LINEAR ISOMETRIES ON SPACES OF CONTINUOUSLY DIFFERENTIABLE AND LIPSCHITZ CONTINUOUS FUNCTIONS

HIRONAO KOSHIMIZU

ABSTRACT. We characterize the surjective linear isometries on $C^{(n)}[0,1]$ and Lip[0,1]. Here $C^{(n)}[0,1]$ denotes the Banach space of *n*-times continuously differentiable functions on [0,1] equipped with the norm

$$||f|| = \sum_{k=0}^{n-1} |f^{(k)}(0)| + \sup_{x \in [0,1]} |f^{(n)}(x)| \quad (f \in C^{(n)}[0,1]),$$

and Lip[0,1] denotes the Banach space of Lipschitz continuous functions on [0,1] equipped with the norm

$$||f|| = |f(0)| + \mathop{\mathrm{ess\,sup}}_{x \in [0,1]} |f'(x)| \quad (f \in \operatorname{Lip}[0,1]).$$

1. Introduction

The linear isometries on various function spaces have been studied by many mathematicians (see [5]). The source of this subject is the classical Banach-Stone theorem, which characterizes the surjective linear isometries on C(X), the Banach space of all complex-valued continuous functions on a compact Hausdorff space X with the supremum norm $\|\cdot\|_{\infty}$. It states that every surjective linear isometry T from C(X)onto itself has the canonical form: $Tf = \omega(f \circ \varphi)$ for all $f \in C(X)$, where φ is a homeomorphism of X onto itself and ω is a unimodular continuous function on X. In this paper, we investigate the surjective linear isometries on two types of the spaces $C^{(n)}[0, 1]$ and Lip[0, 1].

We denote by $C^{(n)}[0,1]$ for a positive integer n the K-linear space of K-valued n-times continuously differentiable functions on the closed unit interval [0,1], where K is the real field \mathbb{R} or the complex field \mathbb{C} . With each of the following five equivalent

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B04; Secondary 46E15.

Key words and phrases. Linear isometry, continuously differentiable function, Lipschitz continuous function.

norms the space $C^{(n)}[0,1]$ is a Banach space respectively:

$$\|f\|_{C} = \max\left\{\sum_{k=0}^{n} \frac{|f^{(k)}(x)|}{k!} : x \in [0,1]\right\},\$$
$$\|f\|_{\Sigma} = \sum_{k=0}^{n} \frac{\|f^{(k)}\|_{\infty}}{k!},\$$
$$\|f\|_{M} = \max\{\|f\|_{\infty}, \|f'\|_{\infty}, \dots, \|f^{(n)}\|_{\infty}\},\$$
$$\|f\|_{m} = \max\{|f(0)|, |f'(0)|, \dots, |f^{(n-1)}(0)|, \|f^{(n)}\|_{\infty}\},\$$
$$\|f\|_{\sigma} = \sum_{k=0}^{n-1} |f^{(k)}(0)| + \|f^{(n)}\|_{\infty},\$$

for $f \in C^{(n)}[0,1]$. Among them, $(C^{(n)}[0,1], \|\cdot\|_C)$ and $(C^{(n)}[0,1], \|\cdot\|_{\Sigma})$ are unital semisimple commutative Banach algebras.

In [2], Cambern characterized the surjective linear isometries on $(C^{(1)}[0,1], \|\cdot\|_C)$. Later, Pathak [12] extended this result to $(C^{(n)}[0,1], \|\cdot\|_C)$. The other extensions may be found in [3] and [11]. On the other hand, Rao and Roy [13] and Jarosz and Pathak [7] characterized the surjective linear isometries on $(C^{(1)}[0,1], \|\cdot\|_{\Sigma})$ and $(C^{(1)}[0,1], \|\cdot\|_M)$, respectively. Those results say that every surjective linear isometry has the canonical form. However, the author [10] proved that the surjective linear isometries on $(C^{(n)}[0,1], \|\cdot\|_m)$ have the different form. In this paper, we show a similar result for the space $(C^{(n)}[0,1], \|\cdot\|_{\sigma})$.

To state our theorem, we introduce an integral operator S: for any $f \in C([0,1])$, we put $(Sf)(x) = \int_0^x f(t)dt$ for all $x \in [0,1]$. Then S is a linear operator of C([0,1])onto $\{f \in C^{(1)}[0,1] : f(0) = 0\}$, and S^n maps C([0,1]) onto $\{f \in C^{(n)}[0,1] : f^{(k)}(0) = 0 \text{ for } k = 0, 1, ..., n-1\}$. Hence $\{f^{(n)} : f \in C^{(n)}[0,1]\} = C([0,1])$. Moreover we have

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + (S^n f^{(n)})(x) \qquad (x \in [0,1], \ f \in C^{(n)}[0,1]).$$

The following is a characterization of the surjective linear isometries on $(C^{(n)}[0,1], \|\cdot\|_{\sigma})$.

Theorem 1.1. Let T be a linear operator from $(C^{(n)}[0,1], \|\cdot\|_{\sigma})$ onto itself. Then T is an isometry if and only if there exist a homeomorphism φ of [0,1] onto itself, a unimodular continuous function ω on [0,1], a permutation $\{\tau(0), \tau(1), \ldots, \tau(n-1)\}$ of $\{0,1,\ldots,n-1\}$ and unimodular constants $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ such that

$$(Tf)(x) = \sum_{k=0}^{n-1} \frac{\lambda_k f^{(\tau(k))}(0)}{k!} x^k + \left(S^n(\omega(f^{(n)} \circ \varphi)) \right)(x)$$
(1.1)

for all $x \in [0, 1]$ and $f \in (C^{(n)}[0, 1], \|\cdot\|_{\sigma})$.

We denote the K-linear space of K-valued Lipschitz continuous functions on [0, 1]by Lip[0, 1]. Every $f \in \text{Lip}[0, 1]$ has the derivative f'(x) for almost all $x \in [0, 1]$, and the set $\{f' : f \in \text{Lip}[0, 1]\}$ coincides with $L^{\infty}[0, 1]$; the Banach algebra of K-valued essentially bounded functions on [0, 1] with the essential supremum norm $\|\cdot\|_{L^{\infty}}$. With each of the following four equivalent norms the space Lip[0, 1] is a Banach space respectively:

$$||f||_{\Sigma} = ||f||_{\infty} + ||f'||_{L^{\infty}},$$

$$||f||_{M} = \max\{||f||_{\infty}, ||f'||_{L^{\infty}}\},$$

$$||f||_{m} = \max\{|f(0)|, ||f'||_{L^{\infty}}\},$$

$$||f||_{\sigma} = |f(0)| + ||f'||_{L^{\infty}},$$

for $f \in \text{Lip}[0, 1]$. Among them, $(\text{Lip}[0, 1], \|\cdot\|_{\Sigma})$ is a unital semisimple commutative Banach algebra. It is known that every surjective linear isometry on $(\text{Lip}[0, 1], \|\cdot\|_{\Sigma})$ or $(\text{Lip}[0, 1], \|\cdot\|_M)$ has the canonical form ([7, 8, 13]). In [10], the author proved that the surjective linear isometries on $(\text{Lip}[0, 1], \|\cdot\|_m)$ have the different form. The following is a characterization of the surjective linear isometries on $(\text{Lip}[0, 1], \|\cdot\|_{\sigma})$.

Theorem 1.2. Let T be a linear operator from $(\text{Lip}[0,1], \|\cdot\|_{\sigma})$ onto itself. Then T is an isometry if and only if there exist an algebra automorphism Φ of $L^{\infty}[0,1]$, a unimodular function $\omega \in L^{\infty}[0,1]$ and a unimodular constant λ such that

$$(Tf)(x) = \lambda f(0) + \int_0^x \omega(t)(\Phi f')(t)dt$$
 (1.2)

for all $x \in [0, 1]$ and $f \in (Lip[0, 1], \|\cdot\|_{\sigma})$.

It is known that every algebra automorphism Φ of $L^{\infty}[0,1]$ has the form: $\Phi f = f \circ \varphi$ for all $f \in L^{\infty}[0,1]$, where $\varphi \in L^{\infty}[0,1]$ and $\varphi(x) \in [0,1]$ for almost all $x \in [0,1]$. This fact is proved by the method of the proof of [6, Theorem 1].

Remark. Theorems 1.1 and 1.2 are the same results as the cases $(C^{(n)}[0,1], \|\cdot\|_m)$ and $(\text{Lip}[0,1], \|\cdot\|_m)$, respectively (see [10]). However we need a different consideration for their proofs.

