-k_{\beta}}{2} a_{t}-\frac{k_{\beta}\left(1-k_{\beta}\right)}{2} \\
& =1+\frac{k_{\beta}\left(1-k_{\beta}\right)}{2}\left(\frac{2}{t-k_{\beta}}-1\right) \\
& \leq 1+\frac{k_{\beta}\left(1-k_{\beta}\right)}{2}\left(\frac{2}{k_{\beta}\left(1+k_{\beta}\right)\left(3 k_{\beta}-1\right)^{-1}-k_{\beta}}-1\right) \\
& =1+\frac{k_{\beta}^{2}+2 k_{\beta}-1}{2} \\
& <1+k_{\beta}^{2} .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& m\left(x_{\beta}, y_{t}\right) \\
& =\max \left\{\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta},\left\|x_{\beta}+\frac{a_{t}+p_{t}}{2} y_{t}\right\|_{\beta}\right\} \\
& <1+k_{\beta}^{2}
\end{aligned}
$$

Therefore, we obtain $M_{1} \leq 1+k_{\beta}^{2}$.
Next, we suppose that $t \in\left(1 / k_{\beta}, \infty\right) \backslash\left\{\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}$. Since

$$
a_{t}-\frac{c_{t}+r_{t}}{2}=\frac{k_{\beta}\left(k_{\beta}+t\right)}{t\left(t-k_{\beta}\right)}>0,
$$

we have $0<\left(c_{t}+r_{t}\right) / 2<a_{t}$. Then, it follows that

$$
\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta}=1+\frac{k_{\beta}}{t}<1+k_{\beta}^{2} .
$$

This proves that if $t \geq 2+k_{\beta}$, then

$$
m\left(x_{\beta}, y_{t}\right)=\max \left\{\left\|x_{\beta}\right\|_{\beta},\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta}\right\}<1+k_{\beta}^{2}
$$

by Lemma 2.6.
In the case of $1 / k_{\beta}<t \leq 2+k_{\beta}$, we have $b_{t}<\left(b_{t}+q_{t}\right) / 2 \leq 0$ since $q_{t}>0$ and

$$
\frac{b_{t}+q_{t}}{2}=\frac{\left(2+k_{\beta}-t\right) b_{t}}{2\left(1+k_{\beta}\right)} \leq 0 .
$$

Then, it follows that

$$
\left\|x_{\beta}+\frac{b_{t}+q_{t}}{2} y_{t}\right\|_{\beta}=1+\frac{\left(1-k_{\beta}\right)(t-1)}{2\left(1+k_{\beta}\right)} \cdot \frac{2+k_{\beta}-t}{1+k_{\beta} t} .
$$

On the other hand, since

$$
\begin{aligned}
k_{\beta}-\frac{\left(1-k_{\beta}\right)(t-1)}{2\left(1+k_{\beta}\right)} & \geq k_{\beta}-\frac{\left(1-k_{\beta}\right)\left(\left(2+k_{\beta}\right)-1\right)}{2\left(1+k_{\beta}\right)} \\
& =\frac{3 k_{\beta}-1}{2}>0
\end{aligned}
$$

and

$$
\begin{aligned}
k_{\beta}-\frac{2+k_{\beta}-t}{1+k_{\beta} t} & =\frac{\left(1+k_{\beta}^{2}\right) t-2}{1+k_{\beta} t} \\
& >\frac{\left(1+k_{\beta}^{2}\right) k_{\beta}^{-1}-2}{1+k_{\beta} t} \\
& =\frac{k_{\beta}+k_{\beta}^{-1}-2}{1+k_{\beta} t}>0
\end{aligned}
$$

we obtain

$$
\left\|x_{\beta}+\frac{b_{t}+q_{t}}{2} y_{t}\right\|_{\beta}<1+k_{\beta}^{2},
$$

which implies that

$$
\begin{aligned}
& m\left(x_{\beta}, y_{t}\right) \\
& =\max \left\{\left\|x_{\beta}+\frac{b_{t}+q_{t}}{2} y_{t}\right\|_{\beta},\left\|x_{\beta}+\frac{c_{t}+r_{t}}{2} y_{t}\right\|_{\beta}\right\} \\
& <1+k_{\beta}^{2} .
\end{aligned}
$$

