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REMARKS ON THE SET OF POLES
ON A POINTED COMPLETE SURFACE

TOSHIRO SOGA

Abstract. M. Tanaka ([2]) determined the radius of the ball which consists of

all poles in a von Mangoldt surface of revolution. The purpose of the present

paper is to give an alternative proof and a geometrical meaning of the radius.

Furthermore, we estimate the radius of the maximal ball consisting of poles in a

complete surface homeomorphic to the plane under a certain condition.

1. Introduction

Let (M, p) be a pointed complete Riemannian manifold with a base point at p ∈

M . We say that a pointed complete Riemannian manifold (M, p) with dimension 2

is a surface of revolution with a vertex at p if the Gaussian curvature G(q) of M is

constant on the metric t-circle Sp(t) := {q ∈ M | d(p, q) = t} around p for t > 0, say

G(t). Namely, there exists a polar coordinates around p such that the Riemannian

metric g on a surface of revolution M is expressed as

g : ds2 = dr2 +m(r)2dθ2, (1.1)

where the smooth function m : [0,∞) → [0,∞) satisfies the differential equation

m′′(t) + G(t)m(t) = 0;m(0) = 0, m′(0) = 1 and is extendable to an odd function

around 0. The length of Sp(t) is 2πm(t).

Let γ : I → M be a geodesic with unit speed in a complete Riemannian manifold

M . We say that γ(t0) and γ(t1) are called a conjugate pair along γ if there exists a

non-trivial Jacobi field along γ that vanishes at γ(t0) and γ(t1). A point q ∈ M is

called a pole if there exist no points conjugate to q along every geodesic γ : [0,∞) →

M emanating from q = γ(0). In a surface of revolution M the vertex is a pole if

M is homeomorphic to the plane. H. von Mangoldt ([4]) proved that the set of all

poles of every connected component of two-sheeted hyperboloid of revolution is a

non-trivial closed ball centered at its vertex. We discuss his result under a general
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setting. Put

r(M) := sup{r | q ∈ M is a pole if d(p, q) < r}.

If M is a surface of revolution homeomorphic to the plane with a vertex at p, then

r(M) is equal to the distance between p and the farthest pole in M ([3, Lemma

1.1]). Tanaka ([2]) generalized von Mangoldt’s result and showed a necessary and

sufficient condition for r(M) > 0, and found the equation which determines the

r(M) for a von Mangoldt surface. Here a von Mangoldt surface is by definition a

surface of revolution such that the Gaussian curvature is monotone non-increasing

with respect to the distance to its vertex. The purpose of the present paper is to

make his proof much simpler and the geometrical meaning of the equation clearer.

Moreover, using these theorems, we estimate r(M) for a Riemannian 2-manifold M

whose Gaussian curvature is pinched by those of two von Mangoldt surfaces. More

precisely, we prove the following.

Theorem 1.1. Let (M, p) be a pointed complete surface homeomorphic to the plane.

Assume that there exist two von Mangoldt surfaces (Mi, pi) (i = 1, 2) such that

G1(d(p, q)) ≤ G(q) ≤ G2(d(p, q)) for all q ∈ M . Then, p is a pole in M , and

r(M1) ≥ r(M) ≥ r(M2).

In Section 2 we review the theory of stable Jacobi field. In particular, we study

when we can extend a disconjugate interval. In Section 3 we also review the theory

of Jacobi field on the surface of revolution. In Section 4 we give an alternative proof

of Tanaka’s characterization of r(M) > 0 for a surface of revolution. Actually, we

prove the following.

Theorem 1.2. ([2, Theorem 1.10].) Let M be a surface of revolution with a vertex

at p. Then, r(M) > 0 if and only if M satisfies
∫

∞

1

m(t)−2dt < ∞ and lim inf
t→∞

m(t) > 0.

Our proof is based on the disconjugate property for the solution of the differential

equation of Jacobi type, and is seemed to be simpler than the original one. In

Section 5 we prove the following.

Theorem 1.3. Let M be a von Mangoldt surface such that
∫

∞

1
m(r)−2dr < ∞. Let

y∞(t) = m(t)

∫

∞

t

m(r)−2dr (t > 0).

