LINEAR ISOMETRIES ON SPACES OF CONTINUOUSLY DIFFERENTIABLE AND LIPSCHITZ CONTINUOUS FUNCTIONS

HIRONAO KOSHIMIZU

Abstract

We characterize the surjective linear isometries on $C^{(n)}[0,1]$ and $\operatorname{Lip}[0,1]$. Here $C^{(n)}[0,1]$ denotes the Banach space of n-times continuously differentiable functions on $[0,1]$ equipped with the norm

$$
\|f\|=\sum_{k=0}^{n-1}\left|f^{(k)}(0)\right|+\sup _{x \in[0,1]}\left|f^{(n)}(x)\right| \quad\left(f \in C^{(n)}[0,1]\right),
$$

and $\operatorname{Lip}[0,1]$ denotes the Banach space of Lipschitz continuous functions on $[0,1]$ equipped with the norm

$$
\|f\|=|f(0)|+\underset{x \in[0,1]}{\operatorname{ess} \sup }\left|f^{\prime}(x)\right| \quad(f \in \operatorname{Lip}[0,1]) .
$$

1. Introduction

The linear isometries on various function spaces have been studied by many mathematicians (see [5]). The source of this subject is the classical Banach-Stone theorem, which characterizes the surjective linear isometries on $C(X)$, the Banach space of all complex-valued continuous functions on a compact Hausdorff space X with the supremum norm $\|\cdot\|_{\infty}$. It states that every surjective linear isometry T from $C(X)$ onto itself has the canonical form: $T f=\omega(f \circ \varphi)$ for all $f \in C(X)$, where φ is a homeomorphism of X onto itself and ω is a unimodular continuous function on X. In this paper, we investigate the surjective linear isometries on two types of the spaces $C^{(n)}[0,1]$ and $\operatorname{Lip}[0,1]$.

We denote by $C^{(n)}[0,1]$ for a positive integer n the \mathbb{K}-linear space of \mathbb{K}-valued n times continuously differentiable functions on the closed unit interval $[0,1]$, where \mathbb{K} is the real field \mathbb{R} or the complex field \mathbb{C}. With each of the following five equivalent

[^0]norms the space $C^{(n)}[0,1]$ is a Banach space respectively:
\[

$$
\begin{aligned}
& \|f\|_{C}=\max \left\{\sum_{k=0}^{n} \frac{\left|f^{(k)}(x)\right|}{k!}: x \in[0,1]\right\} \\
& \|f\|_{\Sigma}=\sum_{k=0}^{n} \frac{\left\|f^{(k)}\right\|_{\infty}}{k!}, \\
& \|f\|_{M}=\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty}, \ldots,\left\|f^{(n)}\right\|_{\infty}\right\}, \\
& \|f\|_{m}=\max \left\{|f(0)|,\left|f^{\prime}(0)\right|, \ldots,\left|f^{(n-1)}(0)\right|,\left\|f^{(n)}\right\|_{\infty}\right\}, \\
& \|f\|_{\sigma}=\sum_{k=0}^{n-1}\left|f^{(k)}(0)\right|+\left\|f^{(n)}\right\|_{\infty},
\end{aligned}
$$
\]

for $f \in C^{(n)}[0,1]$. Among them, $\left(C^{(n)}[0,1],\|\cdot\|_{C}\right)$ and $\left(C^{(n)}[0,1],\|\cdot\|_{\Sigma}\right)$ are unital semisimple commutative Banach algebras.

In [2], Cambern characterized the surjective linear isometries on $\left(C^{(1)}[0,1],\|\cdot\|_{C}\right)$. Later, Pathak [12] extended this result to $\left(C^{(n)}[0,1],\|\cdot\|_{C}\right)$. The other extensions may be found in [3] and [11]. On the other hand, Rao and Roy [13] and Jarosz and Pathak [7] characterized the surjective linear isometries on $\left(C^{(1)}[0,1],\|\cdot\|_{\Sigma}\right)$ and $\left(C^{(1)}[0,1],\|\cdot\|_{M}\right)$, respectively. Those results say that every surjective linear isometry has the canonical form. However, the author [10] proved that the surjective linear isometries on $\left(C^{(n)}[0,1],\|\cdot\|_{m}\right)$ have the different form. In this paper, we show a similar result for the space $\left(C^{(n)}[0,1],\|\cdot\|_{\sigma}\right)$.

To state our theorem, we introduce an integral operator S : for any $f \in C([0,1])$, we put $(S f)(x)=\int_{0}^{x} f(t) d t$ for all $x \in[0,1]$. Then S is a linear operator of $C([0,1])$ onto $\left\{f \in C^{(1)}[0,1]: f(0)=0\right\}$, and S^{n} maps $C([0,1])$ onto $\left\{f \in C^{(n)}[0,1]\right.$: $f^{(k)}(0)=0$ for $\left.k=0,1, \ldots, n-1\right\}$. Hence $\left\{f^{(n)}: f \in C^{(n)}[0,1]\right\}=C([0,1])$. Moreover we have

$$
f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\left(S^{n} f^{(n)}\right)(x) \quad\left(x \in[0,1], f \in C^{(n)}[0,1]\right) .
$$

The following is a characterization of the surjective linear isometries on $\left(C^{(n)}[0,1]\right.$, $\left.\|\cdot\|_{\sigma}\right)$.

Theorem 1.1. Let T be a linear operator from $\left(C^{(n)}[0,1],\|\cdot\|_{\sigma}\right)$ onto itself. Then T is an isometry if and only if there exist a homeomorphism φ of $[0,1]$ onto itself, a unimodular continuous function ω on $[0,1]$, a permutation $\{\tau(0), \tau(1), \ldots, \tau(n-1)\}$ of $\{0,1, \ldots, n-1\}$ and unimodular constants $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$ such that

$$
\begin{equation*}
(T f)(x)=\sum_{k=0}^{n-1} \frac{\lambda_{k} f^{(\tau(k))}(0)}{k!} x^{k}+\left(S^{n}\left(\omega\left(f^{(n)} \circ \varphi\right)\right)\right)(x) \tag{1.1}
\end{equation*}
$$

for all $x \in[0,1]$ and $f \in\left(C^{(n)}[0,1],\|\cdot\|_{\sigma}\right)$.
We denote the \mathbb{K}-linear space of \mathbb{K}-valued Lipschitz continuous functions on $[0,1]$ by $\operatorname{Lip}[0,1]$. Every $f \in \operatorname{Lip}[0,1]$ has the derivative $f^{\prime}(x)$ for almost all $x \in[0,1]$, and the set $\left\{f^{\prime}: f \in \operatorname{Lip}[0,1]\right\}$ coincides with $L^{\infty}[0,1]$; the Banach algebra of \mathbb{K}-valued essentially bounded functions on $[0,1]$ with the essential supremum norm $\|\cdot\|_{L^{\infty}}$. With each of the following four equivalent norms the space $\operatorname{Lip}[0,1]$ is a Banach space respectively:

$$
\begin{aligned}
\|f\|_{\Sigma} & =\|f\|_{\infty}+\left\|f^{\prime}\right\|_{L^{\infty}}, \\
\|f\|_{M} & =\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{L^{\infty}}\right\}, \\
\|f\|_{m} & =\max \left\{|f(0)|,\left\|f^{\prime}\right\|_{L^{\infty}}\right\}, \\
\|f\|_{\sigma} & =|f(0)|+\left\|f^{\prime}\right\|_{L^{\infty}},
\end{aligned}
$$

for $f \in \operatorname{Lip}[0,1]$. Among them, $\left(\operatorname{Lip}[0,1],\|\cdot\|_{\Sigma}\right)$ is a unital semisimple commutative Banach algebra. It is known that every surjective linear isometry on $\left(\operatorname{Lip}[0,1],\|\cdot\|_{\Sigma}\right)$ or $\left(\operatorname{Lip}[0,1],\|\cdot\|_{M}\right)$ has the canonical form $([7,8,13])$. In [10], the author proved that the surjective linear isometries on $\left(\operatorname{Lip}[0,1],\|\cdot\|_{m}\right)$ have the different form. The following is a characterization of the surjective linear isometries on $\left(\operatorname{Lip}[0,1],\|\cdot\|_{\sigma}\right)$.

Theorem 1.2. Let T be a linear operator from $\left(\operatorname{Lip}[0,1],\|\cdot\|_{\sigma}\right)$ onto itself. Then T is an isometry if and only if there exist an algebra automorphism Φ of $L^{\infty}[0,1]$, a unimodular function $\omega \in L^{\infty}[0,1]$ and a unimodular constant λ such that

$$
\begin{equation*}
(T f)(x)=\lambda f(0)+\int_{0}^{x} \omega(t)\left(\Phi f^{\prime}\right)(t) d t \tag{1.2}
\end{equation*}
$$

for all $x \in[0,1]$ and $f \in\left(\operatorname{Lip}[0,1],\|\cdot\|_{\sigma}\right)$.
It is known that every algebra automorphism Φ of $L^{\infty}[0,1]$ has the form: $\Phi f=$ $f \circ \varphi$ for all $f \in L^{\infty}[0,1]$, where $\varphi \in L^{\infty}[0,1]$ and $\varphi(x) \in[0,1]$ for almost all $x \in[0,1]$. This fact is proved by the method of the proof of [6, Theorem 1].

Remark. Theorems 1.1 and 1.2 are the same results as the cases $\left(C^{(n)}[0,1],\|\cdot\|_{m}\right)$ and $\left(\operatorname{Lip}[0,1],\|\cdot\|_{m}\right)$, respectively (see [10]). However we need a different consideration for their proofs.

