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LINEAR ISOMETRIES ON SPACES OF
CONTINUOUSLY DIFFERENTIABLE AND LIPSCHITZ

CONTINUOUS FUNCTIONS

HIRONAO KOSHIMIZU

Abstract. We characterize the surjective linear isometries on C(n)[0, 1] and

Lip[0, 1]. Here C(n)[0, 1] denotes the Banach space of n-times continuously dif-

ferentiable functions on [0, 1] equipped with the norm

∥f∥ =
n−1∑
k=0

|f (k)(0)|+ sup
x∈[0,1]

|f (n)(x)| (f ∈ C(n)[0, 1]),

and Lip[0, 1] denotes the Banach space of Lipschitz continuous functions on [0, 1]

equipped with the norm

∥f∥ = |f(0)|+ ess sup
x∈[0,1]

|f ′(x)| (f ∈ Lip[0, 1]).

1. Introduction

The linear isometries on various function spaces have been studied by many mathe-

maticians (see [5]). The source of this subject is the classical Banach-Stone theorem,

which characterizes the surjective linear isometries on C(X), the Banach space of

all complex-valued continuous functions on a compact Hausdorff space X with the

supremum norm ∥ · ∥∞. It states that every surjective linear isometry T from C(X)

onto itself has the canonical form: Tf = ω(f ◦ φ) for all f ∈ C(X), where φ is

a homeomorphism of X onto itself and ω is a unimodular continuous function on

X. In this paper, we investigate the surjective linear isometries on two types of the

spaces C(n)[0, 1] and Lip[0, 1].

We denote by C(n)[0, 1] for a positive integer n the K-linear space of K-valued n-

times continuously differentiable functions on the closed unit interval [0, 1], where K
is the real field R or the complex field C. With each of the following five equivalent
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norms the space C(n)[0, 1] is a Banach space respectively:

∥f∥C = max

{
n∑
k=0

|f (k)(x)|
k!

: x ∈ [0, 1]

}
,

∥f∥Σ =
n∑
k=0

∥f (k)∥∞
k!

,

∥f∥M = max{∥f∥∞, ∥f ′∥∞, . . . , ∥f (n)∥∞},

∥f∥m = max{|f(0)|, |f ′(0)|, . . . , |f (n−1)(0)|, ∥f (n)∥∞},

∥f∥σ =
n−1∑
k=0

|f (k)(0)|+ ∥f (n)∥∞,

for f ∈ C(n)[0, 1]. Among them, (C(n)[0, 1], ∥ · ∥C) and (C(n)[0, 1], ∥ · ∥Σ) are unital

semisimple commutative Banach algebras.

In [2], Cambern characterized the surjective linear isometries on (C(1)[0, 1], ∥·∥C).
Later, Pathak [12] extended this result to (C(n)[0, 1], ∥ · ∥C). The other extensions

may be found in [3] and [11]. On the other hand, Rao and Roy [13] and Jarosz

and Pathak [7] characterized the surjective linear isometries on (C(1)[0, 1], ∥ · ∥Σ)
and (C(1)[0, 1], ∥ · ∥M), respectively. Those results say that every surjective linear

isometry has the canonical form. However, the author [10] proved that the surjective

linear isometries on (C(n)[0, 1], ∥·∥m) have the different form. In this paper, we show

a similar result for the space (C(n)[0, 1], ∥ · ∥σ).
To state our theorem, we introduce an integral operator S: for any f ∈ C([0, 1]),

we put (Sf)(x) =
∫ x
0
f(t)dt for all x ∈ [0, 1]. Then S is a linear operator of C([0, 1])

onto {f ∈ C(1)[0, 1] : f(0) = 0}, and Sn maps C([0, 1]) onto {f ∈ C(n)[0, 1] :

f (k)(0) = 0 for k = 0, 1, . . . , n − 1}. Hence {f (n) : f ∈ C(n)[0, 1]} = C([0, 1]).

Moreover we have

f(x) =
n−1∑
k=0

f (k)(0)

k!
xk + (Snf (n))(x) (x ∈ [0, 1], f ∈ C(n)[0, 1]).

The following is a characterization of the surjective linear isometries on (C(n)[0, 1],

∥ · ∥σ).

Theorem 1.1. Let T be a linear operator from (C(n)[0, 1], ∥ · ∥σ) onto itself. Then

T is an isometry if and only if there exist a homeomorphism φ of [0, 1] onto itself, a

unimodular continuous function ω on [0, 1], a permutation {τ(0), τ(1), . . . , τ(n−1)}
of {0, 1, . . . , n− 1} and unimodular constants λ0, λ1, . . . , λn−1 such that

(Tf)(x) =
n−1∑
k=0

λkf
(τ(k))(0)

k!
xk +

(
Sn(ω(f (n)◦ φ))

)
(x) (1.1)
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for all x ∈ [0, 1] and f ∈ (C(n)[0, 1], ∥ · ∥σ).

We denote the K-linear space of K-valued Lipschitz continuous functions on [0, 1]

by Lip[0, 1]. Every f ∈ Lip[0, 1] has the derivative f ′(x) for almost all x ∈ [0, 1], and

the set {f ′ : f ∈ Lip[0, 1]} coincides with L∞[0, 1]; the Banach algebra of K-valued

essentially bounded functions on [0, 1] with the essential supremum norm ∥ · ∥L∞ .

With each of the following four equivalent norms the space Lip[0, 1] is a Banach

space respectively:

∥f∥Σ = ∥f∥∞ + ∥f ′∥L∞ ,

∥f∥M = max{∥f∥∞, ∥f ′∥L∞},
∥f∥m = max{|f(0)|, ∥f ′∥L∞},
∥f∥σ = |f(0)|+ ∥f ′∥L∞ ,

for f ∈ Lip[0, 1]. Among them, (Lip[0, 1], ∥ · ∥Σ) is a unital semisimple commutative

Banach algebra. It is known that every surjective linear isometry on (Lip[0, 1], ∥·∥Σ)
or (Lip[0, 1], ∥ · ∥M) has the canonical form ([7, 8, 13]). In [10], the author proved

that the surjective linear isometries on (Lip[0, 1], ∥·∥m) have the different form. The

following is a characterization of the surjective linear isometries on (Lip[0, 1], ∥ · ∥σ).