Then, c(m) := 2y′
∞
(0) exists. Set

F̄ (x) := c(m)−

∫

∞

x

m(r)−2dr.

We then have the following.
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(i) If c(m) ≤ 0, then r(M) = ∞.

(ii) If c(m) > 0, then r(M) is the unique zero point of the function F̄ .

Tanaka first proved Theorem 1.3 ([2, Theorem 2.1]), where he defined the constant

c(m) as:

c(m) :=

∫

∞

0

m(r)− rm′(r)

m(r)3
dr.

However, the geometrical meaning of this constant arising in the equation was not

explained. We emphasize that the constant is expressed by means of the stable

Jacobi field. Our method is based on the disconjugate property of Jacobi field along

a ray emanating from the vertex. In Section 6 we prove Theorem 1.1.

2. The disconjugate properties for Jacobi fields

Let M be a complete Riemannian 2-manifold. Let γ : [0,∞) → M be a unit speed

geodesic. Let {e1(t) = γ′(t), e2(t)} be an orthonormal parallel frame field along γ.

We say that a vector field Y (t) along γ is a Jacobi field if it satisfies the Jacobi equa-

tion ∇γ′∇γ′Y +R(Y, γ′)γ′ = 0, where R : X (M)3 → X (M) denotes the Riemannian

curvature tensor. Define a linear map Ft : Mγ(t) → Mγ(t) by Ft(x) = R
(

x, γ′(t)
)

γ′(t).

We then have Ft(e1) = 0, g
(

R(e2, γ
′)γ′, e1

)

= 0, g
(

R(e2, γ
′)γ′, e2

)

= G
(

γ(t)
)

. Let

Jγ be the set of all Jacobi vector fields along γ, which forms a vector space over R.

If Y (t) = x(t)e1(t) + y(t)e2(t) ∈ Jγ, we then have

x′′(t) = 0 ⇐⇒ x(t) = c1t+ c2, (J1)

y′′(t) +G
(

γ(t)
)

y(t) = 0. (JG)

We have following contents on the disconjugate property for later use by digesting

Chapter XI in [1]. The differential equation (JG) is said to be disconjugate on I if

every non-trivial solution y : I → R of (JG) along γ vanishes at most once, where

y(t) means that Y (t) = y(t)e2(t) ∈ Jγ. The disconjugate property is stated as

follows: For each solution ys of (JG) on I with ys(s) = 0 and y′s(s) 6= 0, we have

ys(t) 6= 0 for all t ∈ I \ {s}. This property implies that the solution of (JG) is

uniquely determined by its values at two distinct points in I.

We have a general solution y of (JG) from a non-trivial solution z by using the

variation method of constants as following formula:

y(t) = z(t)

(
∫

z(t)−2dtC1 + C2

)

, (2.1)

where C1 and C2 are constants. Assume that (JG) is disconjugate on I and c ∈ I.

Let yc be the solution of (JG) with yc(c) = 0 and y′c(c) = 1. Then the solution
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ys of (JG) with ys(c) = 1 and ys(s) = 0 is given by the following formula for each

s ∈ I \ {c}:

ys(t) = yc(t)

∫ s

t

yc(w)
−2dw (2.2)

for all t such that c is not in between t and s. We have from (2.2), yu(t)− ys(t) =

yc(t)
∫ u

s
yc(w)

−2dw for all t ∈ [c, u]. Differentiating it at t = c, we have

y′u(c)− y′s(c) =

∫ u

s

yc(w)
−2dw. (2.3)

Lemma 2.1. Let c < s and ys be defined as in (2.2). Then

y′s(c) → −∞ as s → c+ 0.

If the orientation of parameter is reversed, we then have y′s(c) → +∞ as s → c−0.

Lemma 2.2. Assume that (JG) is disconjugate on I. Let c < s (c, s ∈ I) and let ys :

[c, s] → R be defined as in (2.2). If y : [c, s] → R satisfies (JG) such that y(c) = 1

and y(t) 6= 0 for all t ∈ [c, s], then y(t) > ys(t) for all t ∈ (c, s].

Lemma 2.3. Assume that there exists a solution y : I → R of (JG) with y(t) 6= 0

for all t ∈ I. Then (JG) is disconjugate on I.