Throughout this paper, we use the notations below: Put $\mathbb{T}=\{z \in \mathbb{K}:|z|=1\}$. If $\mathbb{K}=\mathbb{R}$, then $\mathbb{T}=\{1,-1\}$. If $\mathbb{K}=\mathbb{C}$, then \mathbb{T} denotes the unit circle in \mathbb{C}. For any nonnegative integer ℓ, we define $i^{\ell}(x)=x^{\ell}$ for $x \in[0,1]$. In particular, we write $i^{0}=1$ and $i^{1}=i$. Let $f \in C^{(n)}[0,1]$ and $\ell=1,2, \ldots, n$. Then $f=i^{\ell}$ if and only if $f(0)=f^{\prime}(0)=\cdots=f^{(\ell-1)}(0)=0$ and $f^{(\ell)}(x)=\ell$! for $x \in[0,1]$. For a normed linear space \mathcal{B}, we put ball $\mathcal{B}=\left\{\xi \in \mathcal{B}:\|\xi\|_{\mathcal{B}} \leq 1\right\}$ and denote its dual space by \mathcal{B}^{*}.

2. Lemmas

Before proving the theorem we state useful lemmas.
Lemma 2.1. Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{\ell}$ be normed linear spaces, and let $\mathcal{B}=\mathcal{S}_{1} \times \cdots \times \mathcal{S}_{\ell}$ be the product space equipped with the norm

$$
\left\|\left(s_{1}, \ldots, s_{\ell}\right)\right\|_{\mathcal{B}}=\max \left\{\left\|s_{1}\right\|_{\mathcal{S}_{1}}, \ldots,\left\|s_{\ell}\right\|_{\mathcal{S}_{\ell}}\right\} \quad\left(\left(s_{1}, \ldots, s_{\ell}\right) \in \mathcal{B}\right)
$$

Then $\left(s_{1}, \ldots, s_{\ell}\right)$ is an extreme point of ball \mathcal{B} if and only if s_{k} is an extreme point of ball \mathcal{S}_{k} for all $k=1, \ldots, \ell$.

Proof. Suppose s_{k} is an extreme point of ball \mathcal{S}_{k} for all k. To prove that $\left(s_{1}, \ldots, s_{\ell}\right)$ is an extreme point of ball \mathcal{B}, write $\left(s_{1}, \ldots, s_{\ell}\right)=\left(\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)+\left(s_{1}^{\prime \prime}, \ldots, s_{\ell}^{\prime \prime}\right)\right) / 2$, where $\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right),\left(s_{1}^{\prime \prime}, \ldots, s_{\ell}^{\prime \prime}\right) \in \operatorname{ball} \mathcal{B}$. Then for each $k=1, \ldots, \ell$ we have

$$
s_{k}=\frac{1}{2} s_{k}^{\prime}+\frac{1}{2} s_{k}^{\prime \prime} .
$$

Also, $\left\|s_{k}^{\prime}\right\|_{\mathcal{S}_{k}} \leq \max \left\{\left\|s_{1}^{\prime}\right\|_{\mathcal{S}_{1}}, \ldots,\left\|s_{\ell}^{\prime}\right\|_{\mathcal{S}_{\ell}}\right\}=\left\|\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)\right\|_{\mathcal{B}} \leq 1$. Similarly, $\left\|s_{k}^{\prime \prime}\right\|_{\mathcal{S}_{k}} \leq$ 1. By hypothesis, $s_{k}=s_{k}^{\prime}=s_{k}^{\prime \prime}$. Hence $\left(s_{1}, \ldots, s_{\ell}\right)=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)=\left(s_{1}^{\prime \prime}, \ldots, s_{\ell}^{\prime \prime}\right)$. Thus $\left(s_{1}, \ldots, s_{\ell}\right)$ is an extreme point of ball \mathcal{B}.

The converse can be proved in a similar manner.
Lemma 2.2. Suppose that ψ_{1} and ψ_{2} are injective continuous mappings from $[0,1]$ into $[0,1]$. Let $\alpha \in \mathbb{C}$. If $\alpha\left(g \circ \psi_{1}\right)+\left(g \circ \psi_{2}\right)$ is constant on $[0,1]$ for all real-valued continuous functions g on $[0,1]$, then $\psi_{1}=\psi_{2}$.

Proof. Assume $\psi_{1} \neq \psi_{2}$. Then $\psi_{1}(p) \neq \psi_{2}(p)$ for some $p \in[0,1]$. Since ψ_{1} is continuous there exists $q \in[0,1]$ such that $q \neq p$ and $\psi_{1}(q) \neq \psi_{2}(p)$. Since ψ_{2} is injective, $\psi_{2}(q) \neq \psi_{2}(p)$. Applying the Urysohn's lemma there exists a real-valued continuous function g_{0} on $[0,1]$ so that $g_{0}\left(\psi_{2}(p)\right)=1$ and $g_{0}\left(\psi_{1}(p)\right)=g_{0}\left(\psi_{1}(q)\right)=$ $g_{0}\left(\psi_{2}(q)\right)=0$. Then we have $\alpha g_{0}\left(\psi_{1}(p)\right)+g_{0}\left(\psi_{2}(p)\right)=1$ and $\alpha g_{0}\left(\psi_{1}(q)\right)+g_{0}\left(\psi_{2}(q)\right)=$ 0 . This contradicts the fact that $\alpha\left(g_{0} \circ \psi_{1}\right)+\left(g_{0} \circ \psi_{2}\right)$ is constant. Hence $\psi_{1}=\psi_{2}$.

3. Proof of Theorem 1.1

From now on, we write simply $C^{(n)}$ and C for the Banach spaces $\left(C^{(n)}[0,1],\|\cdot\|_{\sigma}\right)$ and $\left(C([0,1]),\|\cdot\|_{\infty}\right)$, respectively.

We first give a proof for the elementary part:
Proof of the "if" part. Suppose T has the form (1.1). It is clear that T is linear. Let $f \in C^{(n)}$. For each $\ell=0,1, \ldots, n-1$ we have

$$
(T f)^{(\ell)}(x)=\sum_{k=\ell}^{n-1} \frac{\lambda_{k} f^{(\tau(k))}(0)}{(k-\ell)!} x^{k-\ell}+\left(S^{n-\ell}\left(\omega\left(f^{(n)} \circ \varphi\right)\right)(x) \quad(x \in[0,1]) .\right.
$$

Thus $(T f)^{(\ell)}(0)=\lambda_{\ell} f^{(\tau(\ell))}(0)$ since $(S g)(0)=0$ for all $g \in C$. Moreover $(T f)^{(n)}=$ $\omega\left(f^{(n)} \circ \varphi\right)$. Therefore

$$
\|T f\|_{\sigma}=\sum_{\ell=0}^{n-1}\left|\lambda_{\ell} f^{(\tau(\ell))}(0)\right|+\left\|\omega\left(f^{(n)} \circ \varphi\right)\right\|_{\infty}=\sum_{k=0}^{n-1}\left|f^{(k)}(0)\right|+\left\|f^{(n)}\right\|_{\infty}=\|f\|_{\sigma}
$$

Hence T is an isometry.
To prove that T is surjective let $g \in C^{(n)}$. Put

$$
f(x)=\sum_{k=0}^{n-1} \frac{\overline{\lambda_{\tau^{-1}(k)}} g^{\left(\tau^{-1}(k)\right)}(0)}{k!} x^{k}+\left(S^{n}\left(\frac{g^{(n)} \circ \varphi^{-1}}{\omega \circ \varphi^{-1}}\right)\right)(x) \quad(x \in[0,1])
$$

Then $f^{(\ell)}(0)=\overline{\lambda_{\tau^{-1}(\ell)}} g^{\left(\tau^{-1}(\ell)\right)}(0)$ for $\ell=0,1, \ldots, n-1$ and $f^{(n)}=\left(g^{(n)} \circ \varphi^{-1}\right) /(\omega \circ$ $\left.\varphi^{-1}\right)$. Hence

$$
\begin{aligned}
(T f)(x) & =\sum_{k=0}^{n-1} \frac{\lambda_{k} \overline{\lambda_{k}} g^{(k)}(0)}{k!} x^{k}+\left(S^{n}\left(\omega\left(\frac{g^{(n)} \circ \varphi^{-1}}{\omega \circ \varphi^{-1}} \circ \varphi\right)\right)\right)(x) \\
& =\sum_{k=0}^{n-1} \frac{g^{(k)}(0)}{k!} x^{k}+\left(S^{n} g^{(n)}\right)(x)=g(x)
\end{aligned}
$$

for all $x \in[0,1]$.
The rest of this section is devoted to the proof of the "only if" part. Let T be a linear isometry of $C^{(n)}$ onto itself. Let \mathbb{K}^{n} denote the product space of n copies of \mathbb{K}. The points of \mathbb{K}^{n} are thus ordered n-tuples $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{K}$. For instance, we write $\boldsymbol{b}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right), \mathbf{1}=(1,1, \ldots, 1)$ and so on.

Definition 3.1. For each $(\boldsymbol{a}, c, x) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ we define a functional $\Lambda_{(\boldsymbol{a}, c, x)}$ on $C^{(n)}$ by

$$
\Lambda_{(a, c, x)}(f)=\sum_{k=0}^{n-1} a_{k} f^{(k)}(0)+c f^{(n)}(x) \quad\left(f \in C^{(n)}\right) .
$$

It is clear that $\Lambda_{(a, c, x)} \in \operatorname{ball}\left(C^{(n)}\right)^{*}$.
Proposition 3.2. Let $\xi \in\left(C^{(n)}\right)^{*}$. Then ξ is an extreme point of $\operatorname{ball}\left(C^{(n)}\right)^{*}$ if and only if there exists $(\boldsymbol{a}, c, x) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ such that $\xi=\Lambda_{(a, c, x)}$.