Hence, we have $M_{2} \leq 1+k_{\beta}^{2}$.
Finally, since

$$
M_{2} \geq m\left(x_{\beta}, y_{t}\right) \geq 1+\frac{k_{\beta}}{t}
$$

for each $t \in\left(1 / k_{\beta}, \infty\right) \backslash\left\{\left(1+k_{\beta}\right) /\left(1-k_{\beta}\right)\right\}$, it follows that $M_{2} \geq 1+k_{\beta}^{2}$. This shows $M_{2}=1+k_{\beta}^{2}$. Thus, by Lemma 3.2, one has that

$$
D W\left(X_{\beta}\right)=2 M\left(x_{\beta}\right)=2 M_{2}=2\left(1+k_{\beta}^{2}\right)=\frac{2}{\beta^{2}}\left((1-\beta)^{2}+\beta^{2}\right) .
$$

The proof is complete.

References

[1] A. M. Al-Rashed, Norm inequalities and characterization of inner product spaces, J. Math. Anal. Appl. 176 (1993), 587-593.
[2] M. Baronti and P. L. Papini, Up and down along rays, Riv. Mat. Univ. Parma 2* (1999), 171-189.
[3] G. Birkoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169172.
[4] F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, Cambridge, 1973.
[5] F. Dadipour, M. Fujii and M. S. Moslehian, Dunkl-Williams inequality for operators associated with p-angular distance, Nihonkai Math. J. 21 (2010), 11-20.
[6] F. Dadipour and M. S. Moslehian, An approach to operator Dunkl-Williams inequalities, Publ. Math. Debrecen 79 (2011), 109-118.
[7] F. Dadipour and M. S. Moslehian, A characterization of inner product spaces related to the p-angular distance, J. Math. Anal. Appl. 371 (2010), 667-681.
[8] C. F. Dunkl and K. S. Williams, A Simple norm inequality, Amer. Math. Monthly 71 (1964), 53-54.
[9] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319.
[10] M. M. Day, Some characterizations of inner product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.
[11] R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291-302.
[12] R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566.
[13] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
[14] A. Jiménez-Melado, E. Llorens-Fuster and E. M. Mazcunan-Navarro, The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl. 342 (2008), 298-310.
[15] W. A. Kirk and M. F. Smiley, Another characterization of inner product spaces, Amer. Math. Monthly 71 (1964), 890-891.
[16] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006), 256-260.
[17] J. L. Massera and J. J. Schäffer, Linear differnetial equations and functional analysis I, Ann. of Math. 67 (1958), 517-573.
[18] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
[19] K.-I. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex Anal. 10 (2003), 89-107.
[20] H. Mizuguchi, K. -S. Saito and R. Tanaka, On the calculation of the DunklWilliams constant of normed linear spaces, to appear in Cent. Eur. J. Math.
[21] M. S. Moslehian and F. Dadipour, Characterization of equality in a generalized Dunkl-Williams inequality, J. Math. Anal. Appl. 384 (2011), 204-210.
[22] M. S. Moslehian, F. Dadipour, R. Rajić and A. Marić, A glimpse at the DunklWilliams inequality, Banach J. Math. Anal. 5 (2011), 138-151.
[23] J. E. Pečarić and R. Rajić, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal. 4 (2010), 1-10.
[24] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000) 515-532.
[25] K.-S. Saito and M. Tominaga, A Dunkl-Williams type inequality for absolute value operators, Linear Algebra Appl. 432 (2010), 3258-3264.
[26] K.-S. Saito and M. Tominaga, A Dunkl-Williams inequality and the generalized operator version, International Series of Numerical Mathematics, 161 (2012), 137-148, Birkhauser.
(Hiroyasu Mizuguchi) Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
E-mail address: mizuguchi@m.sc.niigata-u.ac.jp
(Kichi-Suke Saito) Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181 Japan
E-mail address: saito@math.sc.niigata-u.ac.jp
(Ryotaro Tanaka) Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp

Received September 18, 2012

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Dunkl-Williams constant, absolute normalized norm, norming functional.

 The second author is supported in part by Grants-in-Aid for Scientific Research (No. 23540189), Japan Society for Promotion of Science.