Let G : R → R be the function as defined in (JG).

Theorem 2.1. Assume that (JG) is disconjugate on (c− ε,∞) for some positive ε.

Let ys, yc−ε : R → R be the solutions of (JG) with ys(c) = 1, ys(s) = 0 and with

yc−ε(c) = 1, yc−ε(c−ε) = 0, respectively. Then ys(t) converges to y(t) as s → ∞ for

each t ∈ R. Moreover, y : R → R is the solution of (JG) such that yc−ε(t) ≥ y(t) >

ys(t) for all t ∈ (c, s). (cf. Figure 1 as the case c < u < s.)

y

1

tc− ε s

yc−ε

ys

y

u

yu

0 c

Figure 1. The solution of (JG) in the case of c < u < s.

Combining Theorem 2.1 and (2.2), we have the following.

Corollary 2.1. Assume that (JG) is disconjugate on (c− ε,∞) for some positive ε.

Let ys for each s > c be defined as in (2.2). Then ys(t) for each t ∈ [c,∞) converges
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to y∞(t) as s → ∞, which is the solution of (JG). Moreover, y∞(t) is given by the

following formula:

y∞(t) = yc(t)

∫

∞

t

yc(w)
−2dw (t > c).

Remark 2.1. For the statements in Theorem 1.3, m(t) is equal to y0(t) as above, that

is, m(t)e2(t) ∈ Jµ, where µ is some unit speed meridian, and so y∞ is the solution

of (JG) along a ray emanating from the vertex.

Conversely,
∫

∞

c+1
yc(w)

−2dw < ∞ shows that there exists a positive ε such that

(JG) is disconjugate on (c − ε,∞). The following corollary will play an important

role in our proof of Theorem 1.2.

Corollary 2.2. Assume that (JG) is disconjugate on [c,∞) and
∫

∞

c+1
yc(w)

−2dw <

∞. Then, [c,∞) is extendable to a disconjugate interval [c− ε,∞) of (JG) for some

positive ε.

3. The properties of Jacobi fields on a surface of revolution

LetM be a complete surface of revolution with a vertex at p, homeomorphic to the

plane, whose metric is expressed as (1.1). It is known that the Gaussian curvature

of M at each point q ∈ Sp(t) is given by G(t) = −m′′(t)/m(t). Let γ : [0,∞) → M

be a unit speed geodesic and put γ(t) :=
(

r(t), θ(t)
)

for all t ∈ [0,∞). Let ν be a

constant. Since θ′(t) = ν
/

m(r(t))2 from the differential equation for a geodesic and

(1.1), we have

r′(t) = ±
√

m(r(t))2 − ν2
/

m(r(t)). (3.1)

A 1-parameter family of geodesics γε : [0,∞)×(−ε0, ε0) → M, γε(t) =
(

r(t), θ(t)+ε
)

is a geodesic variation. Thus, (∂/∂ε)ε=0γε(t) = (∂/∂θ)γ(t) ∈ Jγ. Put (∂/∂θ)γ(t) :=

a(t)e1(t) + b(t)e2(t). We have the following from (J1)

{

a(t) = gγ(t) (∂/∂θ, e1) = m(r(t)) cos ξ(t) = ν

b(t) = gγ(t) (∂/∂θ, e2) = m(r(t)) sin ξ(t) = ±
√

m(r(t))2 − ν2 ,

where ξ(t) denotes the angle between γ′(t) and ∂/∂θ(γ(t)). The first formula is

called Clairaut’s relation.

Let τq : [0,∞) → M for each q ∈ M be the geodesic emanating from q = τq(0)

through p and let µq : [0,∞) → M denote the meridian emanating from p = µq(0)

through q. With the above notation, we state the following four lemmas in [2].

Lemma 3.1. (Compare Lemma 1.1 in [2].) Let γ : [0,∞) → M be a geodesic. If

r′(t) = 0 at two distinct parameter values, then γ is not a ray.
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Proof. Let the first zero point of r′ : (0,∞) → R be t0 and the second t1. From (3.1)

and that y(t) =
√

m(r(t))2 − ν2 is the solution of (JG) γ(t0) and γ(t1) is a conjugate

pair along γ. �

Lemma 3.2. (See Lemma 1.2 in [2].) Let γ : [0,∞) → M be a geodesic. If

r0 := lim
t→∞

d(p, γ(t)) < ∞, then m′(r0) = 0, that is, the parallel circle Sp(r0) is a

geodesic.