Proof. If the product spaces $\mathbb{K}^{n} \times C$ and $\mathbb{K}^{n} \times C^{*}$ are equipped with the norms

$$
\begin{array}{ll}
\|(\boldsymbol{b}, g)\|=\sum_{k=0}^{n-1}\left|b_{k}\right|+\|g\|_{\infty} & \left((\boldsymbol{b}, g) \in \mathbb{K}^{n} \times C\right) \\
\|(\boldsymbol{a}, \eta)\|=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n-1}\right|,\|\eta\|\right\} & \left((\boldsymbol{a}, \eta) \in \mathbb{K}^{n} \times C^{*}\right)
\end{array}
$$

then $\left(\mathbb{K}^{n} \times C\right)^{*}$ is linearly isometric to $\mathbb{K}^{n} \times C^{*}$. In fact, the linear isometry Q of $\mathbb{K}^{n} \times C^{*}$ onto $\left(\mathbb{K}^{n} \times C\right)^{*}$ is given by

$$
(Q(\boldsymbol{a}, \eta))(\boldsymbol{b}, g)=\sum_{k=0}^{n-1} a_{k} b_{k}+\eta(g) \quad\left((\boldsymbol{a}, \eta) \in \mathbb{K}^{n} \times C^{*},(\boldsymbol{b}, g) \in \mathbb{K}^{n} \times C\right)
$$

Now, define a mapping P of $C^{(n)}$ into $\mathbb{K}^{n} \times C$ by

$$
P f=\left(\left(f(0), f^{\prime}(0), \ldots, f^{(n-1)}(0)\right), f^{(n)}\right) \quad\left(f \in C^{(n)}\right)
$$

Clearly P is a linear isometry of $C^{(n)}$ onto $\mathbb{K}^{n} \times C$. Then the conjugate operator P^{*} of P is a linear isometry of $\left(\mathbb{K}^{n} \times C\right)^{*}$ onto $\left(C^{(n)}\right)^{*}$. Hence $P^{*} Q$ is a linear isometry of $\mathbb{K}^{n} \times C^{*}$ onto $\left(C^{(n)}\right)^{*}$. Thus $\xi \in\left(C^{(n)}\right)^{*}$ is an extreme point of $\operatorname{ball}\left(C^{(n)}\right)^{*}$ if and only if $\xi=P^{*} Q(\boldsymbol{a}, \eta)$, where (\boldsymbol{a}, η) is an extreme point of ball $\left(\mathbb{K}^{n} \times C^{*}\right)$. Note that the set of all extreme points of ball \mathbb{K} is \mathbb{T}. Also it is known that the set of all extreme points of ball C^{*} is $\left\{c e_{x}: c \in \mathbb{T}, x \in[0,1]\right\}$, where e_{x} is the evaluation functional at $x: e_{x}(g)=g(x)$ for $g \in C$ (see [4, Theorem V.8.4]). By Lemma 2.1, (\boldsymbol{a}, η) is an extreme point of ball $\left(\mathbb{K}^{n} \times C^{*}\right)$ if and only if $\boldsymbol{a} \in \mathbb{T}^{n}$ and $\eta=c e_{x}$, where $c \in \mathbb{T}, x \in[0,1]$. Thus the conclusion follows from

$$
\begin{aligned}
\left(P^{*} Q\left(\boldsymbol{a}, c e_{x}\right)\right)(f) & =\left(Q\left(\boldsymbol{a}, c e_{x}\right)\right)\left(\left(f(0), f^{\prime}(0), \ldots, f^{(n-1)}(0)\right), f^{(n)}\right) \\
& =\sum_{k=0}^{n-1} a_{k} f^{(k)}(0)+c f^{(n)}(x)=\Lambda_{(\boldsymbol{a}, c, x)}(f)
\end{aligned}
$$

for $f \in C^{(n)}$.
Claim 3.3. For any $(\boldsymbol{a}, c, x) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ there exists a unique $(\boldsymbol{b}, d, y) \in$ $\mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ such that $T^{*} \Lambda_{(\boldsymbol{a}, c, x)}=\Lambda_{(b, d, y)}$.

Proof. Let $(\boldsymbol{a}, c, x) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$. By Proposition 3.2, $\Lambda_{(\boldsymbol{a}, c, x)}$ is an extreme point of ball $\left(C^{(n)}\right)^{*}$. Since T^{*} is a linear isometry of $\left(C^{(n)}\right)^{*}$ onto itself, $T^{*} \Lambda_{(a, c, x)}$ is an extreme point of ball $\left(C^{(n)}\right)^{*}$. By Proposition 3.2 there exists $(\boldsymbol{b}, d, y) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ such that $T^{*} \Lambda_{(a, c, x)}=\Lambda_{(b, d, y)}$.

For the uniqueness of (\boldsymbol{b}, d, y) suppose $T^{*} \Lambda_{(\boldsymbol{a}, c, x)}=\Lambda_{\left(\boldsymbol{b}^{\prime}, d^{\prime}, y^{\prime}\right)}$ for some $\left(\boldsymbol{b}^{\prime}, d^{\prime}, y^{\prime}\right) \in$ $\mathbb{T}^{n} \times \mathbb{T} \times[0,1]$, where $\boldsymbol{b}^{\prime}=\left(b_{0}^{\prime}, b_{1}^{\prime}, \ldots, b_{n-1}^{\prime}\right)$. Then $\Lambda_{(\boldsymbol{b}, d, y)}=\Lambda_{\left(\boldsymbol{b}^{\prime}, d^{\prime}, y^{\prime}\right)}$ and so

$$
\begin{equation*}
\sum_{k=0}^{n-1} b_{k} f^{(k)}(0)+d f^{(n)}(y)=\sum_{k=0}^{n-1} b_{k}^{\prime} f^{(k)}(0)+d^{\prime} f^{(n)}\left(y^{\prime}\right) \quad\left(f \in C^{(n)}\right) . \tag{3.1}
\end{equation*}
$$

For each $\ell=0,1, \ldots, n-1$ put $f=i^{\ell}$ in (3.1). Then $b_{\ell}=b_{\ell}^{\prime}$ holds hence $\boldsymbol{b}=\boldsymbol{b}^{\prime}$. Substituting $f=i^{n}$ and $f=i^{n+1}$ respectively in (3.1) we obtain $d=d^{\prime}$ and $y=y^{\prime}$.

Definition 3.4. Let $(\boldsymbol{a}, x) \in \mathbb{T}^{n} \times[0,1]$. Applying Claim 3.3 there exists a unique $(\boldsymbol{b}, d, y) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ such that $T^{*} \Lambda_{(\boldsymbol{a}, 1, x)}=\Lambda_{(\boldsymbol{b}, \mathrm{d}, y)}$. Since $\boldsymbol{b}=\left(b_{0}, \ldots, b_{n-1}\right), d$ and y depend on (\boldsymbol{a}, x) we write

$$
b_{k}=u_{k}(\boldsymbol{a}, x) \quad(k=0,1, \ldots, n-1), \quad d=v(\boldsymbol{a}, x) \quad \text { and } \quad y=\psi(\boldsymbol{a}, x) .
$$

Thus u_{k} and v are unimodular functions on $\mathbb{T}^{n} \times[0,1]$ and ψ is a mapping of $\mathbb{T}^{n} \times[0,1]$ into $[0,1]$. Moreover we have

$$
\Lambda_{(\boldsymbol{a}, 1, x)}(T f)=\left(T^{*} \Lambda_{(\boldsymbol{a}, 1, x)}\right)(f)=\Lambda_{\left(\left(u_{0}(\boldsymbol{a}, x), \ldots, u_{n-1}(\boldsymbol{a}, x)\right), v(\boldsymbol{a}, x), \psi(\boldsymbol{a}, x)\right)}(f)
$$

for $f \in C^{(n)}$ and so

$$
\begin{equation*}
\sum_{k=0}^{n-1} a_{k}(T f)^{(k)}(0)+(T f)^{(n)}(x)=\sum_{\ell=0}^{n-1} u_{\ell}(\boldsymbol{a}, x) f^{(\ell)}(0)+v(\boldsymbol{a}, x) f^{(n)}(\psi(\boldsymbol{a}, x)) \tag{3.2}
\end{equation*}
$$

Substituting $f=i^{m}$ for $m=0,1, \ldots, n-1$ respectively in (3.2) we have

$$
\begin{equation*}
\sum_{k=0}^{n-1} a_{k}\left(T i^{m}\right)^{(k)}(0)+\left(T i^{m}\right)^{(n)}(x)=m!u_{m}(\boldsymbol{a}, x) \tag{3.3}
\end{equation*}
$$

Substituting i^{n} and i^{n+1} for f in (3.2) we have

$$
\begin{align*}
\sum_{k=0}^{n-1} a_{k}\left(T i^{n}\right)^{(k)}(0)+\left(T i^{n}\right)^{(n)}(x) & =n!v(\boldsymbol{a}, x), \tag{3.4}\\
\sum_{k=0}^{n-1} a_{k}\left(T i^{n+1}\right)^{(k)}(0)+\left(T i^{n+1}\right)^{(n)}(x) & =(n+1)!v(\boldsymbol{a}, x) \psi(\boldsymbol{a}, x) . \tag{3.5}
\end{align*}
$$

Claim 3.5. For $k=0,1, \ldots, n-1, u_{k}$ and v are unimodular continuous functions on $\mathbb{T}^{n} \times[0,1]$. Also, ψ is a continuous mapping of $\mathbb{T}^{n} \times[0,1]$ onto $[0,1]$.

Proof. Note that the left hand sides of (3.3), (3.4) and (3.5) are continuous in $(\boldsymbol{a}, x) \in$ $\mathbb{T}^{n} \times[0,1]$. The first two equations show that u_{k} and v are continuous. Since v is unimodular, (3.5) implies that ψ is also continuous.