Theorem 1.2. Let T be a linear operator from (Lip[0, 1], ∥ · ∥σ) onto itself. Then

T is an isometry if and only if there exist an algebra automorphism Φ of L∞[0, 1],

a unimodular function ω ∈ L∞[0, 1] and a unimodular constant λ such that

(Tf)(x) = λf(0) +

∫ x

0

ω(t)(Φf ′)(t)dt (1.2)

for all x ∈ [0, 1] and f ∈ (Lip[0, 1], ∥ · ∥σ).

It is known that every algebra automorphism Φ of L∞[0, 1] has the form: Φf =

f ◦ φ for all f ∈ L∞[0, 1], where φ ∈ L∞[0, 1] and φ(x) ∈ [0, 1] for almost all

x ∈ [0, 1]. This fact is proved by the method of the proof of [6, Theorem 1].

Remark. Theorems 1.1 and 1.2 are the same results as the cases (C(n)[0, 1], ∥·∥m) and
(Lip[0, 1], ∥ · ∥m), respectively (see [10]). However we need a different consideration

for their proofs.

Throughout this paper, we use the notations below: Put T = {z ∈ K : |z| = 1}.
If K = R, then T = {1,−1}. If K = C, then T denotes the unit circle in C. For

any nonnegative integer ℓ, we define iℓ(x) = xℓ for x ∈ [0, 1]. In particular, we write

i0 = 1 and i1 = i. Let f ∈ C(n)[0, 1] and ℓ = 1, 2, . . . , n. Then f = iℓ if and only

if f(0) = f ′(0) = · · · = f (ℓ−1)(0) = 0 and f (ℓ)(x) = ℓ! for x ∈ [0, 1]. For a normed

linear space B, we put ballB = {ξ ∈ B : ∥ξ∥B ≤ 1} and denote its dual space by B∗.
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2. Lemmas

Before proving the theorem we state useful lemmas.

Lemma 2.1. Let S1, . . . ,Sℓ be normed linear spaces, and let B = S1 × · · · × Sℓ be
the product space equipped with the norm

∥(s1, . . . , sℓ)∥B = max{∥s1∥S1 , . . . , ∥sℓ∥Sℓ
} ((s1, . . . , sℓ) ∈ B).

Then (s1, . . . , sℓ) is an extreme point of ballB if and only if sk is an extreme point

of ballSk for all k = 1, . . . , ℓ.

Proof. Suppose sk is an extreme point of ballSk for all k. To prove that (s1, . . . , sℓ) is
an extreme point of ballB, write (s1, . . . , sℓ) = ((s′1, . . . , s

′
ℓ) + (s′′1, . . . , s

′′
ℓ ))/2, where

(s′1, . . . , s
′
ℓ), (s

′′
1, . . . , s

′′
ℓ ) ∈ ballB. Then for each k = 1, . . . , ℓ we have

sk =
1

2
s′k +

1

2
s′′k.

Also, ∥s′k∥Sk
≤ max{∥s′1∥S1 , . . . , ∥s′ℓ∥Sℓ

} = ∥(s′1, . . . , s′ℓ)∥B ≤ 1. Similarly, ∥s′′k∥Sk
≤

1. By hypothesis, sk = s′k = s′′k. Hence (s1, . . . , sℓ) = (s′1, . . . , s
′
ℓ) = (s′′1, . . . , s

′′
ℓ ).

Thus (s1, . . . , sℓ) is an extreme point of ballB.
The converse can be proved in a similar manner. �

Lemma 2.2. Suppose that ψ1 and ψ2 are injective continuous mappings from [0, 1]

into [0, 1]. Let α ∈ C. If α(g ◦ ψ1) + (g ◦ ψ2) is constant on [0, 1] for all real-valued

continuous functions g on [0, 1], then ψ1 = ψ2.

Proof. Assume ψ1 ̸= ψ2. Then ψ1(p) ̸= ψ2(p) for some p ∈ [0, 1]. Since ψ1 is

continuous there exists q ∈ [0, 1] such that q ̸= p and ψ1(q) ̸= ψ2(p). Since ψ2 is

injective, ψ2(q) ̸= ψ2(p). Applying the Urysohn’s lemma there exists a real-valued

continuous function g0 on [0, 1] so that g0(ψ2(p)) = 1 and g0(ψ1(p)) = g0(ψ1(q)) =

g0(ψ2(q)) = 0. Then we have αg0(ψ1(p))+g0(ψ2(p)) = 1 and αg0(ψ1(q))+g0(ψ2(q)) =

0. This contradicts the fact that α(g0◦ψ1)+(g0◦ψ2) is constant. Hence ψ1 = ψ2. �

3. Proof of Theorem 1.1

From now on, we write simply C(n) and C for the Banach spaces (C(n)[0, 1], ∥ · ∥σ)
and (C([0, 1]), ∥ · ∥∞), respectively.

We first give a proof for the elementary part:

Proof of the “if” part. Suppose T has the form (1.1). It is clear that T is linear.

Let f ∈ C(n). For each ℓ = 0, 1, . . . , n− 1 we have

(Tf)(ℓ)(x) =
n−1∑
k=ℓ

λkf
(τ(k))(0)

(k − ℓ)!
xk−ℓ +

(
Sn−ℓ(ω(f (n) ◦ φ)

)
(x) (x ∈ [0, 1]).
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Thus (Tf)(ℓ)(0) = λℓf
(τ(ℓ))(0) since (Sg)(0) = 0 for all g ∈ C. Moreover (Tf)(n) =

ω(f (n) ◦ φ). Therefore

∥Tf∥σ =
n−1∑
ℓ=0

|λℓf (τ(ℓ))(0)|+ ∥ω(f (n) ◦ φ)∥∞ =
n−1∑
k=0

|f (k)(0)|+ ∥f (n)∥∞ = ∥f∥σ.

Hence T is an isometry.

To prove that T is surjective let g ∈ C(n). Put

f(x) =
n−1∑
k=0

λτ−1(k)g
(τ−1(k))(0)

k!
xk +

(
Sn
(
g(n) ◦ φ−1

ω ◦ φ−1

))
(x) (x ∈ [0, 1]).