Throughout this paper, we use the notations below: Put $\mathbb{T} = \{z \in \mathbb{K} : |z| = 1\}$. If $\mathbb{K} = \mathbb{R}$, then $\mathbb{T} = \{1, -1\}$. If $\mathbb{K} = \mathbb{C}$, then \mathbb{T} denotes the unit circle in \mathbb{C} . For any nonnegative integer ℓ , we define $i^{\ell}(x) = x^{\ell}$ for $x \in [0, 1]$. In particular, we write $i^0 = 1$ and $i^1 = i$. Let $f \in C^{(n)}[0, 1]$ and $\ell = 1, 2, \ldots, n$. Then $f = i^{\ell}$ if and only if $f(0) = f'(0) = \cdots = f^{(\ell-1)}(0) = 0$ and $f^{(\ell)}(x) = \ell!$ for $x \in [0, 1]$. For a normed linear space \mathcal{B} , we put ball $\mathcal{B} = \{\xi \in \mathcal{B} : \|\xi\|_{\mathcal{B}} \leq 1\}$ and denote its dual space by \mathcal{B}^* .

2. Lemmas

Before proving the theorem we state useful lemmas.

Lemma 2.1. Let S_1, \ldots, S_ℓ be normed linear spaces, and let $\mathcal{B} = S_1 \times \cdots \times S_\ell$ be the product space equipped with the norm

$$||(s_1,\ldots,s_\ell)||_{\mathcal{B}} = \max\{||s_1||_{\mathcal{S}_1},\ldots,||s_\ell||_{\mathcal{S}_\ell}\} \quad ((s_1,\ldots,s_\ell)\in\mathcal{B}).$$

Then (s_1, \ldots, s_ℓ) is an extreme point of ball \mathcal{B} if and only if s_k is an extreme point of ball \mathcal{S}_k for all $k = 1, \ldots, \ell$.

Proof. Suppose s_k is an extreme point of ball \mathcal{S}_k for all k. To prove that (s_1, \ldots, s_ℓ) is an extreme point of ball \mathcal{B} , write $(s_1, \ldots, s_\ell) = ((s'_1, \ldots, s'_\ell) + (s''_1, \ldots, s''_\ell))/2$, where $(s'_1, \ldots, s'_\ell), (s''_1, \ldots, s''_\ell) \in \text{ball } \mathcal{B}$. Then for each $k = 1, \ldots, \ell$ we have

$$s_k = \frac{1}{2}s'_k + \frac{1}{2}s''_k.$$

Also, $||s'_k||_{\mathcal{S}_k} \leq \max\{||s'_1||_{\mathcal{S}_1}, \dots, ||s'_\ell||_{\mathcal{S}_\ell}\} = ||(s'_1, \dots, s'_\ell)||_{\mathcal{B}} \leq 1$. Similarly, $||s''_k||_{\mathcal{S}_k} \leq 1$. By hypothesis, $s_k = s'_k = s''_k$. Hence $(s_1, \dots, s_\ell) = (s'_1, \dots, s'_\ell) = (s''_1, \dots, s''_\ell)$. Thus (s_1, \dots, s_ℓ) is an extreme point of ball \mathcal{B} .

The converse can be proved in a similar manner.

Lemma 2.2. Suppose that ψ_1 and ψ_2 are injective continuous mappings from [0,1]into [0,1]. Let $\alpha \in \mathbb{C}$. If $\alpha(g \circ \psi_1) + (g \circ \psi_2)$ is constant on [0,1] for all real-valued continuous functions g on [0,1], then $\psi_1 = \psi_2$.

Proof. Assume $\psi_1 \neq \psi_2$. Then $\psi_1(p) \neq \psi_2(p)$ for some $p \in [0,1]$. Since ψ_1 is continuous there exists $q \in [0,1]$ such that $q \neq p$ and $\psi_1(q) \neq \psi_2(p)$. Since ψ_2 is injective, $\psi_2(q) \neq \psi_2(p)$. Applying the Urysohn's lemma there exists a real-valued continuous function g_0 on [0,1] so that $g_0(\psi_2(p)) = 1$ and $g_0(\psi_1(p)) = g_0(\psi_1(q)) =$ $g_0(\psi_2(q)) = 0$. Then we have $\alpha g_0(\psi_1(p)) + g_0(\psi_2(p)) = 1$ and $\alpha g_0(\psi_1(q)) + g_0(\psi_2(q)) =$ 0. This contradicts the fact that $\alpha(g_0 \circ \psi_1) + (g_0 \circ \psi_2)$ is constant. Hence $\psi_1 = \psi_2$. \Box

3. Proof of Theorem 1.1

From now on, we write simply $C^{(n)}$ and C for the Banach spaces $(C^{(n)}[0,1], \|\cdot\|_{\sigma})$ and $(C([0,1]), \|\cdot\|_{\infty})$, respectively.

We first give a proof for the elementary part:

Proof of the "if" part. Suppose T has the form (1.1). It is clear that T is linear. Let $f \in C^{(n)}$. For each $\ell = 0, 1, ..., n-1$ we have

$$(Tf)^{(\ell)}(x) = \sum_{k=\ell}^{n-1} \frac{\lambda_k f^{(\tau(k))}(0)}{(k-\ell)!} x^{k-\ell} + \left(S^{n-\ell}(\omega(f^{(n)} \circ \varphi))(x) \quad (x \in [0,1])\right).$$

Thus $(Tf)^{(\ell)}(0) = \lambda_{\ell} f^{(\tau(\ell))}(0)$ since (Sg)(0) = 0 for all $g \in C$. Moreover $(Tf)^{(n)} = \omega(f^{(n)} \circ \varphi)$. Therefore

$$||Tf||_{\sigma} = \sum_{\ell=0}^{n-1} |\lambda_{\ell} f^{(\tau(\ell))}(0)| + ||\omega(f^{(n)} \circ \varphi)||_{\infty} = \sum_{k=0}^{n-1} |f^{(k)}(0)| + ||f^{(n)}||_{\infty} = ||f||_{\sigma}.$$

Hence T is an isometry.

To prove that T is surjective let $g \in C^{(n)}$. Put

$$f(x) = \sum_{k=0}^{n-1} \frac{\overline{\lambda_{\tau^{-1}(k)}} g^{(\tau^{-1}(k))}(0)}{k!} x^k + \left(S^n \left(\frac{g^{(n)} \circ \varphi^{-1}}{\omega \circ \varphi^{-1}} \right) \right) (x) \quad (x \in [0,1]).$$

Then $f^{(\ell)}(0) = \overline{\lambda_{\tau^{-1}(\ell)}} g^{(\tau^{-1}(\ell))}(0)$ for $\ell = 0, 1, ..., n-1$ and $f^{(n)} = (g^{(n)} \circ \varphi^{-1})/(\omega \circ \varphi^{-1})$. Hence

$$(Tf)(x) = \sum_{k=0}^{n-1} \frac{\lambda_k \overline{\lambda_k} g^{(k)}(0)}{k!} x^k + \left(S^n \left(\omega \left(\frac{g^{(n)} \circ \varphi^{-1}}{\omega \circ \varphi^{-1}} \circ \varphi \right) \right) \right) (x)$$
$$= \sum_{k=0}^{n-1} \frac{g^{(k)}(0)}{k!} x^k + \left(S^n g^{(n)} \right) (x) = g(x)$$

for all $x \in [0, 1]$.

The rest of this section is devoted to the proof of the "only if" part. Let T be a linear isometry of $C^{(n)}$ onto itself. Let \mathbb{K}^n denote the product space of n copies of \mathbb{K} . The points of \mathbb{K}^n are thus ordered n-tuples $\boldsymbol{a} = (a_0, a_1, \ldots, a_{n-1})$, where $a_0, a_1, \ldots, a_{n-1} \in \mathbb{K}$. For instance, we write $\boldsymbol{b} = (b_0, b_1, \ldots, b_{n-1}), \mathbf{1} = (1, 1, \ldots, 1)$ and so on.

Definition 3.1. For each $(a, c, x) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ we define a functional $\Lambda_{(a, c, x)}$ on $C^{(n)}$ by

$$\Lambda_{(\boldsymbol{a},c,x)}(f) = \sum_{k=0}^{n-1} a_k f^{(k)}(0) + c f^{(n)}(x) \quad (f \in C^{(n)}).$$

It is clear that $\Lambda_{(a,c,x)} \in \text{ball}(C^{(n)})^*$.