To prove that $\psi: \mathbb{T}^{n} \times[0,1] \rightarrow[0,1]$ is surjective let $y \in[0,1]$. Since T^{*} is a linear isometry of $\left(C^{(n)}\right)^{*}$ onto itself, Proposition 3.2 gives $(\boldsymbol{a}, c, x) \in \mathbb{T}^{n} \times \mathbb{T} \times[0,1]$ such that $T^{*} \Lambda_{(a, c, x)}=\Lambda_{(1,1, y)}$. Then we have

$$
\begin{aligned}
\left(T^{*} \Lambda_{(\bar{c} a, 1, x)}\right)(f) & =\bar{c}\left(\sum_{k=0}^{n-1} a_{k}(T f)^{(k)}(0)+c(T f)^{(n)}(x)\right)=\bar{c}\left(T^{*} \Lambda_{(\boldsymbol{a}, c, x)}\right)(f) \\
& =\bar{c}\left(\Lambda_{(\mathbf{1}, 1, y)}\right)(f)=\left(\sum_{k=0}^{n-1} \bar{c} f^{(k)}(0)+\bar{c} f^{(n)}(y)\right)=\Lambda_{(\bar{c} 1, \bar{c}, y)}(f)
\end{aligned}
$$

for $f \in C^{(n)}$. By the definition of ψ we get $\psi(\bar{c} \boldsymbol{a}, x)=y$. Hence ψ is surjective.
Claim 3.6. For any fixed $x \in[0,1], \psi\left(\mathbb{T}^{n} \times\{x\}\right)$ is a singleton.

Proof in case $\mathbb{K}=\mathbb{R}$. Fix $a_{1}, \ldots, a_{n-1} \in \mathbb{T}=\{1,-1\}$. For $t \in\{1,-1\}$ put $\boldsymbol{a}_{t}=$ $\left(t, a_{1}, \ldots, a_{n-1}\right)$. By Claim 3.5 functions $u_{k}\left(\boldsymbol{a}_{t}, x\right)$ and $v\left(\boldsymbol{a}_{t}, x\right)$ are continuous and take values within -1 and 1 , so that they are constant functions as the interval $[0,1]$ is connected. Let

$$
u_{k}\left(\boldsymbol{a}_{t}, x\right)=\alpha_{t, k} \quad \text { and } \quad v\left(\boldsymbol{a}_{t}, x\right)=\beta_{t} \quad(x \in[0,1]),
$$

where $\alpha_{t, k}$ and β_{t} are 1 or -1 . Define $\psi_{t}(x)=\psi\left(\boldsymbol{a}_{t}, x\right)$ for all $t \in\{1,-1\}$ and $x \in[0,1]$. Putting $\boldsymbol{a}=\boldsymbol{a}_{t}$ in (3.2) we have

$$
\begin{equation*}
t(T f)(0)+\sum_{k=1}^{n-1} a_{k}(T f)^{(k)}(0)+(T f)^{(n)}(x)=\sum_{\ell=0}^{n-1} \alpha_{t, \ell} f^{(\ell)}(0)+\beta_{t} f^{(n)}\left(\psi_{t}(x)\right) \tag{3.6}
\end{equation*}
$$

for all $x \in[0,1]$ and $f \in C^{(n)}$.
By Claim 3.5 ψ_{t} is continuous. We show that ψ_{t} is injective. Since T is surjective we can choose $f_{0} \in C^{(n)}$ so that $T f_{0}=i^{n+1} /(n+1)$!. Putting $f=f_{0}$ in (3.6) we have

$$
x=\sum_{\ell=0}^{n-1} \alpha_{t, \ell} f_{0}^{(\ell)}(0)+\beta_{t} f_{0}^{(n)}\left(\psi_{t}(x)\right) .
$$

Since the left hand side is injective in $x \in[0,1], \psi_{t}$ must be injective.
Now the difference of (3.6) with $t=1$ and (3.6) with $t=-1$ is

$$
2(T f)(0)=\sum_{\ell=0}^{n-1}\left(\alpha_{1, \ell}-\alpha_{-1, \ell}\right) f^{(\ell)}(0)+\beta_{1} f^{(n)}\left(\psi_{1}(x)\right)-\beta_{-1} f^{(n)}\left(\psi_{-1}(x)\right)
$$

for all $x \in[0,1]$ and $f \in C^{(n)}$. If $\gamma=-\beta_{1} / \beta_{-1}$, then the above equation implies that $\gamma\left(f^{(n)} \circ \psi_{1}\right)+\left(f^{(n)} \circ \psi_{-1}\right)$ is constant on $[0,1]$ for all $f \in C^{(n)}$. In other words, $\gamma\left(g \circ \psi_{1}\right)+\left(g \circ \psi_{-1}\right)$ is constant for all $g \in C$. Hence Lemma 2.2 yields $\psi_{1}=\psi_{-1}$, that is,

$$
\psi\left(1, a_{1}, \ldots, a_{n-1}, x\right)=\psi_{1}(x)=\psi_{-1}(x)=\psi\left(-1, a_{1}, \ldots, a_{n-1}, x\right) \quad(x \in[0,1]) .
$$

If we fix $x \in[0,1]$, then the set $\psi\left(\mathbb{T} \times\left\{a_{1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)$ is a singleton.
By the similar argument we can show that for each $\ell=0,1, \ldots, n-1$ and for fixed $a_{0}, \ldots, a_{\ell-1}, a_{\ell+1}, \ldots, a_{n-1} \in \mathbb{T}$ and $x \in[0,1]$ the set

$$
\psi\left(\left\{a_{0}\right\} \times \cdots \times\left\{a_{\ell-1}\right\} \times \mathbb{T} \times\left\{a_{\ell+1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)
$$

is a singleton. Since ℓ is arbitrary we see that $\psi\left(\mathbb{T}^{n} \times\{x\}\right)$ is also a singleton.
Proof in case $\mathbb{K}=\mathbb{C}$. Fix $a_{1}, \ldots, a_{n-1} \in \mathbb{T}$ and $x \in[0,1]$. Since $\mathbb{T} \times\left\{a_{1}\right\} \times \cdots \times$ $\left\{a_{n-1}\right\} \times\{x\}$ is connected and compact the continuity of ψ implies that $\psi(\mathbb{T} \times$ $\left.\left\{a_{1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)$ is connected and compact in $[0,1]$. Hence we can write $\psi\left(\mathbb{T} \times\left\{a_{1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)=[s, t]$, where $s, t \in[0,1]$ and $s \leq t$. To show that $s=t$ assume $s<t$. Then we easily find three distinct points $p, q, r \in[s, t]$ and a
function $f_{0} \in C^{(n)}$ such that $f_{0}(0)=f_{0}^{\prime}(0)=\cdots=f_{0}^{(n-1)}(0)=f_{0}^{(n)}(p)=f_{0}^{(n)}(q)=0$ and $f_{0}^{(n)}(r)=1$. Since $p, q, r \in \psi\left(\mathbb{T} \times\left\{a_{1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)$ there exist three distinct points $b, c, d \in \mathbb{T}$ such that $\psi\left(b, a_{1}, \ldots, a_{n-1}, x\right)=p, \psi\left(c, a_{1}, \ldots, a_{n-1}, x\right)=q$ and $\psi\left(d, a_{1}, \ldots, a_{n-1}, x\right)=r$. Putting $f=f_{0}$ in (3.2) we have

$$
\begin{array}{r}
b\left(T f_{0}\right)(0)+\sum_{k=1}^{n-1} a_{k}\left(T f_{0}\right)^{(k)}(0)+\left(T f_{0}\right)^{(n)}(x)=0, \\
c\left(T f_{0}\right)(0)+\sum_{k=1}^{n-1} a_{k}\left(T f_{0}\right)^{(k)}(0)+\left(T f_{0}\right)^{(n)}(x)=0, \\
d\left(T f_{0}\right)(0)+\sum_{k=1}^{n-1} a_{k}\left(T f_{0}\right)^{(k)}(0)+\left(T f_{0}\right)^{(n)}(x)=v\left(d, a_{1}, \ldots, a_{n-1}, x\right) . \tag{3.9}
\end{array}
$$

By (3.7) and (3.8) we have $\left(T f_{0}\right)(0)=0$ and $\sum_{k=1}^{n-1} a_{k}\left(T f_{0}\right)^{(k)}(0)+\left(T f_{0}\right)^{(n)}(x)=0$ because $b \neq c$. It follows by (3.9) that $0=v\left(d, a_{1} \ldots, a_{n-1}, x\right)$. This contradicts the fact that v is unimodular. Thus we obtain $s=t$, and $\psi\left(\mathbb{T} \times\left\{a_{1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)$ is a singleton $\{s\}$.

A similar argument shows that for each $\ell=0,1, \ldots, n-1$ and for fixed $a_{0}, \ldots, a_{\ell-1}$, $a_{\ell+1}, \ldots, a_{n-1} \in \mathbb{T}$ the set

$$
\psi\left(\left\{a_{0}\right\} \times \cdots \times\left\{a_{\ell-1}\right\} \times \mathbb{T} \times\left\{a_{\ell+1}\right\} \times \cdots \times\left\{a_{n-1}\right\} \times\{x\}\right)
$$

is a singleton. Hence we see that $\psi\left(\mathbb{T}^{n} \times\{x\}\right)$ is also a singleton. This concludes the claim.