Then f (ℓ)(0) = λτ−1(ℓ)g
(τ−1(ℓ))(0) for ℓ = 0, 1, . . . , n− 1 and f (n) = (g(n) ◦ φ−1)/(ω ◦

φ−1). Hence

(Tf)(x) =
n−1∑
k=0

λkλkg
(k)(0)

k!
xk +

(
Sn
(
ω

(
g(n) ◦ φ−1

ω ◦ φ−1
◦ φ
)))

(x)

=
n−1∑
k=0

g(k)(0)

k!
xk +

(
Sng(n)

)
(x) = g(x)

for all x ∈ [0, 1]. �

The rest of this section is devoted to the proof of the “only if” part. Let T be

a linear isometry of C(n) onto itself. Let Kn denote the product space of n copies

of K. The points of Kn are thus ordered n-tuples a = (a0, a1, . . . , an−1), where

a0, a1, . . . , an−1 ∈ K. For instance, we write b = (b0, b1, . . . , bn−1), 1 = (1, 1, . . . , 1)

and so on.

Definition 3.1. For each (a, c, x) ∈ Tn × T × [0, 1] we define a functional Λ(a,c,x)

on C(n) by

Λ(a,c,x)(f) =
n−1∑
k=0

akf
(k)(0) + cf (n)(x) (f ∈ C(n)).

It is clear that Λ(a,c,x) ∈ ball(C(n))∗.

Proposition 3.2. Let ξ ∈ (C(n))∗. Then ξ is an extreme point of ball(C(n))∗ if and

only if there exists (a, c, x) ∈ Tn × T× [0, 1] such that ξ = Λ(a,c,x).

Proof. If the product spaces Kn × C and Kn × C∗ are equipped with the norms

∥(b, g)∥ =
n−1∑
k=0

|bk|+ ∥g∥∞ ((b, g) ∈ Kn × C),

∥(a, η)∥ = max{|a0|, |a1|, . . . , |an−1|, ∥η∥} ((a, η) ∈ Kn × C∗),
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then (Kn × C)∗ is linearly isometric to Kn × C∗. In fact, the linear isometry Q of

Kn × C∗ onto (Kn × C)∗ is given by

(Q(a, η))(b, g) =
n−1∑
k=0

akbk + η(g) ((a, η) ∈ Kn × C∗, (b, g) ∈ Kn × C).

Now, define a mapping P of C(n) into Kn × C by

Pf =
(
(f(0), f ′(0), . . . , f (n−1)(0)), f (n)

)
(f ∈ C(n)).

Clearly P is a linear isometry of C(n) onto Kn×C. Then the conjugate operator P ∗

of P is a linear isometry of (Kn ×C)∗ onto (C(n))∗. Hence P ∗Q is a linear isometry

of Kn × C∗ onto (C(n))∗. Thus ξ ∈ (C(n))∗ is an extreme point of ball(C(n))∗ if and

only if ξ = P ∗Q(a, η), where (a, η) is an extreme point of ball(Kn × C∗). Note

that the set of all extreme points of ballK is T. Also it is known that the set of

all extreme points of ballC∗ is {cex : c ∈ T, x ∈ [0, 1]}, where ex is the evaluation

functional at x: ex(g) = g(x) for g ∈ C (see [4, Theorem V.8.4]). By Lemma 2.1,

(a, η) is an extreme point of ball(Kn×C∗) if and only if a ∈ Tn and η = cex, where

c ∈ T, x ∈ [0, 1]. Thus the conclusion follows from

(P ∗Q(a, cex))(f) = (Q(a, cex))
(
(f(0), f ′(0), . . . , f (n−1)(0)), f (n)

)
=

n−1∑
k=0

akf
(k)(0) + cf (n)(x) = Λ(a,c,x)(f)

for f ∈ C(n). �

Claim 3.3. For any (a, c, x) ∈ Tn × T × [0, 1] there exists a unique (b, d, y) ∈
Tn × T× [0, 1] such that T ∗Λ(a,c,x) = Λ(b,d,y).

Proof. Let (a, c, x) ∈ Tn×T× [0, 1]. By Proposition 3.2, Λ(a,c,x) is an extreme point

of ball(C(n))∗. Since T ∗ is a linear isometry of (C(n))∗ onto itself, T ∗Λ(a,c,x) is an

extreme point of ball(C(n))∗. By Proposition 3.2 there exists (b, d, y) ∈ Tn×T×[0, 1]

such that T ∗Λ(a,c,x) = Λ(b,d,y).

For the uniqueness of (b, d, y) suppose T ∗Λ(a,c,x) = Λ(b′,d′,y′) for some (b′, d′, y′) ∈
Tn × T× [0, 1], where b′ = (b′0, b

′
1, . . . , b

′
n−1). Then Λ(b,d,y) = Λ(b′,d′,y′) and so

n−1∑
k=0

bkf
(k)(0) + df (n)(y) =

n−1∑
k=0

b′kf
(k)(0) + d′f (n)(y′) (f ∈ C(n)). (3.1)

For each ℓ = 0, 1, . . . , n − 1 put f = iℓ in (3.1). Then bℓ = b′ℓ holds hence b = b′.

Substituting f = in and f = in+1 respectively in (3.1) we obtain d = d′ and

y = y′. �
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Definition 3.4. Let (a, x) ∈ Tn × [0, 1]. Applying Claim 3.3 there exists a unique

(b, d, y) ∈ Tn × T × [0, 1] such that T ∗Λ(a,1,x) = Λ(b,d,y). Since b = (b0, . . . , bn−1), d

and y depend on (a, x) we write

bk = uk(a, x) (k = 0, 1, . . . , n− 1), d = v(a, x) and y = ψ(a, x).

Thus uk and v are unimodular functions on Tn×[0, 1] and ψ is a mapping of Tn×[0, 1]

into [0, 1]. Moreover we have

Λ(a,1,x)(Tf) = (T ∗Λ(a,1,x))(f) = Λ((u0(a,x),...,un−1(a,x)),v(a,x),ψ(a,x))(f)

for f ∈ C(n) and so

n−1∑
k=0

ak(Tf)
(k)(0) + (Tf)(n)(x) =

n−1∑
ℓ=0

uℓ(a, x)f
(ℓ)(0) + v(a, x)f (n)(ψ(a, x)). (3.2)

Substituting f = im for m = 0, 1, . . . , n− 1 respectively in (3.2) we have

n−1∑
k=0

ak(Ti
m)(k)(0) + (Tim)(n)(x) = m!um(a, x). (3.3)

Substituting in and in+1 for f in (3.2) we have

n−1∑
k=0

ak(Ti
n)(k)(0) + (Tin)(n)(x) = n!v(a, x), (3.4)

n−1∑
k=0

ak(Ti
n+1)(k)(0) + (Tin+1)(n)(x) = (n+ 1)!v(a, x)ψ(a, x). (3.5)

Claim 3.5. For k = 0, 1, . . . , n− 1, uk and v are unimodular continuous functions

on Tn × [0, 1]. Also, ψ is a continuous mapping of Tn × [0, 1] onto [0, 1].