Proposition 3.2. Let $\xi \in (C^{(n)})^*$. Then ξ is an extreme point of ball $(C^{(n)})^*$ if and only if there exists $(\boldsymbol{a}, c, x) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ such that $\xi = \Lambda_{(\boldsymbol{a}, c, x)}$.

Proof. If the product spaces $\mathbb{K}^n \times C$ and $\mathbb{K}^n \times C^*$ are equipped with the norms

$$\|(\boldsymbol{b},g)\| = \sum_{k=0}^{n-1} |b_k| + \|g\|_{\infty} \qquad ((\boldsymbol{b},g) \in \mathbb{K}^n \times C),$$

$$\|(\boldsymbol{a},\eta)\| = \max\{|a_0|, |a_1|, \dots, |a_{n-1}|, \|\eta\|\} \quad ((\boldsymbol{a},\eta) \in \mathbb{K}^n \times C^*),$$

-77-

then $(\mathbb{K}^n \times C)^*$ is linearly isometric to $\mathbb{K}^n \times C^*$. In fact, the linear isometry Q of $\mathbb{K}^n \times C^*$ onto $(\mathbb{K}^n \times C)^*$ is given by

$$(Q(\boldsymbol{a},\eta))(\boldsymbol{b},g) = \sum_{k=0}^{n-1} a_k b_k + \eta(g) \quad ((\boldsymbol{a},\eta) \in \mathbb{K}^n \times C^*, \ (\boldsymbol{b},g) \in \mathbb{K}^n \times C).$$

Now, define a mapping P of $C^{(n)}$ into $\mathbb{K}^n \times C$ by

$$Pf = \left((f(0), f'(0), \dots, f^{(n-1)}(0)), f^{(n)} \right) \quad (f \in C^{(n)}).$$

Clearly P is a linear isometry of $C^{(n)}$ onto $\mathbb{K}^n \times C$. Then the conjugate operator P^* of P is a linear isometry of $(\mathbb{K}^n \times C)^*$ onto $(C^{(n)})^*$. Hence P^*Q is a linear isometry of $\mathbb{K}^n \times C^*$ onto $(C^{(n)})^*$. Thus $\xi \in (C^{(n)})^*$ is an extreme point of $\operatorname{ball}(C^{(n)})^*$ if and only if $\xi = P^*Q(\boldsymbol{a}, \eta)$, where (\boldsymbol{a}, η) is an extreme point of $\operatorname{ball}(\mathbb{K}^n \times C^*)$. Note that the set of all extreme points of $\operatorname{ball}\mathbb{K}$ is \mathbb{T} . Also it is known that the set of all extreme points of $\operatorname{ball} C^*$ is $\{ce_x : c \in \mathbb{T}, x \in [0, 1]\}$, where e_x is the evaluation functional at $x: e_x(g) = g(x)$ for $g \in C$ (see [4, Theorem V.8.4]). By Lemma 2.1, (\boldsymbol{a}, η) is an extreme point of $\operatorname{ball}(\mathbb{K}^n \times C^*)$ if and only if $\boldsymbol{a} \in \mathbb{T}^n$ and $\eta = ce_x$, where $c \in \mathbb{T}, x \in [0, 1]$. Thus the conclusion follows from

$$(P^*Q(\boldsymbol{a}, ce_x))(f) = (Q(\boldsymbol{a}, ce_x))((f(0), f'(0), \dots, f^{(n-1)}(0)), f^{(n)})$$
$$= \sum_{k=0}^{n-1} a_k f^{(k)}(0) + cf^{(n)}(x) = \Lambda_{(\boldsymbol{a}, c, x)}(f)$$
$$\square$$

for $f \in C^{(n)}$.

Claim 3.3. For any $(\boldsymbol{a}, c, x) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ there exists a unique $(\boldsymbol{b}, d, y) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ such that $T^* \Lambda_{(\boldsymbol{a}, c, x)} = \Lambda_{(\boldsymbol{b}, d, y)}$.

Proof. Let $(\boldsymbol{a}, c, x) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$. By Proposition 3.2, $\Lambda_{(\boldsymbol{a}, c, x)}$ is an extreme point of ball $(C^{(n)})^*$. Since T^* is a linear isometry of $(C^{(n)})^*$ onto itself, $T^*\Lambda_{(\boldsymbol{a}, c, x)}$ is an extreme point of ball $(C^{(n)})^*$. By Proposition 3.2 there exists $(\boldsymbol{b}, d, y) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ such that $T^*\Lambda_{(\boldsymbol{a}, c, x)} = \Lambda_{(\boldsymbol{b}, d, y)}$.

For the uniqueness of (\boldsymbol{b}, d, y) suppose $T^*\Lambda_{(\boldsymbol{a},c,x)} = \Lambda_{(\boldsymbol{b}',d',y')}$ for some $(\boldsymbol{b}', d', y') \in \mathbb{T}^n \times \mathbb{T} \times [0,1]$, where $\boldsymbol{b}' = (b'_0, b'_1, \dots, b'_{n-1})$. Then $\Lambda_{(\boldsymbol{b},d,y)} = \Lambda_{(\boldsymbol{b}',d',y')}$ and so

$$\sum_{k=0}^{n-1} b_k f^{(k)}(0) + df^{(n)}(y) = \sum_{k=0}^{n-1} b'_k f^{(k)}(0) + d' f^{(n)}(y') \quad (f \in C^{(n)}).$$
(3.1)

For each $\ell = 0, 1, ..., n-1$ put $f = i^{\ell}$ in (3.1). Then $b_{\ell} = b'_{\ell}$ holds hence $\mathbf{b} = \mathbf{b}'$. Substituting $f = i^n$ and $f = i^{n+1}$ respectively in (3.1) we obtain d = d' and y = y'. **Definition 3.4.** Let $(\boldsymbol{a}, x) \in \mathbb{T}^n \times [0, 1]$. Applying Claim 3.3 there exists a unique $(\boldsymbol{b}, d, y) \in \mathbb{T}^n \times \mathbb{T} \times [0, 1]$ such that $T^* \Lambda_{(\boldsymbol{a}, 1, x)} = \Lambda_{(\boldsymbol{b}, d, y)}$. Since $\boldsymbol{b} = (b_0, \ldots, b_{n-1})$, d and y depend on (\boldsymbol{a}, x) we write

$$b_k = u_k(a, x)$$
 $(k = 0, 1, ..., n - 1), \quad d = v(a, x)$ and $y = \psi(a, x).$

Thus u_k and v are unimodular functions on $\mathbb{T}^n \times [0, 1]$ and ψ is a mapping of $\mathbb{T}^n \times [0, 1]$ into [0, 1]. Moreover we have

$$\Lambda_{(a,1,x)}(Tf) = (T^*\Lambda_{(a,1,x)})(f) = \Lambda_{((u_0(a,x),\dots,u_{n-1}(a,x)),v(a,x),\psi(a,x))}(f)$$

for $f \in C^{(n)}$ and so

$$\sum_{k=0}^{n-1} a_k (Tf)^{(k)}(0) + (Tf)^{(n)}(x) = \sum_{\ell=0}^{n-1} u_\ell(\boldsymbol{a}, x) f^{(\ell)}(0) + v(\boldsymbol{a}, x) f^{(n)}(\psi(\boldsymbol{a}, x)).$$
(3.2)

Substituting $f = i^m$ for m = 0, 1, ..., n - 1 respectively in (3.2) we have

$$\sum_{k=0}^{n-1} a_k (Ti^m)^{(k)}(0) + (Ti^m)^{(n)}(x) = m! u_m(\boldsymbol{a}, x).$$
(3.3)

Substituting i^n and i^{n+1} for f in (3.2) we have

$$\sum_{k=0}^{n-1} a_k (Ti^n)^{(k)}(0) + (Ti^n)^{(n)}(x) = n! v(\boldsymbol{a}, x),$$
(3.4)

$$\sum_{k=0}^{n-1} a_k (Ti^{n+1})^{(k)}(0) + (Ti^{n+1})^{(n)}(x) = (n+1)! v(\boldsymbol{a}, x) \psi(\boldsymbol{a}, x).$$
(3.5)

Claim 3.5. For k = 0, 1, ..., n - 1, u_k and v are unimodular continuous functions on $\mathbb{T}^n \times [0, 1]$. Also, ψ is a continuous mapping of $\mathbb{T}^n \times [0, 1]$ onto [0, 1].

Proof. Note that the left hand sides of (3.3), (3.4) and (3.5) are continuous in $(\boldsymbol{a}, x) \in \mathbb{T}^n \times [0, 1]$. The first two equations show that u_k and v are continuous. Since v is unimodular, (3.5) implies that ψ is also continuous.