Definition 3.7. Define a mapping φ of $[0,1]$ into $[0,1]$ by

$$
\varphi(x)=\psi(\mathbf{1}, x) \quad(x \in[0,1]) .
$$

Since ψ is a continuous mapping of $\mathbb{T}^{n} \times[0,1]$ onto $[0,1], \varphi$ is a continuous mapping of $[0,1]$ onto $[0,1]$. By Claim 3.6 we have $\varphi(x)=\psi(\mathbf{1}, x)=\psi(\boldsymbol{a}, x)$ for $(\boldsymbol{a}, x) \in$ $\mathbb{T}^{n} \times[0,1]$. Moreover for any $(\boldsymbol{a}, x) \in \mathbb{T}^{n} \times[0,1]$ and $f \in C^{(n)},(3.2)$ is written as

$$
\sum_{k=0}^{n-1} a_{k}(T f)^{(k)}(0)+(T f)^{(n)}(x)=\sum_{\ell=0}^{n-1} u_{\ell}(\boldsymbol{a}, x) f^{(\ell)}(0)+v(\boldsymbol{a}, x) f^{(n)}(\varphi(x))
$$

Applying (3.3) and (3.4) we have by removing u_{ℓ} and v the equation

$$
\begin{aligned}
& \sum_{k=0}^{n-1} a_{k}(T f)^{(k)}(0)+(T f)^{(n)}(x) \\
& =\sum_{k=0}^{n-1} a_{k}\left(\sum_{\ell=0}^{n-1} \frac{\left(T i^{\ell}\right)^{(k)}(0)}{\ell!} f^{(\ell)}(0)+\frac{\left(T i^{n}\right)^{(k)}(0)}{n!} f^{(n)}(\varphi(x))\right) \\
& \quad+\sum_{\ell=0}^{n-1} \frac{\left(T i^{\ell}\right)^{(n)}(x)}{\ell!} f^{(\ell)}(0)+\frac{\left(T i^{n}\right)^{(n)}(x)}{n!} f^{(n)}(\varphi(x)) .
\end{aligned}
$$

Since this holds for all $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{T}^{n}$ we have

$$
\begin{align*}
& (T f)^{(k)}(0)=\sum_{\ell=0}^{n-1} \frac{\left(T i^{\ell}\right)^{(k)}(0)}{\ell!} f^{(\ell)}(0)+\frac{\left(T i^{n}\right)^{(k)}(0)}{n!} f^{(n)}(\varphi(x)), \tag{3.10}\\
& (T f)^{(n)}(x)=\sum_{\ell=0}^{n-1} \frac{\left(T i^{\ell}\right)^{(n)}(x)}{\ell!} f^{(\ell)}(0)+\frac{\left(T i^{n}\right)^{(n)}(x)}{n!} f^{(n)}(\varphi(x)) \tag{3.11}
\end{align*}
$$

Claim 3.8. For each $k=0,1, \ldots, n-1,\left(T i^{n}\right)^{(k)}(0)=0$ and

$$
\begin{equation*}
(T f)^{(k)}(0)=\sum_{\ell=0}^{n-1} \frac{\left(T i^{\ell}\right)^{(k)}(0)}{\ell!} f^{(\ell)}(0) \quad\left(f \in C^{(n)}\right) \tag{3.12}
\end{equation*}
$$

Proof. Fix $k=0,1, \ldots, n-1$. Putting $f=i^{n+1}$ in (3.10) we have

$$
\left(T i^{n+1}\right)^{(k)}(0)=\left(T i^{n}\right)^{(k)}(0)(n+1) \varphi(x) \quad(x \in[0,1]) .
$$

Note that the left hand side is constant while φ maps $[0,1]$ onto $[0,1]$. We must have $\left(T i^{n}\right)^{(k)}(0)=0$. Substituting this into (3.10) we obtain (3.12).

Definition 3.9. Define $\omega(x)=\left(T i^{n}\right)^{(n)}(x) / n$! for all $x \in[0,1]$. Clearly ω is a continuous function on $[0,1]$.

Claim 3.10. The function ω is a unimodular continuous function on $[0,1]$.
Proof. By Claim 3.8 and Equation (3.4) we have

$$
\left|\left(T i^{n}\right)^{(n)}(x)\right|=\left|\sum_{k=0}^{n-1}\left(T i^{n}\right)^{(k)}(0)+\left(T i^{n}\right)^{(n)}(x)\right|=|n!v(\mathbf{1}, x)|=n!
$$

for all $x \in[0,1]$. Hence $|\omega(x)|=1$ for $x \in[0,1]$.
Claim 3.11. For each $k \in\{0,1, \ldots, n-1\}$ there exist a unique $m \in\{0,1, \ldots, n-1\}$ and a unique $\alpha \in \mathbb{C}$ such that $T i^{m}=\alpha i^{k}$ and $|\alpha|=m!/ k!$.

Proof. Let $k \in\{0,1, \ldots, n-1\}$. Assume $\left(T i^{\ell}\right)^{(k)}(0)=0$ for all $\ell \in\{0,1, \ldots, n-1\}$. Then (3.12) shows that $(T f)^{(k)}(0)=0$ for all $f \in C^{(n)}$, which is a contradiction if we choose f so that $T f=i^{k}$ because T is surjective. Therefore there exists $m \in\{0,1, \ldots, n-1\}$ such that $\left(T i^{m}\right)^{(k)}(0) \neq 0$. By (3.3) we have

$$
\begin{aligned}
m!=\left|m!u_{m}(\boldsymbol{a}, x)\right| & =\left|\sum_{\ell=0}^{n-1} a_{\ell}\left(T i^{m}\right)^{(\ell)}(0)+\left(T i^{m}\right)^{(n)}(x)\right| \\
& \leq \sum_{\ell=0}^{n-1}\left|\left(T i^{m}\right)^{(\ell)}(0)\right|+\left|\left(T i^{m}\right)^{(n)}(x)\right| \leq\left\|T i^{m}\right\|_{\sigma}=\left\|i^{m}\right\|_{\sigma}=m!
\end{aligned}
$$

for all $(\boldsymbol{a}, x) \in \mathbb{T}^{n} \times[0,1]$. Since the equality holds in the first inequality for all $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{T}^{n}$ and since $\left(T i^{m}\right)^{(k)}(0) \neq 0$, we must have $\left(T i^{m}\right)^{(\ell)}(0)=0$ for all $\ell \in\{0,1, \ldots, n-1\} \backslash\{k\}$ and $\left(T i^{m}\right)^{(n)}(x)=0$ for all $x \in[0,1]$. Moreover $\left|\left(T i^{m}\right)^{(k)}(0)\right|=m$!. Put $\alpha=\left(T i^{m}\right)^{(k)}(0) / k!$. Then $|\alpha|=m!/ k!$ and
$\left(T i^{m}\right)(x)=\sum_{\ell=0}^{n-1} \frac{\left(T i^{m}\right)^{(\ell)}(0)}{\ell!} x^{\ell}+\left(T i^{m}\right)^{(n)}(x)=\frac{\left(T i^{m}\right)^{(k)}(0)}{k!} x^{k}=\alpha i^{k}(x) \quad(x \in[0,1])$.
For the uniqueness assume $T i^{m^{\prime}}=\alpha^{\prime} i^{k}$, where $m^{\prime} \in\{0,1, \ldots, n-1\}, \alpha^{\prime} \in \mathbb{C}$ and $\left|\alpha^{\prime}\right|=m!/ k!$. Then $T\left(i^{m} / \alpha\right)=i^{k}=T\left(i^{m^{\prime}} / \alpha^{\prime}\right)$. Since T is injective we have $i^{m} / \alpha=i^{m^{\prime}} / \alpha^{\prime}$. This yields $\alpha=\alpha^{\prime}$ and $m=m^{\prime}$.

Definition 3.12. According to Claim 3.11, with each $k \in\{0,1, \ldots, n-1\}$ we associate $m \in\{0,1, \ldots, n-1\}$ and $\alpha \in \mathbb{C}$ such that $T i^{m}=\alpha i^{k}$ and $|\alpha|=m!/ k!$. Since m and α depend on k we write

$$
m=\tau(k) \quad \text { and } \quad \alpha=\frac{m!}{k!} \lambda_{k} .
$$

Then we have

$$
T i^{\tau(k)}=\frac{\tau(k)!}{k!} \lambda_{k} i^{k} \quad \text { and } \quad\left|\lambda_{k}\right|=1
$$

To complete the proof it remains to show the following claim:
Claim 3.13. (a) φ is a homeomorphism of $[0,1]$ onto $[0,1]$.
(b) $\{\tau(0), \tau(1), \ldots, \tau(n-1)\}$ is a permutation of $\{0,1, \ldots, n-1\}$.
(c) T has the form (1.1).

Proof. We first show (b). For (b), it suffices to show that τ is injective. Suppose $\tau(k)=\tau\left(k^{\prime}\right)$, where $k, k^{\prime} \in\{0,1, \ldots, n-1\}$. Then

$$
\frac{\tau(k)!}{k!} \lambda_{k} i^{k}=T i^{\tau(k)}=T i^{\tau\left(k^{\prime}\right)}=\frac{\tau\left(k^{\prime}\right)}{k^{\prime}!} \lambda_{k^{\prime} i^{\prime}} k^{k^{\prime}} .
$$

This implies $k=k^{\prime}$. So τ is injective.