Lemma 3.3. (See Lemma 1.3 in [2].) If lim inf
t→∞

m(t) = 0, then µq|[d(p, q),∞) for

every q ∈ M \ {p} is a unique ray emanating from q.

We give an alternative proof for the following lemma. Put ρ := d(p, q).

Lemma 3.4. (Compare Lemma 1.4 in [2].) If
∫

∞

1
m(r)−2dr = ∞, then τq is not a

ray for any q ∈ M \ {p}.

Proof. Let yρ(t) = m(t − ρ) for all t ≥ 0. Then yρ is the solution of (JG) along τq
with yρ(ρ) = m(0) = 0, y′ρ(ρ) = m′(0) = 1. From (2.2), the solution ys of (JG) with

ys(ρ) = 1 and ys(s) = 0 is written as follows:

ys(t) = m(t− ρ)

∫ s

t

m(w − ρ)−2dw = m(t− ρ)

∫ s−ρ

t−ρ

m(r)−2dr

for all t > ρ. If τq is a ray, then there exists no conjugate pair along τq. By

Corollary 2.1, we have
∫

∞

t−ρ
m(r)−2dr < ∞, a contradiction. �

4. The proof of Theorem 1.2

In this section we give an alternative proof for Theorem 1.2. Let M be a complete

surface of revolution with a vertex at p, homeomorphic to the plane. Combining

Lemmas 3.3 and 3.4, we have the following Corollary 4.1. We give a necessary

condition that there exists a pole q ∈ M \ {p}.

Corollary 4.1. If lim inf
t→∞

m(t) = 0 or
∫

∞

1
m(r)−2dr = ∞, then the vertex p is the

unique pole on M .

We next prove the converse of Corollary 4.1. In order to do so we need some

preparations. For a point q ∈ M \{p} and for each ν ∈ [−m(ρ), m(ρ)] we define two

geodesics βν , γν : [0,∞) → M emanating from q, whose velocity vectors at t = 0 are

given by

β ′

ν(0) =

√

1− (ν/m(ρ))2 (∂/∂r)βν(0)
+ ν

/

m(ρ)2 (∂/∂θ)βν(0)
, (4.1)

γ′

ν(0) = −

√

1− (ν/m(ρ))2 (∂/∂r)γν(0) + ν
/

m(ρ)2 (∂/∂θ)γν(0) , (4.2)
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respectively. Thus we have smooth 1-parameter family of geodesics whose variation

vector fields are Jacobi fields Xν(t) := ∂/∂ν(βν(t)) and Yν(t) := ∂/∂ν(γν(t)) along

βν and γν , respectively. The next proposition contains Lemma 3.4 as its special

case.

Proposition 4.1. If
∫

∞

1
m(r)−2dr = ∞, then for all point q ∈ M \ {p} the geodesic

γν |[0,∞) is not a ray emanating from q = γν(0) for any ν ∈ (−m(ρ), m(ρ)).

Proof. When ν 6= 0, if lim
t→∞

r(t) = r0 < ∞, then γν is not a ray by Lemma 3.2. Let

lim
t→∞

r(t) = ∞. In the case there exist more than one zero points of r′, Lemma 3.1

implies that γν is not a ray. In the case where r′ has a zero only at t0, we observe

that

yt0(t) =
√

m(r(t))2 − ν2
/

m′(r(t0))

is the solution of (JG) along γν with yt0(t0) = 0 and y′t0(t0) = 1. If ys is the solution

of (JG) with ys(s) = 0 and ys(t0) = 1, we then have from (2.2) that

ys(t) = m′(r(t0))
√

m(r(t))2 − ν2

∫ s

t

1

m(r(w))2 − ν2
dw

= m′(r(t0))
√

m(r(t))2 − ν2

∫ r(s)

r(t)

m(r)

(m(r)2 − ν2)3/2
dr

≥ m′(r(t0))
√

m(r(t))2 − ν2

∫ r(s)

r(t)

m(r)−2dr

for all t ∈ (t0, s). By assumption, ys(t) does not converge as s → ∞. Therefore,

(JG) is not disconjugate on (t0 − ε,∞) for any positive ε. Thus, γν is not a ray.