Proof. Note that the left hand sides of (3.3), (3.4) and (3.5) are continuous in (a, x) ∈
Tn × [0, 1]. The first two equations show that uk and v are continuous. Since v is

unimodular, (3.5) implies that ψ is also continuous.

To prove that ψ : Tn× [0, 1] → [0, 1] is surjective let y ∈ [0, 1]. Since T ∗ is a linear

isometry of (C(n))∗ onto itself, Proposition 3.2 gives (a, c, x) ∈ Tn × T× [0, 1] such

that T ∗Λ(a,c,x) = Λ(1,1,y). Then we have

(T ∗Λ(ca,1,x))(f) = c

(
n−1∑
k=0

ak(Tf)
(k)(0) + c(Tf)(n)(x)

)
= c(T ∗Λ(a,c,x))(f)

= c(Λ(1,1,y))(f) =

(
n−1∑
k=0

cf (k)(0) + cf (n)(y)

)
= Λ(c1,c,y)(f)

for f ∈ C(n). By the definition of ψ we get ψ(ca, x) = y. Hence ψ is surjective. �

Claim 3.6. For any fixed x ∈ [0, 1], ψ(Tn × {x}) is a singleton.
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Proof in case K = R. Fix a1, . . . , an−1 ∈ T = {1,−1}. For t ∈ {1,−1} put at =

(t, a1, . . . , an−1). By Claim 3.5 functions uk(at, x) and v(at, x) are continuous and

take values within −1 and 1, so that they are constant functions as the interval [0, 1]

is connected. Let

uk(at, x) = αt,k and v(at, x) = βt (x ∈ [0, 1]),

where αt,k and βt are 1 or −1. Define ψt(x) = ψ(at, x) for all t ∈ {1,−1} and

x ∈ [0, 1]. Putting a = at in (3.2) we have

t(Tf)(0) +
n−1∑
k=1

ak(Tf)
(k)(0) + (Tf)(n)(x) =

n−1∑
ℓ=0

αt,ℓf
(ℓ)(0) + βtf

(n)(ψt(x)) (3.6)

for all x ∈ [0, 1] and f ∈ C(n).

By Claim 3.5 ψt is continuous. We show that ψt is injective. Since T is surjective

we can choose f0 ∈ C(n) so that Tf0 = in+1/(n + 1)!. Putting f = f0 in (3.6) we

have

x =
n−1∑
ℓ=0

αt,ℓf
(ℓ)
0 (0) + βtf

(n)
0 (ψt(x)).

Since the left hand side is injective in x ∈ [0, 1], ψt must be injective.

Now the difference of (3.6) with t = 1 and (3.6) with t = −1 is

2(Tf)(0) =
n−1∑
ℓ=0

(α1,ℓ − α−1,ℓ)f
(ℓ)(0) + β1f

(n)(ψ1(x))− β−1f
(n)(ψ−1(x))

for all x ∈ [0, 1] and f ∈ C(n). If γ = −β1/β−1, then the above equation implies

that γ(f (n) ◦ ψ1) + (f (n) ◦ ψ−1) is constant on [0, 1] for all f ∈ C(n). In other words,

γ(g ◦ ψ1) + (g ◦ ψ−1) is constant for all g ∈ C. Hence Lemma 2.2 yields ψ1 = ψ−1,

that is,

ψ(1, a1, . . . , an−1, x) = ψ1(x) = ψ−1(x) = ψ(−1, a1, . . . , an−1, x) (x ∈ [0, 1]).

If we fix x ∈ [0, 1], then the set ψ(T× {a1} × · · · × {an−1} × {x}) is a singleton.

By the similar argument we can show that for each ℓ = 0, 1, . . . , n − 1 and for

fixed a0, . . . , aℓ−1, aℓ+1, . . . , an−1 ∈ T and x ∈ [0, 1] the set

ψ({a0} × · · · × {aℓ−1} × T× {aℓ+1} × · · · × {an−1} × {x})

is a singleton. Since ℓ is arbitrary we see that ψ(Tn × {x}) is also a singleton. �

Proof in case K = C. Fix a1, . . . , an−1 ∈ T and x ∈ [0, 1]. Since T × {a1} × · · · ×
{an−1} × {x} is connected and compact the continuity of ψ implies that ψ(T ×
{a1} × · · · × {an−1} × {x}) is connected and compact in [0, 1]. Hence we can write

ψ(T×{a1}× · · ·× {an−1}×{x}) = [s, t], where s, t ∈ [0, 1] and s ≤ t. To show that

s = t assume s < t. Then we easily find three distinct points p, q, r ∈ [s, t] and a
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function f0 ∈ C(n) such that f0(0) = f ′
0(0) = · · · = f

(n−1)
0 (0) = f

(n)
0 (p) = f

(n)
0 (q) = 0

and f
(n)
0 (r) = 1. Since p, q, r ∈ ψ(T × {a1} × · · · × {an−1} × {x}) there exist three

distinct points b, c, d ∈ T such that ψ(b, a1, . . . , an−1, x) = p, ψ(c, a1, . . . , an−1, x) = q

and ψ(d, a1, . . . , an−1, x) = r. Putting f = f0 in (3.2) we have

b(Tf0)(0) +
n−1∑
k=1

ak(Tf0)
(k)(0) + (Tf0)

(n)(x) = 0, (3.7)

c(Tf0)(0) +
n−1∑
k=1

ak(Tf0)
(k)(0) + (Tf0)

(n)(x) = 0, (3.8)

d(Tf0)(0) +
n−1∑
k=1

ak(Tf0)
(k)(0) + (Tf0)

(n)(x) = v(d, a1, . . . , an−1, x). (3.9)

By (3.7) and (3.8) we have (Tf0)(0) = 0 and
∑n−1

k=1 ak(Tf0)
(k)(0) + (Tf0)

(n)(x) = 0

because b ̸= c. It follows by (3.9) that 0 = v(d, a1 . . . , an−1, x). This contradicts the

fact that v is unimodular. Thus we obtain s = t, and ψ(T×{a1}×· · ·×{an−1}×{x})
is a singleton {s}.