To prove that $\psi : \mathbb{T}^n \times [0,1] \to [0,1]$ is surjective let $y \in [0,1]$. Since T^* is a linear isometry of $(C^{(n)})^*$ onto itself, Proposition 3.2 gives $(\boldsymbol{a}, c, x) \in \mathbb{T}^n \times \mathbb{T} \times [0,1]$ such that $T^*\Lambda_{(\boldsymbol{a},c,x)} = \Lambda_{(1,1,y)}$. Then we have

$$(T^*\Lambda_{(\bar{c}a,1,x)})(f) = \bar{c}\left(\sum_{k=0}^{n-1} a_k (Tf)^{(k)}(0) + c(Tf)^{(n)}(x)\right) = \bar{c}(T^*\Lambda_{(a,c,x)})(f)$$
$$= \bar{c}(\Lambda_{(1,1,y)})(f) = \left(\sum_{k=0}^{n-1} \bar{c}f^{(k)}(0) + \bar{c}f^{(n)}(y)\right) = \Lambda_{(\bar{c}1,\bar{c},y)}(f)$$

for $f \in C^{(n)}$. By the definition of ψ we get $\psi(\overline{c}a, x) = y$. Hence ψ is surjective. \Box Claim 3.6. For any fixed $x \in [0, 1]$, $\psi(\mathbb{T}^n \times \{x\})$ is a singleton. Proof in case $\mathbb{K} = \mathbb{R}$. Fix $a_1, \ldots, a_{n-1} \in \mathbb{T} = \{1, -1\}$. For $t \in \{1, -1\}$ put $\mathbf{a}_t = (t, a_1, \ldots, a_{n-1})$. By Claim 3.5 functions $u_k(\mathbf{a}_t, x)$ and $v(\mathbf{a}_t, x)$ are continuous and take values within -1 and 1, so that they are constant functions as the interval [0, 1] is connected. Let

$$u_k(\boldsymbol{a}_t, x) = \alpha_{t,k}$$
 and $v(\boldsymbol{a}_t, x) = \beta_t$ $(x \in [0, 1]),$

where $\alpha_{t,k}$ and β_t are 1 or -1. Define $\psi_t(x) = \psi(\boldsymbol{a}_t, x)$ for all $t \in \{1, -1\}$ and $x \in [0, 1]$. Putting $\boldsymbol{a} = \boldsymbol{a}_t$ in (3.2) we have

$$t(Tf)(0) + \sum_{k=1}^{n-1} a_k (Tf)^{(k)}(0) + (Tf)^{(n)}(x) = \sum_{\ell=0}^{n-1} \alpha_{t,\ell} f^{(\ell)}(0) + \beta_t f^{(n)}(\psi_t(x))$$
(3.6)

for all $x \in [0, 1]$ and $f \in C^{(n)}$.

By Claim 3.5 ψ_t is continuous. We show that ψ_t is injective. Since T is surjective we can choose $f_0 \in C^{(n)}$ so that $Tf_0 = i^{n+1}/(n+1)!$. Putting $f = f_0$ in (3.6) we have

$$x = \sum_{\ell=0}^{n-1} \alpha_{t,\ell} f_0^{(\ell)}(0) + \beta_t f_0^{(n)}(\psi_t(x)).$$

Since the left hand side is injective in $x \in [0, 1]$, ψ_t must be injective.

Now the difference of (3.6) with t = 1 and (3.6) with t = -1 is

$$2(Tf)(0) = \sum_{\ell=0}^{n-1} (\alpha_{1,\ell} - \alpha_{-1,\ell}) f^{(\ell)}(0) + \beta_1 f^{(n)}(\psi_1(x)) - \beta_{-1} f^{(n)}(\psi_{-1}(x))$$

for all $x \in [0,1]$ and $f \in C^{(n)}$. If $\gamma = -\beta_1/\beta_{-1}$, then the above equation implies that $\gamma(f^{(n)} \circ \psi_1) + (f^{(n)} \circ \psi_{-1})$ is constant on [0, 1] for all $f \in C^{(n)}$. In other words, $\gamma(g \circ \psi_1) + (g \circ \psi_{-1})$ is constant for all $g \in C$. Hence Lemma 2.2 yields $\psi_1 = \psi_{-1}$, that is,

$$\psi(1, a_1, \dots, a_{n-1}, x) = \psi_1(x) = \psi_{-1}(x) = \psi(-1, a_1, \dots, a_{n-1}, x) \quad (x \in [0, 1]).$$

If we fix $x \in [0, 1]$, then the set $\psi(\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\})$ is a singleton.

By the similar argument we can show that for each $\ell = 0, 1, \ldots, n-1$ and for fixed $a_0, \ldots, a_{\ell-1}, a_{\ell+1}, \ldots, a_{n-1} \in \mathbb{T}$ and $x \in [0, 1]$ the set

$$\psi(\{a_0\} \times \cdots \times \{a_{\ell-1}\} \times \mathbb{T} \times \{a_{\ell+1}\} \times \cdots \times \{a_{n-1}\} \times \{x\})$$

is a singleton. Since ℓ is arbitrary we see that $\psi(\mathbb{T}^n \times \{x\})$ is also a singleton. \Box

Proof in case $\mathbb{K} = \mathbb{C}$. Fix $a_1, \ldots, a_{n-1} \in \mathbb{T}$ and $x \in [0, 1]$. Since $\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\}$ is connected and compact the continuity of ψ implies that $\psi(\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\})$ is connected and compact in [0, 1]. Hence we can write $\psi(\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\}) = [s, t]$, where $s, t \in [0, 1]$ and $s \leq t$. To show that s = t assume s < t. Then we easily find three distinct points $p, q, r \in [s, t]$ and a

function $f_0 \in C^{(n)}$ such that $f_0(0) = f'_0(0) = \cdots = f_0^{(n-1)}(0) = f_0^{(n)}(p) = f_0^{(n)}(q) = 0$ and $f_0^{(n)}(r) = 1$. Since $p, q, r \in \psi(\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\})$ there exist three distinct points $b, c, d \in \mathbb{T}$ such that $\psi(b, a_1, \dots, a_{n-1}, x) = p, \psi(c, a_1, \dots, a_{n-1}, x) = q$ and $\psi(d, a_1, \dots, a_{n-1}, x) = r$. Putting $f = f_0$ in (3.2) we have

$$b(Tf_0)(0) + \sum_{k=1}^{n-1} a_k (Tf_0)^{(k)}(0) + (Tf_0)^{(n)}(x) = 0, \qquad (3.7)$$

$$c(Tf_0)(0) + \sum_{k=1}^{n-1} a_k (Tf_0)^{(k)}(0) + (Tf_0)^{(n)}(x) = 0, \qquad (3.8)$$

$$d(Tf_0)(0) + \sum_{k=1}^{n-1} a_k (Tf_0)^{(k)}(0) + (Tf_0)^{(n)}(x) = v(d, a_1, \dots, a_{n-1}, x).$$
(3.9)

By (3.7) and (3.8) we have $(Tf_0)(0) = 0$ and $\sum_{k=1}^{n-1} a_k (Tf_0)^{(k)}(0) + (Tf_0)^{(n)}(x) = 0$ because $b \neq c$. It follows by (3.9) that $0 = v(d, a_1 \dots, a_{n-1}, x)$. This contradicts the fact that v is unimodular. Thus we obtain s = t, and $\psi(\mathbb{T} \times \{a_1\} \times \cdots \times \{a_{n-1}\} \times \{x\})$ is a singleton $\{s\}$.

A similar argument shows that for each $\ell = 0, 1, ..., n-1$ and for fixed $a_0, ..., a_{\ell-1}$, $a_{\ell+1}, ..., a_{n-1} \in \mathbb{T}$ the set

$$\psi(\{a_0\} \times \cdots \times \{a_{\ell-1}\} \times \mathbb{T} \times \{a_{\ell+1}\} \times \cdots \times \{a_{n-1}\} \times \{x\})$$

is a singleton. Hence we see that $\psi(\mathbb{T}^n \times \{x\})$ is also a singleton. This concludes the claim.