For (c), let $x \in[0,1]$ and $f \in C^{(n)}$. Since we have established (b), (3.12) implies

$$
\begin{aligned}
(T f)^{(k)}(0) & =\sum_{\ell=0}^{n-1} \frac{\left(T i^{\tau(\ell)}\right)^{(k)}(0)}{\tau(\ell)!} f^{(\tau(\ell))}(0)=\sum_{\ell=0}^{n-1} \frac{1}{\tau(\ell)!}\left(\frac{\tau(\ell)!}{\ell!} \lambda_{\ell} \ell^{\ell}\right)^{(k)}(0) f^{(\tau(\ell))}(0) \\
& =\sum_{\ell=0}^{n-1} \frac{\lambda_{\ell}\left(i^{\ell}\right)^{(k)}(0)}{\ell!} f^{(\tau(\ell))}(0)=\lambda_{k} f^{(\tau(k))}(0) .
\end{aligned}
$$

On the other hand, by (b) for any $\ell \in\{0,1, \ldots, n-1\}$ there is $k \in\{0,1, \ldots, n-1\}$ such that $\tau(k)=\ell$. Then

$$
\left(T i^{\ell}\right)^{(n)}(x)=\left(T i^{\tau(k)}\right)^{(n)}(x)=\left(\frac{\tau(k)!}{k!} \lambda_{k} i^{k}\right)^{(n)}(x)=0
$$

because $k<n$. Hence (3.11) shows

$$
\begin{equation*}
(T f)^{(n)}(x)=\omega(x) f^{(n)}(\varphi(x)) \tag{3.13}
\end{equation*}
$$

Thus it follows that

$$
\begin{aligned}
(T f)(x) & =\sum_{k=0}^{n-1} \frac{(T f)^{(k)}(0)}{k!} x^{k}+\left(S^{n}(T f)^{(n)}\right)(x) \\
& =\sum_{k=0}^{n-1} \frac{\lambda_{k} f^{(\tau(k))}(0)}{k!} x^{k}+\left(S^{n}\left(\omega\left(f^{(n)} \circ \varphi\right)\right)\right)(x) .
\end{aligned}
$$

Finally we show (a). Since φ is continuous and surjective it suffices to show that φ is injective. Choose $f_{0} \in C^{(n)}$ so that $T f_{0}=i^{n+1} /(n+1)$! because T is surjective. Using Claim 3.10 and Equation (3.13) we have

$$
\left|f_{0}^{(n)}(\varphi(x))\right|=\left|\omega(x) f_{0}^{(n)}(\varphi(x))\right|=\left|\left(T f_{0}\right)^{(n)}(x)\right|=|i(x)|=|x|=x \quad(x \in[0,1]) .
$$

Hence if $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$, then $x_{1}=\left|f_{0}^{(n)}\left(\varphi\left(x_{1}\right)\right)\right|=\left|f_{0}^{(n)}\left(\varphi\left(x_{2}\right)\right)\right|=x_{2}$. Therefore φ is injective, as desired. Thus we finish the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Throughout the rest of this paper, we write simply Lip and L^{∞} for the Banach space $\left(\operatorname{Lip}[0,1],\|\cdot\|_{\sigma}\right)$ and the Banach algebra $\left(L^{\infty}[0,1],\|\cdot\|_{L^{\infty}}\right)$, respectively. If we indicate the scalar field \mathbb{K}, we write $L_{\mathbb{K}}^{\infty}$ instead of L^{∞}.

Let \mathfrak{M} be the maximal ideal space of $L_{\mathbb{C}}^{\infty}$. Then \mathfrak{M} is a compact Hausdorff space. We know that \mathfrak{M} is totally disconnected, that is, every component of \mathfrak{M} consists of one point ([1, Theorem 1.3.4]) and that \mathfrak{M} has no isolated points ([14, Exercise 11.18]).

We write $C_{\mathbb{K}}(\mathfrak{M})$ or simply $C(\mathfrak{M})$ for the Banach algebra of all \mathbb{K}-valued continuous functions on \mathfrak{M} with the supremum norm $\|\cdot\|_{\infty}$. For any $g \in L_{\mathbb{C}}^{\infty}, \widehat{g}$ denotes the

Gelfand representation of g. The Gelfand-Naimark theorem says that the Gelfand transformation $\Gamma: g \mapsto \widehat{g}$ is an algebra ${ }^{*}$-isomorphism of $L_{\mathbb{C}}^{\infty}$ onto $C_{\mathbb{C}}(\mathfrak{M})$ and $\|g\|_{L^{\infty}}=\|\widehat{g}\|_{\infty}$. Also Γ maps $L_{\mathbb{R}}^{\infty}$ onto $C_{\mathbb{R}}(\mathfrak{M})$, and $\left\{\widehat{f}^{\prime}: f \in \operatorname{Lip}\right\}=C(\mathfrak{M})$.

We first give a proof of the "if" part:
Proof of the "if" part. Suppose T has the form (1.2). It is clear that T is linear. Define $\Psi=\Gamma \Phi \Gamma^{-1}$. Then Ψ is an algebra automorphism of $C(\mathfrak{M})$. By [9, Theorem 3.4.3], Ψ has the form $\Psi h=h \circ \varphi$ for some homeomorphism φ of \mathfrak{M} onto itself. Hence Ψ is an isometry of $C(\mathfrak{M})$ onto itself and so Φ is an isometry of L^{∞} onto itself. Also we have $(T f)(0)=\lambda f(0)$ and $(T f)^{\prime}=\omega\left(\Phi f^{\prime}\right)$ for $f \in$ Lip. Therefore

$$
\|T f\|_{\sigma}=|\lambda f(0)|+\left\|\omega\left(\Phi f^{\prime}\right)\right\|_{L^{\infty}}=|f(0)|+\left\|\Phi f^{\prime}\right\|_{L^{\infty}}=|f(0)|+\left\|f^{\prime}\right\|_{L^{\infty}}=\|f\|_{\sigma} .
$$

Hence T is an isometry.
To prove that T is surjective let $g \in \operatorname{Lip}$. Put

$$
f(x)=\bar{\lambda} g(0)+\int_{0}^{x}\left(\Phi^{-1}\left(\bar{\omega} g^{\prime}\right)\right)(t) d t \quad(x \in[0,1])
$$

Then $f(0)=\bar{\lambda} g(0)$ and $f^{\prime}=\Phi^{-1}\left(\bar{\omega} g^{\prime}\right)$, and so

$$
(T f)(x)=\lambda \bar{\lambda} g(0)+\int_{0}^{x} \omega(t)\left(\Phi \Phi^{-1}\left(\bar{\omega} g^{\prime}\right)\right)(t) d t=g(0)+\int_{0}^{x} g^{\prime}(t) d t=g(x)
$$

for all $x \in[0,1]$.
The rest of the paper is devoted to the proof of the "only if " part. Let T be a linear isometry of Lip onto itself.

Definition 4.1. For each $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ we define a functional $\Lambda_{(a, c, m)}$ on Lip by

$$
\Lambda_{(a, c, m)}(f)=a f(0)+c \widehat{f^{\prime}}(m) \quad(f \in \operatorname{Lip}) .
$$

It is clear that $\Lambda_{(a, c, m)} \in \operatorname{ball}(\operatorname{Lip})^{*}$.
Proposition 4.2. Let $\xi \in(\operatorname{Lip})^{*}$. Then ξ is an extreme point of ball(Lip)* if and only if there exists $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $\xi=\Lambda_{(a, c, m)}$.

Proof. If the product spaces $\mathbb{K} \times L^{\infty}$ and $\mathbb{K} \times C(\mathfrak{M})^{*}$ are equipped with the norms

$$
\begin{array}{ll}
\|(b, g)\|=|b|+\|g\|_{L^{\infty}} & \left((b, g) \in \mathbb{K} \times L^{\infty}\right) \\
\|(a, \eta)\|=\max \{|a|,\|\eta\|\} & \left((a, \eta) \in \mathbb{K} \times C(\mathfrak{M})^{*}\right)
\end{array}
$$

then the next operator Q is a linear isometry of $\mathbb{K} \times C(\mathfrak{M})^{*}$ onto $\left(\mathbb{K} \times L^{\infty}\right)^{*}$:

$$
(Q(a, \eta))(b, g)=a b+\eta(\widehat{g}) \quad\left((a, \eta) \in \mathbb{K} \times C(\mathfrak{M})^{*},(b, g) \in \mathbb{K} \times L^{\infty}\right) .
$$

Define a linear isometry P of Lip onto $\mathbb{K} \times L^{\infty}$ by

$$
P f=\left(f(0), f^{\prime}\right) \quad(f \in \operatorname{Lip}) .
$$

Then $P^{*} Q$ is a linear isometry of $\mathbb{K} \times C(\mathfrak{M})^{*}$ onto (Lip)*. Hence $\xi \in(\mathrm{Lip})^{*}$ is an extreme point of ball(Lip)* if and only if $\xi=P^{*} Q(a, \eta)$, where (a, η) is an extreme point of ball $\left(\mathbb{K} \times C(\mathfrak{M})^{*}\right)$. By Lemma 2.1 this condition on (a, η) is equivalent to the following: $a \in \mathbb{T}$ and there exist $c \in \mathbb{T}$ and $m \in \mathfrak{M}$ such that $\eta(g)=c e_{m}(g)=c g(m)$ for $g \in C(\mathfrak{M})$. Thus the conclusion follows from

$$
P^{*}\left(Q\left(a, c e_{m}\right)\right)(f)=\left(Q\left(a, c e_{m}\right)\right)\left(f(0), f^{\prime}\right)=a f(0)+c \widehat{f^{\prime}}(m)=\Lambda_{(a, c, m)}(f)
$$

for $f \in$ Lip.
Claim 4.3. For any $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ there exists a unique $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^{*} \Lambda_{(a, c, m)}=\Lambda_{(b, d, n)}$.

Proof. Let $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$. Since T^{*} is a linear isometry of (Lip)* onto itself, Proposition 4.2 shows the existence of $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^{*} \Lambda_{(a, c, m)}=$ $\Lambda_{(b, d, n)}$.

For the uniqueness of (b, d, n) suppose $T^{*} \Lambda_{(a, c, m)}=\Lambda_{\left(b^{\prime}, d^{\prime}, n^{\prime}\right)}$ for some $\left(b^{\prime}, d^{\prime}, n^{\prime}\right) \in$ $\mathbb{T} \times \mathbb{T} \times \mathfrak{M}$. Then $\Lambda_{(b, d, n)}=\Lambda_{\left(b^{\prime}, d^{\prime}, n^{\prime}\right)}$, that is,

$$
\begin{equation*}
b f(0)+d \widehat{f^{\prime}}(n)=b^{\prime} f(0)+d^{\prime} \widehat{f}^{\prime}\left(n^{\prime}\right) \quad(f \in \operatorname{Lip}) \tag{4.1}
\end{equation*}
$$

Substituting 1 and i for f in (4.1) we get $b=b^{\prime}$ and $d=d^{\prime}$, respectively. Hence (4.1) shows $\widehat{f^{\prime}}(n)=\widehat{f^{\prime}}\left(n^{\prime}\right)$ for all $f \in$ Lip. In other words, $h(n)=h\left(n^{\prime}\right)$ for all $h \in C(\mathfrak{M})$. This implies $n=n^{\prime}$.