A similar argument shows that for each ℓ = 0, 1, . . . , n−1 and for fixed a0, . . . , aℓ−1,

aℓ+1, . . . , an−1 ∈ T the set

ψ({a0} × · · · × {aℓ−1} × T× {aℓ+1} × · · · × {an−1} × {x})

is a singleton. Hence we see that ψ(Tn × {x}) is also a singleton. This concludes

the claim. �

Definition 3.7. Define a mapping φ of [0, 1] into [0, 1] by

φ(x) = ψ(1, x) (x ∈ [0, 1]).

Since ψ is a continuous mapping of Tn× [0, 1] onto [0, 1], φ is a continuous mapping

of [0, 1] onto [0, 1]. By Claim 3.6 we have φ(x) = ψ(1, x) = ψ(a, x) for (a, x) ∈
Tn × [0, 1]. Moreover for any (a, x) ∈ Tn × [0, 1] and f ∈ C(n), (3.2) is written as

n−1∑
k=0

ak(Tf)
(k)(0) + (Tf)(n)(x) =

n−1∑
ℓ=0

uℓ(a, x)f
(ℓ)(0) + v(a, x)f (n)(φ(x)).
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Applying (3.3) and (3.4) we have by removing uℓ and v the equation

n−1∑
k=0

ak(Tf)
(k)(0) + (Tf)(n)(x)

=
n−1∑
k=0

ak

(
n−1∑
ℓ=0

(Tiℓ)(k)(0)

ℓ!
f (ℓ)(0) +

(Tin)(k)(0)

n!
f (n)(φ(x))

)

+
n−1∑
ℓ=0

(Tiℓ)(n)(x)

ℓ!
f (ℓ)(0) +

(Tin)(n)(x)

n!
f (n)(φ(x)).

Since this holds for all a = (a0, a1, . . . , an−1) ∈ Tn we have

(Tf)(k)(0) =
n−1∑
ℓ=0

(Tiℓ)(k)(0)

ℓ!
f (ℓ)(0) +

(Tin)(k)(0)

n!
f (n)(φ(x)), (3.10)

(Tf)(n)(x) =
n−1∑
ℓ=0

(Tiℓ)(n)(x)

ℓ!
f (ℓ)(0) +

(Tin)(n)(x)

n!
f (n)(φ(x)). (3.11)

Claim 3.8. For each k = 0, 1, . . . , n− 1, (Tin)(k)(0) = 0 and

(Tf)(k)(0) =
n−1∑
ℓ=0

(Tiℓ)(k)(0)

ℓ!
f (ℓ)(0) (f ∈ C(n)) (3.12)

Proof. Fix k = 0, 1, . . . , n− 1. Putting f = in+1 in (3.10) we have

(Tin+1)(k)(0) = (Tin)(k)(0)(n+ 1)φ(x) (x ∈ [0, 1]).

Note that the left hand side is constant while φ maps [0, 1] onto [0, 1]. We must

have (Tin)(k)(0) = 0. Substituting this into (3.10) we obtain (3.12). �

Definition 3.9. Define ω(x) = (Tin)(n)(x)/n! for all x ∈ [0, 1]. Clearly ω is a

continuous function on [0, 1].

Claim 3.10. The function ω is a unimodular continuous function on [0, 1].

Proof. By Claim 3.8 and Equation (3.4) we have

|(Tin)(n)(x)| =

∣∣∣∣∣
n−1∑
k=0

(Tin)(k)(0) + (Tin)(n)(x)

∣∣∣∣∣ = |n!v(1, x)| = n!

for all x ∈ [0, 1]. Hence |ω(x)| = 1 for x ∈ [0, 1]. �

Claim 3.11. For each k ∈ {0, 1, . . . , n−1} there exist a unique m ∈ {0, 1, . . . , n−1}
and a unique α ∈ C such that Tim = αik and |α| = m!/k!.

— 82 —



Proof. Let k ∈ {0, 1, . . . , n− 1}. Assume (Tiℓ)(k)(0) = 0 for all ℓ ∈ {0, 1, . . . , n− 1}.
Then (3.12) shows that (Tf)(k)(0) = 0 for all f ∈ C(n), which is a contradiction

if we choose f so that Tf = ik because T is surjective. Therefore there exists

m ∈ {0, 1, . . . , n− 1} such that (Tim)(k)(0) ̸= 0. By (3.3) we have

m! = |m!um(a, x)| =

∣∣∣∣∣
n−1∑
ℓ=0

aℓ(Ti
m)(ℓ)(0) + (Tim)(n)(x)

∣∣∣∣∣
≤

n−1∑
ℓ=0

|(Tim)(ℓ)(0)|+ |(Tim)(n)(x)| ≤ ∥Tim∥σ = ∥im∥σ = m!

for all (a, x) ∈ Tn × [0, 1]. Since the equality holds in the first inequality for all

a = (a0, a1, . . . , an−1) ∈ Tn and since (Tim)(k)(0) ̸= 0, we must have (Tim)(ℓ)(0) = 0

for all ℓ ∈ {0, 1, . . . , n − 1} \ {k} and (Tim)(n)(x) = 0 for all x ∈ [0, 1]. Moreover

|(Tim)(k)(0)| = m!. Put α = (Tim)(k)(0)/k!. Then |α| = m!/k! and

(Tim)(x) =
n−1∑
ℓ=0

(Tim)(ℓ)(0)

ℓ!
xℓ + (Tim)(n)(x) =

(Tim)(k)(0)

k!
xk = αik(x) (x ∈ [0, 1]).

For the uniqueness assume Tim
′
= α′ik, where m′ ∈ {0, 1, . . . , n − 1}, α′ ∈ C

and |α′| = m!/k!. Then T (im/α) = ik = T (im
′
/α′). Since T is injective we have

im/α = im
′
/α′. This yields α = α′ and m = m′. �

Definition 3.12. According to Claim 3.11, with each k ∈ {0, 1, . . . , n − 1} we

associate m ∈ {0, 1, . . . , n − 1} and α ∈ C such that Tim = αik and |α| = m!/k!.

Since m and α depend on k we write

m = τ(k) and α =
m!

k!
λk.

Then we have

Tiτ(k) =
τ(k)!

k!
λki

k and |λk| = 1.

To complete the proof it remains to show the following claim:

Claim 3.13. (a) φ is a homeomorphism of [0, 1] onto [0, 1].