When ν = 0, τq is not a ray by Lemma 3.4. �

Recall that β : [0,∞) → M,β(t) =
(

r(t), θ(t)
)

and γ are geodesics whose velocity

vectors at t = 0 are given in (4.1) and (4.2), respectively.

Lemma 4.1. (Compare Lemma 1.5 in [2].) If a geodesic β : [0,∞) → M does not

pass through p, and if r′(t) 6= 0 for all t ∈ (0,∞), then β contains no conjugate pair.

Proof. Clearly, y(t) =
√

m(r(t))2 − ν2 is the solution of (JG) along β. If r′(t) 6= 0

for all t ∈ (0,∞), then y(t) 6= 0 on (0,∞) from (3.1). By Lemma 2.3, (JG) is

disconjugate on (0,∞). �

From now on, let lim inf
t→∞

m(t) := m0 > 0 and β be a geodesic with r(β(0)) =

r1, β
′(0) = (0, 1/m(r1)). Fix a k with 0 < k < 1. Then there exists a number a1 > 0

(cf. Figure 2) such that if 0 ≤ r1 ≤ a1, then m(r1) < km0 and m(r1) < m(r) for all

r > r1. We have the following.

Lemma 4.2. If 0 ≤ r1 ≤ a1 < r2 and r2 := r(t2), then
∫

∞

t2
1/
(

m(r(t))2 −

m(r1)
2
)

dt < ∞ if and only if
∫

∞

r2
m(r)−2dr < ∞.
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m0

R0

p

a1

r1

M

axis of rotation

Figure 2. The number r1, a1 and R0.

Proof. (cf. Figure 2.) Since r′(t) =
√

m(r(t))2 −m(r1)2
/

m(r(t)) from (3.1),

∫ v

u

1

m(r(t))2 −m(r1)2
dt =

∫ r(v)

r(u)

1

m(r)2 −m(r1)2
·

m(r)
√

m(r)2 −m(r1)2
dr.

It follows
∫ v

t2

1

m(r(t))2 −m(r1)2
dt =

∫ r(v)

r2

m(r)

(m(r)2 −m(r1)2)3/2
dr ≥

∫ r(v)

r2

m(r)−2dr.

Therefore, if the right hand side diverges, then the left hand side diverges. There

exists an R0 > 0 such that if R0 < r, then m(r1) < km(r). If R0 < r(u) < r(v),

then
∫ r(v)

r(u)

m(r)

(m(r)2 −m(r1)2)3/2
dr ≤

1

(1− k2)3/2

∫ r(v)

r(u)

m(r)−2dr.

Therefore, if the right hand side converges, then the left hand side converges. �

Recall that y(t) =
√

m(r(t))2 −m(r1)2
/

m′(r1) is the solution of (JG) along β

with y(0) = 0 and y′(0) = 1. It follows from (2.2) that for each s > 0 the solution

ys of (JG) with ys(0) = 1 and ys(s) = 0 can be written as follows:

ys(t) = m′(r1)
√

m(r(t))2 −m(r1)2
∫ s

t

1

m(r(w))2 −m(r1)2
dw (s > t > 0).

By putting c = 0, we have the following from (2.3).

Lemma 4.3. Let u > s > 0. Then it follows

y′u(0)− y′s(0) =

∫ u

s

y(w)−2dw =

∫ u

s

m′(r1)
2

m(r(w))2 −m(r1)2
dw. (4.3)

In particular, if
∫

∞

s
y(w)−2dw < ∞, then y′

∞
(0) =

∫

∞

s
y(w)−2dw + y′s(0).
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Here ys(t) and y∞(t) are defined as in (2.2), Corollary 2.1, respectively. The

values ys(t), y∞(t) and y′s(0), y
′

∞
(0) depend also on r1. In order to show that these

values, especially, y′s(0), y
′

∞
(0) are continuous on r1 in some neighborhood of p, we

use the following notations: yr1,∞ := y∞, yr1,s := ys, and so on. Let 0 ≤ r1 < a1 and
∫

∞

s
m(r)−2dr < ∞. Then

h(r1) :=

∫

∞

s

1

m(r(w))2 −m(r1)2
dw < ∞

by Lemma 4.2. The function yr1,∞ is the solution of (JG) along β as stated in

Remark 2.1.