Definition 3.7. Define a mapping φ of [0, 1] into [0, 1] by

$$\varphi(x) = \psi(\mathbf{1}, x) \quad (x \in [0, 1]).$$

Since ψ is a continuous mapping of $\mathbb{T}^n \times [0, 1]$ onto [0, 1], φ is a continuous mapping of [0, 1] onto [0, 1]. By Claim 3.6 we have $\varphi(x) = \psi(\mathbf{1}, x) = \psi(\mathbf{a}, x)$ for $(\mathbf{a}, x) \in \mathbb{T}^n \times [0, 1]$. Moreover for any $(\mathbf{a}, x) \in \mathbb{T}^n \times [0, 1]$ and $f \in C^{(n)}$, (3.2) is written as

$$\sum_{k=0}^{n-1} a_k (Tf)^{(k)}(0) + (Tf)^{(n)}(x) = \sum_{\ell=0}^{n-1} u_\ell(\boldsymbol{a}, x) f^{(\ell)}(0) + v(\boldsymbol{a}, x) f^{(n)}(\varphi(x)).$$

Applying (3.3) and (3.4) we have by removing u_{ℓ} and v the equation

$$\sum_{k=0}^{n-1} a_k (Tf)^{(k)}(0) + (Tf)^{(n)}(x)$$

= $\sum_{k=0}^{n-1} a_k \left(\sum_{\ell=0}^{n-1} \frac{(Ti^{\ell})^{(k)}(0)}{\ell!} f^{(\ell)}(0) + \frac{(Ti^n)^{(k)}(0)}{n!} f^{(n)}(\varphi(x)) \right)$
+ $\sum_{\ell=0}^{n-1} \frac{(Ti^{\ell})^{(n)}(x)}{\ell!} f^{(\ell)}(0) + \frac{(Ti^n)^{(n)}(x)}{n!} f^{(n)}(\varphi(x)).$

Since this holds for all $\boldsymbol{a} = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{T}^n$ we have

$$(Tf)^{(k)}(0) = \sum_{\ell=0}^{n-1} \frac{(Ti^{\ell})^{(k)}(0)}{\ell!} f^{(\ell)}(0) + \frac{(Ti^n)^{(k)}(0)}{n!} f^{(n)}(\varphi(x)), \qquad (3.10)$$

$$(Tf)^{(n)}(x) = \sum_{\ell=0}^{n-1} \frac{(Ti^{\ell})^{(n)}(x)}{\ell!} f^{(\ell)}(0) + \frac{(Ti^{n})^{(n)}(x)}{n!} f^{(n)}(\varphi(x)).$$
(3.11)

Claim 3.8. For each k = 0, 1, ..., n - 1, $(Ti^n)^{(k)}(0) = 0$ and

$$(Tf)^{(k)}(0) = \sum_{\ell=0}^{n-1} \frac{(Ti^{\ell})^{(k)}(0)}{\ell!} f^{(\ell)}(0) \quad (f \in C^{(n)})$$
(3.12)

Proof. Fix k = 0, 1, ..., n - 1. Putting $f = i^{n+1}$ in (3.10) we have

$$(Ti^{n+1})^{(k)}(0) = (Ti^n)^{(k)}(0)(n+1)\varphi(x) \quad (x \in [0,1]).$$

Note that the left hand side is constant while φ maps [0,1] onto [0,1]. We must have $(Ti^n)^{(k)}(0) = 0$. Substituting this into (3.10) we obtain (3.12).

Definition 3.9. Define $\omega(x) = (Ti^n)^{(n)}(x)/n!$ for all $x \in [0,1]$. Clearly ω is a continuous function on [0,1].

Claim 3.10. The function ω is a unimodular continuous function on [0, 1].

Proof. By Claim 3.8 and Equation (3.4) we have

$$|(Ti^{n})^{(n)}(x)| = \left|\sum_{k=0}^{n-1} (Ti^{n})^{(k)}(0) + (Ti^{n})^{(n)}(x)\right| = |n!v(\mathbf{1},x)| = n!$$

for all $x \in [0, 1]$. Hence $|\omega(x)| = 1$ for $x \in [0, 1]$.

Claim 3.11. For each $k \in \{0, 1, ..., n-1\}$ there exist a unique $m \in \{0, 1, ..., n-1\}$ and a unique $\alpha \in \mathbb{C}$ such that $Ti^m = \alpha i^k$ and $|\alpha| = m!/k!$. Proof. Let $k \in \{0, 1, \ldots, n-1\}$. Assume $(Ti^{\ell})^{(k)}(0) = 0$ for all $\ell \in \{0, 1, \ldots, n-1\}$. Then (3.12) shows that $(Tf)^{(k)}(0) = 0$ for all $f \in C^{(n)}$, which is a contradiction if we choose f so that $Tf = i^k$ because T is surjective. Therefore there exists $m \in \{0, 1, \ldots, n-1\}$ such that $(Ti^m)^{(k)}(0) \neq 0$. By (3.3) we have

$$m! = |m! u_m(\boldsymbol{a}, x)| = \left| \sum_{\ell=0}^{n-1} a_\ell (Ti^m)^{(\ell)}(0) + (Ti^m)^{(n)}(x) \right|$$
$$\leq \sum_{\ell=0}^{n-1} |(Ti^m)^{(\ell)}(0)| + |(Ti^m)^{(n)}(x)| \leq ||Ti^m||_{\sigma} = ||i^m||_{\sigma} = m!$$

for all $(\boldsymbol{a}, x) \in \mathbb{T}^n \times [0, 1]$. Since the equality holds in the first inequality for all $\boldsymbol{a} = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{T}^n$ and since $(Ti^m)^{(k)}(0) \neq 0$, we must have $(Ti^m)^{(\ell)}(0) = 0$ for all $\ell \in \{0, 1, \dots, n-1\} \setminus \{k\}$ and $(Ti^m)^{(n)}(x) = 0$ for all $x \in [0, 1]$. Moreover $|(Ti^m)^{(k)}(0)| = m!$. Put $\alpha = (Ti^m)^{(k)}(0)/k!$. Then $|\alpha| = m!/k!$ and

$$(Ti^m)(x) = \sum_{\ell=0}^{n-1} \frac{(Ti^m)^{(\ell)}(0)}{\ell!} x^\ell + (Ti^m)^{(n)}(x) = \frac{(Ti^m)^{(k)}(0)}{k!} x^k = \alpha i^k(x) \quad (x \in [0,1]).$$

For the uniqueness assume $Ti^{m'} = \alpha' i^k$, where $m' \in \{0, 1, \ldots, n-1\}$, $\alpha' \in \mathbb{C}$ and $|\alpha'| = m!/k!$. Then $T(i^m/\alpha) = i^k = T(i^{m'}/\alpha')$. Since T is injective we have $i^m/\alpha = i^{m'}/\alpha'$. This yields $\alpha = \alpha'$ and m = m'.

Definition 3.12. According to Claim 3.11, with each $k \in \{0, 1, ..., n-1\}$ we associate $m \in \{0, 1, ..., n-1\}$ and $\alpha \in \mathbb{C}$ such that $Ti^m = \alpha i^k$ and $|\alpha| = m!/k!$. Since m and α depend on k we write

$$m = \tau(k)$$
 and $\alpha = \frac{m!}{k!}\lambda_k.$

Then we have

$$Ti^{\tau(k)} = rac{\tau(k)!}{k!} \lambda_k i^k \quad ext{and} \quad |\lambda_k| = 1.$$

To complete the proof it remains to show the following claim:

Claim 3.13. (a) φ is a homeomorphism of [0, 1] onto [0, 1]. (b) $\{\tau(0), \tau(1), \dots, \tau(n-1)\}$ is a permutation of $\{0, 1, \dots, n-1\}$. (c) T has the form (1.1).

Proof. We first show (b). For (b), it suffices to show that τ is injective. Suppose $\tau(k) = \tau(k')$, where $k, k' \in \{0, 1, \dots, n-1\}$. Then

$$\frac{\tau(k)!}{k!}\lambda_k i^k = T i^{\tau(k)} = T i^{\tau(k')} = \frac{\tau(k')}{k'!}\lambda_{k'} i^{k'}.$$

This implies k = k'. So τ is injective.