(b) {τ(0), τ(1), . . . , τ(n− 1)} is a permutation of {0, 1, . . . , n− 1}.
(c) T has the form (1.1).

Proof. We first show (b). For (b), it suffices to show that τ is injective. Suppose

τ(k) = τ(k′), where k, k′ ∈ {0, 1, . . . , n− 1}. Then

τ(k)!

k!
λki

k = Tiτ(k) = Tiτ(k
′) =

τ(k′)

k′!
λk′i

k′ .

This implies k = k′. So τ is injective.
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For (c), let x ∈ [0, 1] and f ∈ C(n). Since we have established (b), (3.12) implies

(Tf)(k)(0) =
n−1∑
ℓ=0

(Tiτ(ℓ))(k)(0)

τ(ℓ)!
f (τ(ℓ))(0) =

n−1∑
ℓ=0

1

τ(ℓ)!

(
τ(ℓ)!

ℓ!
λℓi

ℓ

)(k)
(0) f (τ(ℓ))(0)

=
n−1∑
ℓ=0

λℓ(i
ℓ)(k)(0)

ℓ!
f (τ(ℓ))(0) = λkf

(τ(k))(0).

On the other hand, by (b) for any ℓ ∈ {0, 1, . . . , n− 1} there is k ∈ {0, 1, . . . , n− 1}
such that τ(k) = ℓ. Then

(Tiℓ)(n)(x) = (Tiτ(k))(n)(x) =

(
τ(k)!

k!
λki

k

)(n)
(x) = 0

because k < n. Hence (3.11) shows

(Tf)(n)(x) = ω(x)f (n)(φ(x)). (3.13)

Thus it follows that

(Tf)(x) =
n−1∑
k=0

(Tf)(k)(0)

k!
xk +

(
Sn(Tf)(n)

)
(x)

=
n−1∑
k=0

λkf
(τ(k))(0)

k!
xk +

(
Sn(ω(f (n) ◦ φ))

)
(x).

Finally we show (a). Since φ is continuous and surjective it suffices to show that

φ is injective. Choose f0 ∈ C(n) so that Tf0 = in+1/(n+1)! because T is surjective.

Using Claim 3.10 and Equation (3.13) we have

|f (n)
0 (φ(x))| = |ω(x)f (n)

0 (φ(x))| = |(Tf0)(n)(x)| = |i(x)| = |x| = x (x ∈ [0, 1]).

Hence if φ(x1) = φ(x2), then x1 = |f (n)
0 (φ(x1))| = |f (n)

0 (φ(x2))| = x2. Therefore φ

is injective, as desired. Thus we finish the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Throughout the rest of this paper, we write simply Lip and L∞ for the Banach

space (Lip[0, 1], ∥ · ∥σ) and the Banach algebra (L∞[0, 1], ∥ · ∥L∞), respectively. If we

indicate the scalar field K, we write L∞
K instead of L∞.

Let M be the maximal ideal space of L∞
C . Then M is a compact Hausdorff space.

We know that M is totally disconnected, that is, every component of M consists

of one point ([1, Theorem 1.3.4]) and that M has no isolated points ([14, Exercise

11.18]).

We write CK(M) or simply C(M) for the Banach algebra of all K-valued continu-

ous functions on M with the supremum norm ∥ · ∥∞. For any g ∈ L∞
C , ĝ denotes the
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Gelfand representation of g. The Gelfand-Naimark theorem says that the Gelfand

transformation Γ : g 7→ ĝ is an algebra *-isomorphism of L∞
C onto CC(M) and

∥g∥L∞ = ∥ĝ∥∞. Also Γ maps L∞
R onto CR(M), and {f̂ ′ : f ∈ Lip} = C(M).

We first give a proof of the “if” part:

Proof of the “if” part. Suppose T has the form (1.2). It is clear that T is linear.

Define Ψ = ΓΦΓ−1. Then Ψ is an algebra automorphism of C(M). By [9, Theorem

3.4.3], Ψ has the form Ψh = h ◦ φ for some homeomorphism φ of M onto itself.

Hence Ψ is an isometry of C(M) onto itself and so Φ is an isometry of L∞ onto

itself. Also we have (Tf)(0) = λf(0) and (Tf)′ = ω(Φf ′) for f ∈ Lip. Therefore

∥Tf∥σ = |λf(0)|+ ∥ω(Φf ′)∥L∞ = |f(0)|+ ∥Φf ′∥L∞ = |f(0)|+ ∥f ′∥L∞ = ∥f∥σ.

Hence T is an isometry.

To prove that T is surjective let g ∈ Lip. Put

f(x) = λg(0) +

∫ x

0

(Φ−1(ωg′))(t)dt (x ∈ [0, 1]).

Then f(0) = λg(0) and f ′ = Φ−1(ωg′), and so

(Tf)(x) = λλg(0) +

∫ x

0

ω(t)(ΦΦ−1(ωg′))(t)dt = g(0) +

∫ x

0

g′(t)dt = g(x)

for all x ∈ [0, 1]. �

The rest of the paper is devoted to the proof of the “only if ” part. Let T be a

linear isometry of Lip onto itself.

Definition 4.1. For each (a, c,m) ∈ T × T ×M we define a functional Λ(a,c,m) on

Lip by

Λ(a,c,m)(f) = af(0) + cf̂ ′(m) (f ∈ Lip).

It is clear that Λ(a,c,m) ∈ ball(Lip)∗.

Proposition 4.2. Let ξ ∈ (Lip)∗. Then ξ is an extreme point of ball(Lip)∗ if and

only if there exists (a, c,m) ∈ T× T×M such that ξ = Λ(a,c,m).

Proof. If the product spaces K× L∞ and K× C(M)∗ are equipped with the norms

∥(b, g)∥ = |b|+ ∥g∥L∞ ((b, g) ∈ K× L∞),

∥(a, η)∥ = max{|a|, ∥η∥} ((a, η) ∈ K× C(M)∗),

then the next operator Q is a linear isometry of K× C(M)∗ onto (K× L∞)∗:

(Q(a, η))(b, g) = ab+ η(ĝ) ((a, η) ∈ K× C(M)∗, (b, g) ∈ K× L∞).