Definition 4.4. By Claim 4.3 for each $(a, m) \in \mathbb{T} \times \mathfrak{M}$ there exists a unique $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^{*} \Lambda_{(a, 1, m)}=\Lambda_{(b, d, n)}$. Since b, d and y depend on (a, m) we write

$$
b=u(a, m), \quad d=v(a, m) \quad \text { and } \quad n=\psi(a, m)
$$

Thus u and v are unimodular functions on $\mathbb{T} \times \mathfrak{M}$ and ψ is a mapping of $\mathbb{T} \times \mathfrak{M}$ into \mathfrak{M}. Moreover we have

$$
\Lambda_{(a, 1, m)}(T f)=\left(T^{*} \Lambda_{(a, 1, m)}\right)(f)=\Lambda_{(u(a, m), v(a, m), \psi(a, m))}(f)
$$

for $f \in \operatorname{Lip}$ and so

$$
\begin{equation*}
a(T f)(0)+\widehat{(T f)^{\prime}}(m)=u(a, m) f(0)+v(a, m) \widehat{f}^{\prime}(\psi(a, m)) . \tag{4.2}
\end{equation*}
$$

Substituting 1 and i for f we have

$$
\begin{align*}
a(T 1)(0)+\widehat{(T 1)^{\prime}}(m) & =u(a, m), \tag{4.3}\\
a(T i)(0)+\widehat{(T i)^{\prime}}(m) & =v(a, m) . \tag{4.4}
\end{align*}
$$

Claim 4.5. The mapping ψ is a continuous mapping of $\mathbb{T} \times \mathfrak{M}$ onto \mathfrak{M}.

Proof. By (4.3) and (4.4) we see that u and v are continuous on $\mathbb{T} \times \mathfrak{M}$. Since v is unimodular, (4.2) implies that $\widehat{f^{\prime}} \circ \psi$ is continuous on $\mathbb{T} \times \mathfrak{M}$ for all $f \in \operatorname{Lip.}$ In other words, $h \circ \psi$ is continuous on $\mathbb{T} \times \mathfrak{M}$ for all $h \in C(\mathfrak{M})$. To prove that $\psi: \mathbb{T} \times \mathfrak{M} \rightarrow \mathfrak{M}$ is continuous let $\left(a_{0}, m_{0}\right) \in \mathbb{T} \times \mathfrak{M}$ and let V be an open neighborhood of $\psi\left(a_{0}, m_{0}\right)$ in \mathfrak{M}. By the Urysohn's lemma there exists $h_{0} \in C(\mathfrak{M})$ such that $h_{0}\left(\psi\left(a_{0}, m_{0}\right)\right)=1$ and $h_{0}(n)=0$ for all $n \in \mathfrak{M} \backslash V$. Put $U=\left\{(a, m) \in \mathbb{T} \times \mathfrak{M}:\left|\left(h_{0} \circ \psi\right)(a, m)\right|>0\right\}$. Since $h_{0} \circ \psi$ is continuous, U is an open neighborhood of $\left(a_{0}, m_{0}\right)$. Moreover we can easily see that $\psi(U) \subset V$. Thus ψ is continuous.

To prove that ψ is surjective let $n \in \mathfrak{M}$. Since T^{*} is a linear isometry of (Lip)* onto itself, Proposition 4.2 gives $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^{*} \Lambda_{(a, c, m)}=\Lambda_{(1,1, n)}$. Then

$$
\begin{aligned}
\left(T^{*} \Lambda_{(\bar{c} a, 1, m)}\right)(f) & =\bar{c}\left(a(T f)(0)+c \widehat{c(T)^{\prime}}(m)\right)=\bar{c}\left(T^{*} \Lambda_{(a, c, m)}\right)(f) \\
& =\bar{c}\left(\Lambda_{(1,1, n)}\right)(f)=\bar{c} f(0)+\bar{c} \widehat{f^{\prime}}(n)=\Lambda_{(\bar{c}, \bar{c}, n)}(f)
\end{aligned}
$$

for $f \in$ Lip. By the definition of ψ we get $\psi(\bar{c} a, m)=n$. Hence ψ is surjective.
Claim 4.6. For any fixed $m \in \mathfrak{M}, \psi(\mathbb{T} \times\{m\})$ is a singleton.
Proof in case $\mathbb{K}=\mathbb{R}$. For $t \in \mathbb{T}=\{1,-1\}$ put $\psi_{t}(m)=\psi(t, m)$ for all $m \in \mathfrak{M}$. The difference of (4.3) with $a=1$ and (4.3) with $a=-1$ is $2(T 1)(0)=u(1, m)-u(-1, m)$. Hence the difference of (4.2) with $a=1$ and (4.2) with $a=-1$ shows that

$$
\begin{equation*}
2(T f)(0)=2(T 1)(0)+v(1, m) \widehat{f}^{\prime}\left(\psi_{1}(m)\right)-v(-1, m) \widehat{f}^{\prime}\left(\psi_{-1}(m)\right) \tag{4.5}
\end{equation*}
$$

for $m \in \mathfrak{M}$ and $f \in \operatorname{Lip}$.
Assume that $\psi_{1}\left(m_{0}\right) \neq \psi_{-1}\left(m_{0}\right)$ for some $m_{0} \in \mathfrak{M}$. Then we find disjoint open sets V_{1} and V_{2} in \mathfrak{M} such that $\psi_{1}\left(m_{0}\right) \in V_{1}$ and $\psi_{-1}\left(m_{0}\right) \in V_{2}$. Since \mathfrak{M} has no isolated points there exists $n \in V_{1} \backslash\left\{\psi_{1}\left(m_{0}\right)\right\}$. Since $\psi: \mathbb{T} \times \mathfrak{M} \rightarrow \mathfrak{M}$ is surjective there exists $\left(t, m_{1}\right) \in \mathbb{T} \times \mathfrak{M}$ such that $\psi\left(t, m_{1}\right)=n$. Clearly $\psi_{t}\left(m_{1}\right) \neq \psi_{1}\left(m_{0}\right)$. We also have $\psi_{t}\left(m_{1}\right) \neq \psi_{-1}\left(m_{0}\right)$ because $n \notin V_{2}$.

Here we consider the case when $\psi_{-t}\left(m_{1}\right)=\psi_{-1}\left(m_{0}\right)$. In this case, we can choose $f_{0} \in \operatorname{Lip}$ so that $\widehat{f_{0}^{\prime}}\left(\psi_{1}\left(m_{0}\right)\right)=1$ and $\widehat{f}_{0}^{\prime}\left(\psi_{-1}\left(m_{0}\right)\right)=\widehat{f_{0}^{\prime}}\left(\psi_{t}\left(m_{1}\right)\right)=\widehat{f_{0}^{\prime}}\left(\psi_{-t}\left(m_{1}\right)\right)=0$ because of $\left\{\widehat{f}^{\prime}: f \in \operatorname{Lip}\right\}=C(\mathfrak{M})$ and the Urysohn's lemma. Put $f=f_{0}$ in (4.5) and evaluate it at m_{0} and m_{1}. Then we get

$$
2\left(T f_{0}\right)(0)=2(T 1)(0)+v\left(1, m_{0}\right) \quad \text { and } \quad 2\left(T f_{0}\right)(0)=2(T 1)(0) .
$$

Hence $v\left(1, m_{0}\right)=0$, which is a contradiction because v is unimodular.
On the other hand if $\psi_{-t}\left(m_{1}\right) \neq \psi_{-1}\left(m_{0}\right)$, then we choose $f_{0} \in \operatorname{Lip}$ so that $\widehat{f}_{0}^{\prime}\left(\psi_{-1}\left(m_{0}\right)\right)=1$ and $\widehat{f}_{0}^{\prime}\left(\psi_{1}\left(m_{0}\right)\right)=\widehat{f}_{0}^{\prime}\left(\psi_{t}\left(m_{1}\right)\right)=\widehat{f}^{\prime}\left(\psi_{-t}\left(m_{1}\right)\right)=0$. A similar argument shows that $v\left(-1, m_{0}\right)=0$, which is a contradiction.

In any case, we reach a contradiction. Hence $\psi_{1}(m)=\psi_{-1}(m)$, that is, $\psi(1, m)=$ $\psi(-1, m)$ for all $m \in \mathfrak{M}$. If we fix $m \in \mathfrak{M}$, then the set $\psi(\mathbb{T} \times\{m\})$ is a singleton.

Proof in case $\mathbb{K}=\mathbb{C}$. Fix $m \in \mathfrak{M}$. Since $\mathbb{T} \times\{m\}$ is connected the continuity of ψ implies that $\psi(\mathbb{T} \times\{m\})$ is connected in \mathfrak{M}. Since \mathfrak{M} is totally disconnected, $\psi(\mathbb{T} \times\{m\})$ is a singleton.