-83 -

For (c), let $x \in [0, 1]$ and $f \in C^{(n)}$. Since we have established (b), (3.12) implies

$$(Tf)^{(k)}(0) = \sum_{\ell=0}^{n-1} \frac{(Ti^{\tau(\ell)})^{(k)}(0)}{\tau(\ell)!} f^{(\tau(\ell))}(0) = \sum_{\ell=0}^{n-1} \frac{1}{\tau(\ell)!} \left(\frac{\tau(\ell)!}{\ell!} \lambda_{\ell} i^{\ell}\right)^{(k)}(0) f^{(\tau(\ell))}(0)$$
$$= \sum_{\ell=0}^{n-1} \frac{\lambda_{\ell}(i^{\ell})^{(k)}(0)}{\ell!} f^{(\tau(\ell))}(0) = \lambda_{k} f^{(\tau(k))}(0).$$

On the other hand, by (b) for any $\ell \in \{0, 1, ..., n-1\}$ there is $k \in \{0, 1, ..., n-1\}$ such that $\tau(k) = \ell$. Then

$$(Ti^{\ell})^{(n)}(x) = (Ti^{\tau(k)})^{(n)}(x) = \left(\frac{\tau(k)!}{k!}\lambda_k i^k\right)^{(n)}(x) = 0$$

because k < n. Hence (3.11) shows

$$(Tf)^{(n)}(x) = \omega(x)f^{(n)}(\varphi(x)).$$
 (3.13)

Thus it follows that

$$(Tf)(x) = \sum_{k=0}^{n-1} \frac{(Tf)^{(k)}(0)}{k!} x^k + \left(S^n (Tf)^{(n)}\right)(x)$$
$$= \sum_{k=0}^{n-1} \frac{\lambda_k f^{(\tau(k))}(0)}{k!} x^k + \left(S^n (\omega(f^{(n)} \circ \varphi))\right)(x).$$

Finally we show (a). Since φ is continuous and surjective it suffices to show that φ is injective. Choose $f_0 \in C^{(n)}$ so that $Tf_0 = i^{n+1}/(n+1)!$ because T is surjective. Using Claim 3.10 and Equation (3.13) we have

$$|f_0^{(n)}(\varphi(x))| = |\omega(x)f_0^{(n)}(\varphi(x))| = |(Tf_0)^{(n)}(x)| = |i(x)| = |x| = x \quad (x \in [0, 1]).$$

Hence if $\varphi(x_1) = \varphi(x_2)$, then $x_1 = |f_0^{(n)}(\varphi(x_1))| = |f_0^{(n)}(\varphi(x_2))| = x_2$. Therefore φ is injective, as desired. Thus we finish the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Throughout the rest of this paper, we write simply Lip and L^{∞} for the Banach space $(\text{Lip}[0, 1], \|\cdot\|_{\sigma})$ and the Banach algebra $(L^{\infty}[0, 1], \|\cdot\|_{L^{\infty}})$, respectively. If we indicate the scalar field \mathbb{K} , we write $L^{\infty}_{\mathbb{K}}$ instead of L^{∞} .

Let \mathfrak{M} be the maximal ideal space of $L^{\infty}_{\mathbb{C}}$. Then \mathfrak{M} is a compact Hausdorff space. We know that \mathfrak{M} is totally disconnected, that is, every component of \mathfrak{M} consists of one point ([1, Theorem 1.3.4]) and that \mathfrak{M} has no isolated points ([14, Exercise 11.18]).

We write $C_{\mathbb{K}}(\mathfrak{M})$ or simply $C(\mathfrak{M})$ for the Banach algebra of all \mathbb{K} -valued continuous functions on \mathfrak{M} with the supremum norm $\|\cdot\|_{\infty}$. For any $g \in L^{\infty}_{\mathbb{C}}$, \widehat{g} denotes the

Gelfand representation of g. The Gelfand-Naimark theorem says that the Gelfand transformation $\Gamma : g \mapsto \widehat{g}$ is an algebra *-isomorphism of $L^{\infty}_{\mathbb{C}}$ onto $C_{\mathbb{C}}(\mathfrak{M})$ and $\|g\|_{L^{\infty}} = \|\widehat{g}\|_{\infty}$. Also Γ maps $L^{\infty}_{\mathbb{R}}$ onto $C_{\mathbb{R}}(\mathfrak{M})$, and $\{\widehat{f}' : f \in \mathrm{Lip}\} = C(\mathfrak{M})$.

We first give a proof of the "if" part:

Proof of the "if" part. Suppose T has the form (1.2). It is clear that T is linear. Define $\Psi = \Gamma \Phi \Gamma^{-1}$. Then Ψ is an algebra automorphism of $C(\mathfrak{M})$. By [9, Theorem 3.4.3], Ψ has the form $\Psi h = h \circ \varphi$ for some homeomorphism φ of \mathfrak{M} onto itself. Hence Ψ is an isometry of $C(\mathfrak{M})$ onto itself and so Φ is an isometry of L^{∞} onto itself. Also we have $(Tf)(0) = \lambda f(0)$ and $(Tf)' = \omega(\Phi f')$ for $f \in Lip$. Therefore

$$||Tf||_{\sigma} = |\lambda f(0)| + ||\omega(\Phi f')||_{L^{\infty}} = |f(0)| + ||\Phi f'||_{L^{\infty}} = |f(0)| + ||f'||_{L^{\infty}} = ||f||_{\sigma}.$$

Hence T is an isometry.

To prove that T is surjective let $q \in \text{Lip.}$ Put

$$f(x) = \overline{\lambda}g(0) + \int_0^x (\Phi^{-1}(\overline{\omega}g'))(t)dt \quad (x \in [0,1]).$$

Then $f(0) = \overline{\lambda}g(0)$ and $f' = \Phi^{-1}(\overline{\omega}g')$, and so

$$(Tf)(x) = \lambda \overline{\lambda} g(0) + \int_0^x \omega(t) (\Phi \Phi^{-1}(\overline{\omega}g'))(t) dt = g(0) + \int_0^x g'(t) dt = g(x)$$

all $x \in [0, 1].$

for all $x \in [0, 1]$.

The rest of the paper is devoted to the proof of the "only if" part. Let T be a linear isometry of Lip onto itself.

Definition 4.1. For each $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ we define a functional $\Lambda_{(a,c,m)}$ on Lip by

$$\Lambda_{(a,c,m)}(f) = af(0) + cf'(m) \quad (f \in \operatorname{Lip}).$$

It is clear that $\Lambda_{(a,c,m)} \in \text{ball}(\text{Lip})^*$.

Proposition 4.2. Let $\xi \in (\text{Lip})^*$. Then ξ is an extreme point of ball(Lip)* if and only if there exists $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $\xi = \Lambda_{(a, c, m)}$.

Proof. If the product spaces $\mathbb{K} \times L^{\infty}$ and $\mathbb{K} \times C(\mathfrak{M})^*$ are equipped with the norms

$$||(b,g)|| = |b| + ||g||_{L^{\infty}} \quad ((b,g) \in \mathbb{K} \times L^{\infty}),$$

$$||(a,\eta)|| = \max\{|a|, ||\eta||\} \quad ((a,\eta) \in \mathbb{K} \times C(\mathfrak{M})^*).$$

then the next operator Q is a linear isometry of $\mathbb{K} \times C(\mathfrak{M})^*$ onto $(\mathbb{K} \times L^{\infty})^*$:

 $(Q(a,\eta))(b,g) = ab + \eta(\widehat{g}) \quad ((a,\eta) \in \mathbb{K} \times C(\mathfrak{M})^*, (b,g) \in \mathbb{K} \times L^{\infty}).$

Define a linear isometry P of Lip onto $\mathbb{K} \times L^{\infty}$ by

$$Pf = (f(0), f') \quad (f \in \operatorname{Lip}).$$

Then P^*Q is a linear isometry of $\mathbb{K} \times C(\mathfrak{M})^*$ onto $(\operatorname{Lip})^*$. Hence $\xi \in (\operatorname{Lip})^*$ is an extreme point of ball(Lip)* if and only if $\xi = P^*Q(a, \eta)$, where (a, η) is an extreme point of ball($\mathbb{K} \times C(\mathfrak{M})^*$). By Lemma 2.1 this condition on (a, η) is equivalent to the following: $a \in \mathbb{T}$ and there exist $c \in \mathbb{T}$ and $m \in \mathfrak{M}$ such that $\eta(g) = ce_m(g) = cg(m)$ for $g \in C(\mathfrak{M})$. Thus the conclusion follows from

$$P^*(Q(a, ce_m))(f) = (Q(a, ce_m))(f(0), f') = af(0) + c\hat{f'}(m) = \Lambda_{(a,c,m)}(f)$$

 \in Lip.

Claim 4.3. For any $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ there exists a unique $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^* \Lambda_{(a,c,m)} = \Lambda_{(b,d,n)}$.

Proof. Let $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$. Since T^* is a linear isometry of $(\text{Lip})^*$ onto itself, Proposition 4.2 shows the existence of $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^*\Lambda_{(a,c,m)} = \Lambda_{(b,d,n)}$.