Define a linear isometry P of Lip onto K× L∞ by

Pf = (f(0), f ′) (f ∈ Lip).
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Then P ∗Q is a linear isometry of K × C(M)∗ onto (Lip)∗. Hence ξ ∈ (Lip)∗ is an

extreme point of ball(Lip)∗ if and only if ξ = P ∗Q(a, η), where (a, η) is an extreme

point of ball(K×C(M)∗). By Lemma 2.1 this condition on (a, η) is equivalent to the

following: a ∈ T and there exist c ∈ T and m ∈ M such that η(g) = cem(g) = cg(m)

for g ∈ C(M). Thus the conclusion follows from

P ∗(Q(a, cem))(f) = (Q(a, cem))(f(0), f
′) = af(0) + cf̂ ′(m) = Λ(a,c,m)(f)

for f ∈ Lip. �

Claim 4.3. For any (a, c,m) ∈ T×T×M there exists a unique (b, d, n) ∈ T×T×M

such that T ∗Λ(a,c,m) = Λ(b,d,n).

Proof. Let (a, c,m) ∈ T×T×M. Since T ∗ is a linear isometry of (Lip)∗ onto itself,

Proposition 4.2 shows the existence of (b, d, n) ∈ T× T×M such that T ∗Λ(a,c,m) =

Λ(b,d,n).

For the uniqueness of (b, d, n) suppose T ∗Λ(a,c,m) = Λ(b′,d′,n′) for some (b′, d′, n′) ∈
T× T×M. Then Λ(b,d,n) = Λ(b′,d′,n′), that is,

bf(0) + df̂ ′(n) = b′f(0) + d′f̂ ′(n′) (f ∈ Lip). (4.1)

Substituting 1 and i for f in (4.1) we get b = b′ and d = d′, respectively. Hence (4.1)

shows f̂ ′(n) = f̂ ′(n′) for all f ∈ Lip. In other words, h(n) = h(n′) for all h ∈ C(M).

This implies n = n′. �

Definition 4.4. By Claim 4.3 for each (a,m) ∈ T × M there exists a unique

(b, d, n) ∈ T × T × M such that T ∗Λ(a,1,m) = Λ(b,d,n). Since b, d and y depend on

(a,m) we write

b = u(a,m), d = v(a,m) and n = ψ(a,m).

Thus u and v are unimodular functions on T × M and ψ is a mapping of T × M

into M. Moreover we have

Λ(a,1,m)(Tf) = (T ∗Λ(a,1,m))(f) = Λ(u(a,m),v(a,m),ψ(a,m))(f)

for f ∈ Lip and so

a(Tf)(0) + (̂Tf)′(m) = u(a,m)f(0) + v(a,m)f̂ ′(ψ(a,m)). (4.2)

Substituting 1 and i for f we have

a(T1)(0) + (̂T1)′(m) = u(a,m), (4.3)

a(Ti)(0) + (̂Ti)′(m) = v(a,m). (4.4)

Claim 4.5. The mapping ψ is a continuous mapping of T×M onto M.
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Proof. By (4.3) and (4.4) we see that u and v are continuous on T×M. Since v is

unimodular, (4.2) implies that f̂ ′◦ψ is continuous on T×M for all f ∈ Lip. In other

words, h◦ψ is continuous on T×M for all h ∈ C(M). To prove that ψ : T×M → M

is continuous let (a0,m0) ∈ T×M and let V be an open neighborhood of ψ(a0,m0)

in M. By the Urysohn’s lemma there exists h0 ∈ C(M) such that h0(ψ(a0,m0)) = 1

and h0(n) = 0 for all n ∈ M \ V . Put U = {(a,m) ∈ T×M : |(h0 ◦ ψ)(a,m)| > 0}.
Since h0 ◦ψ is continuous, U is an open neighborhood of (a0,m0). Moreover we can

easily see that ψ(U) ⊂ V . Thus ψ is continuous.

To prove that ψ is surjective let n ∈ M. Since T ∗ is a linear isometry of (Lip)∗

onto itself, Proposition 4.2 gives (a, c,m) ∈ T×T×M such that T ∗Λ(a,c,m) = Λ(1,1,n).

Then

(T ∗Λ(ca,1,m))(f) = c(a(Tf)(0) + c(̂Tf)′(m)) = c(T ∗Λ(a,c,m))(f)

= c(Λ(1,1,n))(f) = cf(0) + cf̂ ′(n) = Λ(c,c,n)(f)

for f ∈ Lip. By the definition of ψ we get ψ(ca,m) = n. Hence ψ is surjective. �

Claim 4.6. For any fixed m ∈ M, ψ(T× {m}) is a singleton.

Proof in case K = R. For t ∈ T = {1,−1} put ψt(m) = ψ(t,m) for all m ∈ M. The

difference of (4.3) with a = 1 and (4.3) with a = −1 is 2(T1)(0) = u(1,m)−u(−1,m).

Hence the difference of (4.2) with a = 1 and (4.2) with a = −1 shows that

2(Tf)(0) = 2(T1)(0) + v(1,m)f̂ ′(ψ1(m))− v(−1,m)f̂ ′(ψ−1(m)) (4.5)

for m ∈ M and f ∈ Lip.

Assume that ψ1(m0) ̸= ψ−1(m0) for some m0 ∈ M. Then we find disjoint open

sets V1 and V2 in M such that ψ1(m0) ∈ V1 and ψ−1(m0) ∈ V2. Since M has no

isolated points there exists n ∈ V1 \ {ψ1(m0)}. Since ψ : T ×M → M is surjective

there exists (t,m1) ∈ T×M such that ψ(t,m1) = n. Clearly ψt(m1) ̸= ψ1(m0). We

also have ψt(m1) ̸= ψ−1(m0) because n /∈ V2.

Here we consider the case when ψ−t(m1) = ψ−1(m0). In this case, we can choose

f0 ∈ Lip so that f̂ ′
0(ψ1(m0)) = 1 and f̂ ′

0(ψ−1(m0)) = f̂ ′
0(ψt(m1)) = f̂ ′

0(ψ−t(m1)) = 0

because of {f̂ ′ : f ∈ Lip} = C(M) and the Urysohn’s lemma. Put f = f0 in (4.5)

and evaluate it at m0 and m1. Then we get

2(Tf0)(0) = 2(T1)(0) + v(1,m0) and 2(Tf0)(0) = 2(T1)(0).

Hence v(1,m0) = 0, which is a contradiction because v is unimodular.