Definition 4.7. Define a mapping φ of \mathfrak{M} into \mathfrak{M} by

$$
\varphi(m)=\psi(1, m) \quad(m \in \mathfrak{M})
$$

Since ψ is a continuous mapping of $\mathbb{T} \times \mathfrak{M}$ onto \mathfrak{M}, φ is a continuous mapping of \mathfrak{M} onto itself. By Claim 4.6 we have $\varphi(x)=\psi(1, m)=\psi(a, m)$ for $(a, m) \in \mathbb{T} \times \mathfrak{M}$. Moreover for any $(a, m) \in \mathbb{T} \times \mathfrak{M}$ and $f \in \operatorname{Lip}$, (4.2) is written as

$$
a(T f)(0)+\widehat{(T f)^{\prime}}(m)=u(a, m) f(0)+v(a, m) \widehat{f}^{\prime}(\varphi(m))
$$

Applying (4.3) and (4.4) we have by removing u and v the equation

$$
\begin{aligned}
& a(T f)(0)+\widehat{(T f)^{\prime}}(m) \\
& \quad=a\left((T 1)(0) f(0)+(T i)(0) \widehat{f^{\prime}}(\varphi(m))\right)+\left(\widehat{(T 1)^{\prime}}(m) f(0)+\widehat{(T i)^{\prime}}(m) \widehat{f}^{\prime}(\varphi(m))\right) .
\end{aligned}
$$

Since this holds for all $a \in \mathbb{T}$ we have

$$
\begin{align*}
(T f)(0) & =(T 1)(0) f(0)+(T i)(0) \widehat{f^{\prime}}(\varphi(m)), \tag{4.6}\\
\widehat{(T f)^{\prime}}(m) & =\widehat{(T 1)^{\prime}}(m) f(0)+\widehat{(T i)^{\prime}}(m) \widehat{f}^{\prime}(\varphi(m)) . \tag{4.7}
\end{align*}
$$

Definition 4.8. Define a constant λ and a function $\omega \in L^{\infty}$ by

$$
\lambda=(T 1)(0) \quad \text { and } \quad \omega=(T i)^{\prime} .
$$

Claim 4.9. (a) $|\lambda|=1$.
(b) $(T f)(0)=\lambda f(0)$ for all $f \in \operatorname{Lip}$.
(c) ω is unimodular.
(d) $\widehat{(T f)^{\prime}}(m)=\widehat{\omega}(m) \widehat{f}^{\prime}(\varphi(m))$ for all $m \in \mathfrak{M}$ and $f \in \operatorname{Lip}$.

Proof. We first show (b) and $\lambda \neq 0$. Equation (4.6) says that $(T i)(0)\left(\hat{f}^{\prime} \circ \varphi\right)$ is constant on \mathfrak{M} for all $f \in$ Lip. In other words, $(T i)(0)(h \circ \varphi)$ is constant for $h \in C(\mathfrak{M})$. Since φ is surjective and $C(\mathfrak{M})$ separates the points of \mathfrak{M} we must have $(T i)(0)=0$. Thus (b) follows from (4.6). Moreover if $\lambda=0$, (b) yields $(T f)(0)=0$ for all $f \in$ Lip, which is a contradiction because T is surjective. Hence $\lambda \neq 0$.

For (c), we use $(T i)(0)=0$ and (4.4) to get

$$
|\widehat{\omega}(m)|=\left|\widehat{(T i)^{\prime}}(m)\right|=\left|(T i)(0)+\widehat{(T i)^{\prime}}(m)\right|=|v(1, m)|=1 \quad(m \in \mathfrak{M}) .
$$

This implies that $\widehat{\omega} \widehat{\widehat{\omega}}$ is an identity of $C(\mathfrak{M})$. Since the transformation $\Gamma: g \mapsto \widehat{g}$ is a *-isomorphism of L^{∞} onto $C(\mathfrak{M}), \omega \bar{\omega}$ is an identity of L^{∞}. This implies (c).

For (a) and (d), we use (4.3) and compute as follows:

$$
\begin{align*}
1 & =|u(a, m)|=\left|a(T 1)(0)+\widehat{(T 1)^{\prime}}(m)\right|=\left|a \lambda+\widehat{(T 1)^{\prime}}(m)\right| \leq|\lambda|+\left|\widehat{(T 1)^{\prime}}(m)\right| \\
& \leq|\lambda|+\left\|\widehat{(T 1)^{\prime}}\right\|_{\infty}=|(T 1)(0)|+\left\|(T 1)^{\prime}\right\|_{L^{\infty}}=\|T 1\|_{\sigma}=\|1\|_{\sigma}=1 \tag{4.8}
\end{align*}
$$

for all $(a, m) \in \mathbb{T} \times \mathfrak{M}$. Since the equality holds in the first inequality for all $a \in \mathbb{T}$ and since $\lambda \neq 0$ we must have $\widehat{(T 1)^{\prime}}(m)=0$. Hence (4.7) implies (d). At the same time, we obtain $|\lambda|=1$ because the equalities hold in (4.8).

Claim 4.10. The mapping φ is a homeomorphism of \mathfrak{M} onto itself.
Proof. Since \mathfrak{M} is a compact Hausdorff space and φ is continuous and surjective it suffices to show that φ is injective. Assume $m_{1} \neq m_{2}$ and $\varphi\left(m_{1}\right)=\varphi\left(m_{2}\right)$, where $m_{1}, m_{2} \in \mathfrak{M}$. Then we can choose $f_{1} \in \operatorname{Lip}$ such that $\widehat{f_{1}^{\prime}}\left(m_{1}\right)=1$ and $\widehat{f_{1}^{\prime}}\left(m_{2}\right)=0$ because of $\left\{\widehat{f}^{\prime}: f \in \operatorname{Lip}\right\}=C(\mathfrak{M})$ and the Urysohn's lemma. Since T is surjective there exists $f_{0} \in \operatorname{Lip}$ such that $T f_{0}=f_{1}$. By (c) and (d) of Claim 4.9 we have

$$
\left|\widehat{f_{0}^{\prime}}(\varphi(m))\right|=\left|\widehat{\omega}(m) \widehat{f_{0}^{\prime}}(\varphi(m))\right|=\left|\widehat{\left(T f_{0}\right)^{\prime}}(m)\right|=\left|\widehat{f_{1}^{\prime}}(m)\right| \quad(m \in \mathfrak{M}) .
$$

Hence $1=\left|\widehat{f_{1}^{\prime}}\left(m_{1}\right)\right|=\left|\widehat{f_{0}^{\prime}}\left(\varphi\left(m_{1}\right)\right)\right|=\left|\widehat{f_{0}^{\prime}}\left(\varphi\left(m_{2}\right)\right)\right|=\left|\widehat{f_{1}^{\prime}}\left(m_{2}\right)\right|=0$, which is a contradiction. Therefore φ is injective.

Definition 4.11. For each $h \in C(\mathfrak{M})$ we define a function Ψh on \mathfrak{M} by

$$
(\Psi h)(m)=h(\varphi(m)) \quad(m \in \mathfrak{M}) .
$$

Since φ is a homeomorphism of \mathfrak{M} onto itself, Ψ is an algebra automorphism of $C(\mathfrak{M})$. Put $\Phi=\Gamma^{-1} \Psi \Gamma$. Since the Gelfand transformation Γ is an algebra isomorphism of L^{∞} onto $C(\mathfrak{M}), \Phi$ is an algebra automorphism of L^{∞}.

Claim 4.12. The operator T has the form (1.2).
Proof. Let $f \in$ Lip. By Claim 4.9 (d) we have

$$
\begin{aligned}
\widehat{(T f)^{\prime}}(m) & =\widehat{\omega}(m) \widehat{f}^{\prime}(\varphi(m))=\widehat{\omega}(m)\left(\Psi \widehat{f}^{\prime}\right)(m)=\widehat{\omega}(m)\left(\Psi \Gamma f^{\prime}\right)(m) \\
& =\widehat{\omega}(m)\left(\Gamma \Phi f^{\prime}\right)(m)=\widehat{\omega}(m) \widehat{\Phi f^{\prime}}(m)=\omega \cdot\left(\Phi f^{\prime}\right)(m) .
\end{aligned}
$$

for any $m \in \mathfrak{M}$. Hence $(T f)^{\prime}=\omega \cdot\left(\Phi f^{\prime}\right)$. Together with Claim 4.9 (b) we obtain

$$
(T f)(x)=(T f)(0)+\int_{0}^{x}(T f)^{\prime}(t) d t=\lambda f(0)+\int_{0}^{x} \omega(t)\left(\Phi f^{\prime}\right)(t) d t
$$

for $x \in[0,1]$. This completes the proof of Theorem 1.2.
Acknowledgements. The author would like to thank the referee for his/her valuable comments.

References

[1] A. Browder, Introduction to Function Algebras, Benjamin, 1969.
[2] M. Cambern, Isometries of certain Banach algebras, Studia Math., 25 (1965), 217-225.
[3] M. Cambern and V. D. Pathak, Isometries of spaces of differentiable functions, Math. Japon., 26 (1981), 253-260.
[4] J. B. Conway. A Course in Functional Analysis, 2nd ed., Springer-Varlag, 1990.
[5] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman \& Hall/CRC, 2003.
[6] J. J. Font, On weighted composition operators between spaces of measurable functions, Quaest. Math., 22 (1999), 143-148.
[7] K. Jarosz and V. D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc., 305 (1988), 193-206.
[8] A. Jiménez-Vargas and M. Villegas-Vallecillos, Into linear isometries between spaces of Lipschitz functions, Houston J. Math., 34 (2008), 1165-1184.
[9] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, New York, 1983.
[10] H. Koshimizu, Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions, Cent. Eur. J. Math., 9 (2011), 139-146.
[11] T. Matsumoto and S. Watanabe, Surjective linear isometries of the domain of a *-derivation equipped with the Cambern norm, Math. Z., 230 (1999), 185-200.
[12] V. D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math., 94 (1981), 211-222.
[13] N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177-192.
[14] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
(Hironao Koshimizu) Department of Mathematics and System Development, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan E-mail address: s09t201@shinshu-u.ac.jp

Received September 27, 2011
Revised November 17, 2011

[^0]: 2000 Mathematics Subject Classification. Primary 46B04; Secondary 46E15.
 Key words and phrases. Linear isometry, continuously differentiable function, Lipschitz continuous function.