For the uniqueness of (b, d, n) suppose $T^*\Lambda_{(a,c,m)} = \Lambda_{(b',d',n')}$ for some $(b', d', n') \in \mathbb{T} \times \mathfrak{M}$. Then $\Lambda_{(b,d,n)} = \Lambda_{(b',d',n')}$, that is,

$$bf(0) + d\widehat{f'}(n) = b'f(0) + d'\widehat{f'}(n') \quad (f \in \text{Lip}).$$
 (4.1)

Substituting 1 and *i* for *f* in (4.1) we get b = b' and d = d', respectively. Hence (4.1) shows $\hat{f'}(n) = \hat{f'}(n')$ for all $f \in \text{Lip.}$ In other words, h(n) = h(n') for all $h \in C(\mathfrak{M})$. This implies n = n'.

Definition 4.4. By Claim 4.3 for each $(a, m) \in \mathbb{T} \times \mathfrak{M}$ there exists a unique $(b, d, n) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^* \Lambda_{(a,1,m)} = \Lambda_{(b,d,n)}$. Since b, d and y depend on (a, m) we write

$$b = u(a, m), \quad d = v(a, m) \quad \text{and} \quad n = \psi(a, m).$$

Thus u and v are unimodular functions on $\mathbb{T} \times \mathfrak{M}$ and ψ is a mapping of $\mathbb{T} \times \mathfrak{M}$ into \mathfrak{M} . Moreover we have

$$\Lambda_{(a,1,m)}(Tf) = (T^*\Lambda_{(a,1,m)})(f) = \Lambda_{(u(a,m),v(a,m),\psi(a,m))}(f)$$

for $f \in \text{Lip}$ and so

for f

$$a(Tf)(0) + (\widehat{Tf})'(m) = u(a,m)f(0) + v(a,m)\widehat{f}'(\psi(a,m)).$$
(4.2)

Substituting 1 and i for f we have

$$a(T1)(0) + (T1)'(m) = u(a,m),$$
(4.3)

$$a(Ti)(0) + (Ti)'(m) = v(a,m).$$
 (4.4)

Claim 4.5. The mapping ψ is a continuous mapping of $\mathbb{T} \times \mathfrak{M}$ onto \mathfrak{M} .

Proof. By (4.3) and (4.4) we see that u and v are continuous on $\mathbb{T} \times \mathfrak{M}$. Since v is unimodular, (4.2) implies that $\hat{f'} \circ \psi$ is continuous on $\mathbb{T} \times \mathfrak{M}$ for all $f \in \text{Lip.}$ In other words, $h \circ \psi$ is continuous on $\mathbb{T} \times \mathfrak{M}$ for all $h \in C(\mathfrak{M})$. To prove that $\psi : \mathbb{T} \times \mathfrak{M} \to \mathfrak{M}$ is continuous let $(a_0, m_0) \in \mathbb{T} \times \mathfrak{M}$ and let V be an open neighborhood of $\psi(a_0, m_0)$ in \mathfrak{M} . By the Urysohn's lemma there exists $h_0 \in C(\mathfrak{M})$ such that $h_0(\psi(a_0, m_0)) = 1$ and $h_0(n) = 0$ for all $n \in \mathfrak{M} \setminus V$. Put $U = \{(a, m) \in \mathbb{T} \times \mathfrak{M} : |(h_0 \circ \psi)(a, m)| > 0\}$. Since $h_0 \circ \psi$ is continuous, U is an open neighborhood of (a_0, m_0) . Moreover we can easily see that $\psi(U) \subset V$. Thus ψ is continuous.

To prove that ψ is surjective let $n \in \mathfrak{M}$. Since T^* is a linear isometry of $(\operatorname{Lip})^*$ onto itself, Proposition 4.2 gives $(a, c, m) \in \mathbb{T} \times \mathbb{T} \times \mathfrak{M}$ such that $T^* \Lambda_{(a,c,m)} = \Lambda_{(1,1,n)}$. Then

$$(T^*\Lambda_{(\overline{c}a,1,m)})(f) = \overline{c}(a(Tf)(0) + c(\overline{Tf})'(m)) = \overline{c}(T^*\Lambda_{(a,c,m)})(f)$$
$$= \overline{c}(\Lambda_{(1,1,n)})(f) = \overline{c}f(0) + \overline{c}\widehat{f}'(n) = \Lambda_{(\overline{c},\overline{c},n)}(f)$$

for $f \in \text{Lip.}$ By the definition of ψ we get $\psi(\overline{c}a, m) = n$. Hence ψ is surjective. \Box

Claim 4.6. For any fixed $m \in \mathfrak{M}$, $\psi(\mathbb{T} \times \{m\})$ is a singleton.

Proof in case $\mathbb{K} = \mathbb{R}$. For $t \in \mathbb{T} = \{1, -1\}$ put $\psi_t(m) = \psi(t, m)$ for all $m \in \mathfrak{M}$. The difference of (4.3) with a = 1 and (4.3) with a = -1 is 2(T1)(0) = u(1, m) - u(-1, m). Hence the difference of (4.2) with a = 1 and (4.2) with a = -1 shows that

$$2(Tf)(0) = 2(T1)(0) + v(1,m)\hat{f}'(\psi_1(m)) - v(-1,m)\hat{f}'(\psi_{-1}(m))$$
(4.5)

for $m \in \mathfrak{M}$ and $f \in \text{Lip}$.

Assume that $\psi_1(m_0) \neq \psi_{-1}(m_0)$ for some $m_0 \in \mathfrak{M}$. Then we find disjoint open sets V_1 and V_2 in \mathfrak{M} such that $\psi_1(m_0) \in V_1$ and $\psi_{-1}(m_0) \in V_2$. Since \mathfrak{M} has no isolated points there exists $n \in V_1 \setminus \{\psi_1(m_0)\}$. Since $\psi : \mathbb{T} \times \mathfrak{M} \to \mathfrak{M}$ is surjective there exists $(t, m_1) \in \mathbb{T} \times \mathfrak{M}$ such that $\psi(t, m_1) = n$. Clearly $\psi_t(m_1) \neq \psi_1(m_0)$. We also have $\psi_t(m_1) \neq \psi_{-1}(m_0)$ because $n \notin V_2$.

Here we consider the case when $\psi_{-t}(m_1) = \psi_{-1}(m_0)$. In this case, we can choose $f_0 \in \text{Lip}$ so that $\widehat{f}'_0(\psi_1(m_0)) = 1$ and $\widehat{f}'_0(\psi_{-1}(m_0)) = \widehat{f}'_0(\psi_t(m_1)) = \widehat{f}'_0(\psi_{-t}(m_1)) = 0$ because of $\{\widehat{f}' : f \in \text{Lip}\} = C(\mathfrak{M})$ and the Urysohn's lemma. Put $f = f_0$ in (4.5) and evaluate it at m_0 and m_1 . Then we get

$$2(Tf_0)(0) = 2(T1)(0) + v(1, m_0)$$
 and $2(Tf_0)(0) = 2(T1)(0)$.

Hence $v(1, m_0) = 0$, which is a contradiction because v is unimodular.

On the other hand if $\psi_{-t}(m_1) \neq \psi_{-1}(m_0)$, then we choose $f_0 \in$ Lip so that $\widehat{f}'_0(\psi_{-1}(m_0)) = 1$ and $\widehat{f}'_0(\psi_1(m_0)) = \widehat{f}'_0(\psi_t(m_1)) = \widehat{f}'(\psi_{-t}(m_1)) = 0$. A similar argument shows that $v(-1, m_0) = 0$, which is a contradiction.

In any case, we reach a contradiction. Hence $\psi_1(m) = \psi_{-1}(m)$, that is, $\psi(1,m) = \psi(-1,m)$ for all $m \in \mathfrak{M}$. If we fix $m \in \mathfrak{M}$, then the set $\psi(\mathbb{T} \times \{m\})$ is a singleton. \Box

Proof in case $\mathbb{K} = \mathbb{C}$. Fix $m \in \mathfrak{M}$. Since $\mathbb{T} \times \{m\}$ is connected the continuity of ψ implies that $\psi(\mathbb{T} \times \{m\})$ is connected in \mathfrak{M} . Since \mathfrak{M} is totally disconnected, $\psi(\mathbb{T} \times \{m\})$ is a singleton.