On the other hand if ψ−t(m1) ̸= ψ−1(m0), then we choose f0 ∈ Lip so that

f̂ ′
0(ψ−1(m0)) = 1 and f̂ ′

0(ψ1(m0)) = f̂ ′
0(ψt(m1)) = f̂ ′(ψ−t(m1)) = 0. A similar

argument shows that v(−1,m0) = 0, which is a contradiction.

In any case, we reach a contradiction. Hence ψ1(m) = ψ−1(m), that is, ψ(1,m) =

ψ(−1,m) for allm ∈ M. If we fixm ∈ M, then the set ψ(T×{m}) is a singleton. �
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Proof in case K = C. Fix m ∈ M. Since T × {m} is connected the continuity of

ψ implies that ψ(T × {m}) is connected in M. Since M is totally disconnected,

ψ(T× {m}) is a singleton. �

Definition 4.7. Define a mapping φ of M into M by

φ(m) = ψ(1,m) (m ∈ M).

Since ψ is a continuous mapping of T ×M onto M, φ is a continuous mapping of

M onto itself. By Claim 4.6 we have φ(x) = ψ(1,m) = ψ(a,m) for (a,m) ∈ T×M.

Moreover for any (a,m) ∈ T×M and f ∈ Lip, (4.2) is written as

a(Tf)(0) + (̂Tf)′(m) = u(a,m)f(0) + v(a,m)f̂ ′(φ(m)).

Applying (4.3) and (4.4) we have by removing u and v the equation

a(Tf)(0) + (̂Tf)′(m)

= a
(
(T1)(0)f(0) + (Ti)(0)f̂ ′(φ(m))

)
+
(
(̂T1)′(m)f(0) + (̂Ti)′(m)f̂ ′(φ(m))

)
.

Since this holds for all a ∈ T we have

(Tf)(0) = (T1)(0)f(0) + (Ti)(0)f̂ ′(φ(m)), (4.6)

(̂Tf)′(m) = (̂T1)′(m)f(0) + (̂Ti)′(m)f̂ ′(φ(m)). (4.7)

Definition 4.8. Define a constant λ and a function ω ∈ L∞ by

λ = (T1)(0) and ω = (Ti)′.

Claim 4.9. (a) |λ| = 1.

(b) (Tf)(0) = λf(0) for all f ∈ Lip.

(c) ω is unimodular.

(d) (̂Tf)′(m) = ω̂(m)f̂ ′(φ(m)) for all m ∈ M and f ∈ Lip.

Proof. We first show (b) and λ ̸= 0. Equation (4.6) says that (Ti)(0)(f̂ ′ ◦ φ) is

constant on M for all f ∈ Lip. In other words, (Ti)(0)(h ◦ φ) is constant for

h ∈ C(M). Since φ is surjective and C(M) separates the points of M we must have

(Ti)(0) = 0. Thus (b) follows from (4.6). Moreover if λ = 0, (b) yields (Tf)(0) = 0

for all f ∈ Lip, which is a contradiction because T is surjective. Hence λ ̸= 0.

For (c), we use (Ti)(0) = 0 and (4.4) to get

|ω̂(m)| = |(̂Ti)′(m)| = |(Ti)(0) + (̂Ti)′(m)| = |v(1,m)| = 1 (m ∈ M).

This implies that ω̂ω̂ is an identity of C(M). Since the transformation Γ : g 7→ ĝ is

a *-isomorphism of L∞ onto C(M), ωω is an identity of L∞. This implies (c).
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For (a) and (d), we use (4.3) and compute as follows:

1 = |u(a,m)| = |a(T1)(0) + (̂T1)′(m)| = |aλ+ (̂T1)′(m)| ≤ |λ|+ |(̂T1)′(m)|

≤ |λ|+ ∥(̂T1)′∥∞ = |(T1)(0)|+ ∥(T1)′∥L∞ = ∥T1∥σ = ∥1∥σ = 1
(4.8)

for all (a,m) ∈ T×M. Since the equality holds in the first inequality for all a ∈ T
and since λ ̸= 0 we must have (̂T1)′(m) = 0. Hence (4.7) implies (d). At the same

time, we obtain |λ| = 1 because the equalities hold in (4.8). �

Claim 4.10. The mapping φ is a homeomorphism of M onto itself.

Proof. Since M is a compact Hausdorff space and φ is continuous and surjective it

suffices to show that φ is injective. Assume m1 ̸= m2 and φ(m1) = φ(m2), where

m1,m2 ∈ M. Then we can choose f1 ∈ Lip such that f̂ ′
1(m1) = 1 and f̂ ′

1(m2) = 0

because of {f̂ ′ : f ∈ Lip} = C(M) and the Urysohn’s lemma. Since T is surjective

there exists f0 ∈ Lip such that Tf0 = f1. By (c) and (d) of Claim 4.9 we have

|f̂ ′
0(φ(m))| = |ω̂(m)f̂ ′

0(φ(m))| = |(̂Tf0)′(m)| = |f̂ ′
1(m)| (m ∈ M).

Hence 1 = |f̂ ′
1(m1)| = |f̂ ′

0(φ(m1))| = |f̂ ′
0(φ(m2))| = |f̂ ′

1(m2)| = 0, which is a contra-

diction. Therefore φ is injective. �

Definition 4.11. For each h ∈ C(M) we define a function Ψh on M by

(Ψh)(m) = h(φ(m)) (m ∈ M).

Since φ is a homeomorphism of M onto itself, Ψ is an algebra automorphism of

C(M). Put Φ = Γ−1ΨΓ. Since the Gelfand transformation Γ is an algebra isomor-

phism of L∞ onto C(M), Φ is an algebra automorphism of L∞.

Claim 4.12. The operator T has the form (1.2).

Proof. Let f ∈ Lip. By Claim 4.9 (d) we have

(̂Tf)′(m) = ω̂(m)f̂ ′(φ(m)) = ω̂(m)(Ψf̂ ′)(m) = ω̂(m)(ΨΓf ′)(m)

= ω̂(m)(ΓΦf ′)(m) = ω̂(m)Φ̂f ′(m) = ̂ω · (Φf ′)(m).

for any m ∈ M. Hence (Tf)′ = ω · (Φf ′). Together with Claim 4.9 (b) we obtain

(Tf)(x) = (Tf)(0) +

∫ x

0

(Tf)′(t)dt = λf(0) +

∫ x

0

ω(t)(Φf ′)(t)dt

for x ∈ [0, 1]. This completes the proof of Theorem 1.2. �
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