Definition 4.7. Define a mapping φ of \mathfrak{M} into \mathfrak{M} by

$$\varphi(m) = \psi(1,m) \quad (m \in \mathfrak{M}).$$

Since ψ is a continuous mapping of $\mathbb{T} \times \mathfrak{M}$ onto \mathfrak{M} , φ is a continuous mapping of \mathfrak{M} onto itself. By Claim 4.6 we have $\varphi(x) = \psi(1, m) = \psi(a, m)$ for $(a, m) \in \mathbb{T} \times \mathfrak{M}$. Moreover for any $(a, m) \in \mathbb{T} \times \mathfrak{M}$ and $f \in \text{Lip}$, (4.2) is written as

$$a(Tf)(0) + (\widehat{Tf})'(m) = u(a,m)f(0) + v(a,m)\widehat{f}'(\varphi(m)).$$

Applying (4.3) and (4.4) we have by removing u and v the equation

$$a(Tf)(0) + (\widehat{Tf})'(m) = a\left((T1)(0)f(0) + (Ti)(0)\widehat{f}'(\varphi(m))\right) + \left(\widehat{(T1)'}(m)f(0) + \widehat{(Ti)'}(m)\widehat{f}'(\varphi(m))\right).$$

Since this holds for all $a \in \mathbb{T}$ we have

$$(Tf)(0) = (T1)(0)f(0) + (Ti)(0)\widehat{f'}(\varphi(m)), \tag{4.6}$$

$$\widehat{(Tf)'}(m) = \widehat{(T1)'}(m)f(0) + \widehat{(Ti)'}(m)\widehat{f'}(\varphi(m)).$$
(4.7)

Definition 4.8. Define a constant λ and a function $\omega \in L^{\infty}$ by

$$\lambda = (T1)(0)$$
 and $\omega = (Ti)'$.

Claim 4.9. (a) $|\lambda| = 1$. (b) $(Tf)(0) = \lambda f(0)$ for all $f \in \text{Lip.}$ (c) ω is unimodular. (d) $\widehat{(Tf)'}(m) = \widehat{\omega}(m)\widehat{f'}(\varphi(m))$ for all $m \in \mathfrak{M}$ and $f \in \text{Lip.}$

Proof. We first show (b) and $\lambda \neq 0$. Equation (4.6) says that $(Ti)(0)(\hat{f'} \circ \varphi)$ is constant on \mathfrak{M} for all $f \in \text{Lip}$. In other words, $(Ti)(0)(h \circ \varphi)$ is constant for $h \in C(\mathfrak{M})$. Since φ is surjective and $C(\mathfrak{M})$ separates the points of \mathfrak{M} we must have (Ti)(0) = 0. Thus (b) follows from (4.6). Moreover if $\lambda = 0$, (b) yields (Tf)(0) = 0 for all $f \in \text{Lip}$, which is a contradiction because T is surjective. Hence $\lambda \neq 0$.

For (c), we use (Ti)(0) = 0 and (4.4) to get

$$|\widehat{\omega}(m)| = |\widehat{(Ti)'}(m)| = |(Ti)(0) + \widehat{(Ti)'}(m)| = |v(1,m)| = 1 \quad (m \in \mathfrak{M}).$$

This implies that $\widehat{\omega}\overline{\widehat{\omega}}$ is an identity of $C(\mathfrak{M})$. Since the transformation $\Gamma : g \mapsto \widehat{g}$ is a *-isomorphism of L^{∞} onto $C(\mathfrak{M})$, $\omega\overline{\omega}$ is an identity of L^{∞} . This implies (c).

For (a) and (d), we use (4.3) and compute as follows:

$$1 = |u(a,m)| = |a(T1)(0) + \widehat{(T1)'}(m)| = |a\lambda + \widehat{(T1)'}(m)| \le |\lambda| + |\widehat{(T1)'}(m)|$$

$$\le |\lambda| + \|\widehat{(T1)'}\|_{\infty} = |(T1)(0)| + \|(T1)'\|_{L^{\infty}} = \|T1\|_{\sigma} = \|1\|_{\sigma} = 1$$
(4.8)

for all $(a, m) \in \mathbb{T} \times \mathfrak{M}$. Since the equality holds in the first inequality for all $a \in \mathbb{T}$ and since $\lambda \neq 0$ we must have (T1)'(m) = 0. Hence (4.7) implies (d). At the same time, we obtain $|\lambda| = 1$ because the equalities hold in (4.8).

Claim 4.10. The mapping φ is a homeomorphism of \mathfrak{M} onto itself.

Proof. Since \mathfrak{M} is a compact Hausdorff space and φ is continuous and surjective it suffices to show that φ is injective. Assume $m_1 \neq m_2$ and $\varphi(m_1) = \varphi(m_2)$, where $m_1, m_2 \in \mathfrak{M}$. Then we can choose $f_1 \in \text{Lip}$ such that $\widehat{f}'_1(m_1) = 1$ and $\widehat{f}'_1(m_2) = 0$ because of $\{\widehat{f}' : f \in \text{Lip}\} = C(\mathfrak{M})$ and the Urysohn's lemma. Since T is surjective there exists $f_0 \in \text{Lip}$ such that $Tf_0 = f_1$. By (c) and (d) of Claim 4.9 we have

$$|\widehat{f}_0'(\varphi(m))| = |\widehat{\omega}(m)\widehat{f}_0'(\varphi(m))| = |\widehat{(Tf_0)'}(m)| = |\widehat{f}_1'(m)| \quad (m \in \mathfrak{M}).$$

Hence $1 = |\widehat{f}_1'(m_1)| = |\widehat{f}_0'(\varphi(m_1))| = |\widehat{f}_0'(\varphi(m_2))| = |\widehat{f}_1'(m_2)| = 0$, which is a contradiction. Therefore φ is injective.

Definition 4.11. For each $h \in C(\mathfrak{M})$ we define a function Ψh on \mathfrak{M} by

$$(\Psi h)(m) = h(\varphi(m)) \quad (m \in \mathfrak{M}).$$

Since φ is a homeomorphism of \mathfrak{M} onto itself, Ψ is an algebra automorphism of $C(\mathfrak{M})$. Put $\Phi = \Gamma^{-1}\Psi\Gamma$. Since the Gelfand transformation Γ is an algebra isomorphism of L^{∞} onto $C(\mathfrak{M})$, Φ is an algebra automorphism of L^{∞} .

Claim 4.12. The operator T has the form (1.2).

Proof. Let $f \in \text{Lip.}$ By Claim 4.9 (d) we have

$$\widehat{(Tf)'}(m) = \widehat{\omega}(m)\widehat{f'}(\varphi(m)) = \widehat{\omega}(m)(\Psi\widehat{f'})(m) = \widehat{\omega}(m)(\Psi\Gamma f')(m)$$
$$= \widehat{\omega}(m)(\Gamma\Phi f')(m) = \widehat{\omega}(m)\widehat{\Phi f'}(m) = \widehat{\omega}\cdot(\Phi f')(m).$$

for any $m \in \mathfrak{M}$. Hence $(Tf)' = \omega \cdot (\Phi f')$. Together with Claim 4.9 (b) we obtain

$$(Tf)(x) = (Tf)(0) + \int_0^x (Tf)'(t)dt = \lambda f(0) + \int_0^x \omega(t)(\Phi f')(t)dt$$

for $x \in [0, 1]$. This completes the proof of Theorem 1.2.

Acknowledgements. The author would like to thank the referee for his/her valuable comments.

References

- [1] A. Browder, Introduction to Function Algebras, Benjamin, 1969.
- [2] M. Cambern, Isometries of certain Banach algebras, Studia Math., 25 (1965), 217–225.
- [3] M. Cambern and V. D. Pathak, Isometries of spaces of differentiable functions, Math. Japon., 26 (1981), 253–260.
- [4] J. B. Conway. A Course in Functional Analysis, 2nd ed., Springer-Varlag, 1990.
- [5] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman & Hall/CRC, 2003.
- [6] J. J. Font, On weighted composition operators between spaces of measurable functions, Quaest. Math., 22 (1999), 143–148.
- [7] K. Jarosz and V. D. Pathak, *Isometries between function spaces*, Trans. Amer. Math. Soc., **305** (1988), 193–206.
- [8] A. Jiménez-Vargas and M. Villegas-Vallecillos, Into linear isometries between spaces of Lipschitz functions, Houston J. Math., 34 (2008), 1165–1184.
- [9] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, New York, 1983.
- [10] H. Koshimizu, Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions, Cent. Eur. J. Math., 9 (2011), 139–146.
- T. Matsumoto and S. Watanabe, Surjective linear isometries of the domain of a *-derivation equipped with the Cambern norm, Math. Z., 230 (1999), 185–200.
- [12] V. D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math., 94 (1981), 211–222.
- [13] N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math., 38 (1971), 177–192.
- [14] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.

(Hironao Koshimizu) Department of Mathematics and System Development, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Matsumoto 390–8621, Japan *E-mail address*: s09t201@shinshu-u.ac.jp

Received September 27, 2011 Revised November 17, 2011