Lemma 4.4. Assume that
∫

∞

s
m(r)−2dr < ∞. Then there exists a neighborhood U

of the vertex p such that h(r(q)) is continuous in U ∋ q.

Proof. Set U = {q ∈ M | r(q) < a1}. There exists for any ε > 0 an R2 > 0 such

that if 0 < r1 < a1, then

∫

∞

R2

m(r)

(m(r)2 −m(r1)2)3/2
dr ≤

1

(1− k2)3/2

∫

∞

R2

m(r)−2dr < ε/3.

We have

h(r1) =

∫

∞

r(β(s))

m(r)

(m(r)2 −m(r1)2)3/2
dr

=

∫ R2

r(β(s))

m(r)

(m(r)2 −m(r1)2)3/2
dr +

∫

∞

R2

m(r)

(m(r)2 −m(r1)2)3/2
dr.

Let β̄ : [0,∞) → M be the geodesic with r(β̄(0)) = r̄1, β̄
′(0) = (0, 1/m(r̄1)), r1 ; r̄1.

Then

h(r1)− h(r̄1) =

∫ R2

r(β(s))

m(r)

(m(r)2 −m(r1)2)3/2
dr −

∫ R2

r(β̄(s))

m(r)

(m(r)2 −m(r̄1)2)3/2
dr

+

∫

∞

R2

m(r)

(m(r)2 −m(r1)2)3/2
dr −

∫

∞

R2

m(r)

(m(r)2 −m(r̄1)2)3/2
dr

and
∣

∣h(r1)− h(r̄1)
∣

∣

<

∣

∣

∣

∣

∫ R2

r(β(s))

m(r)

(m(r)2 −m(r1)2)3/2
dr −

∫ R2

r(β̄(s))

m(r)

(m(r)2 −m(r̄1)2)3/2
dr

∣

∣

∣

∣

+ 2ε/3.

There exists a δ > 0 such that if | r1− r̄1 | < δ, then
∣

∣h(r1)−h(r̄1)
∣

∣ < ε/3+2ε/3 = ε.

Thus, h ◦ r is continuous in U . �
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As u → ∞ in (4.3), we have y′r1,∞(0) = m′(r1)
2h(r1)+y′r1,s(0). In this consequence,

y′r1,∞(0) is continuous at r1 ∈ [0, a1], where yr1,s is the solution of (JG) along β with

yr1,s(s) = 0 and yr1,s(0) = 1 for each s > 0. From Corollary 2.1 we have

yr1,∞(t) = m′(r1)
√

m(r(t))2 −m(r1)2
∫

∞

t

1

m(r(w))2 −m(r1)2
dw (t > 0).

We remark that the right hand side of the above equation is an expression of a

Jacobi field on the interval (0,∞) and the expression is not available in any interval

containing 0. We think that it is the restriction of a Jacobi vector field yr1,∞ defined

along a whole geodesic β : (−∞,∞) → M . We can extend an interval with no

conjugate pair as follows.

Lemma 4.5. Assume that
∫

∞

1
m(r)−2dr < ∞. If a geodesic β : (−∞,∞) → M

through q = β(0) ∈ U is tangent to the parallel circle around p at q, that is, β ′(0) =

(0, 1/m(r1)), then there exists a δr1 > 0 such that there is no conjugate pair on

(−δr1 ,∞) along the geodesic β where r1 = r(β(0)). Furthermore, δr1 is continuous

on r1.

Proof. We observe from Lemmas 4.3 and 4.4 that y′r1,∞(0) exists and that h(r1) is

continuous on r1 ∈ [0, a1). Since yr1,∞(0) = 1 and y′r1,∞(0) exists, we can extend

the disconjugate interval of yr1,∞ as follows. If there are zeros of yr1,∞, we then put

δr1 := −t(r1), where t(r1) is the maximum zero of zeros of yr1,∞. Clearly, t(r1) < 0.

If there are no zeros, we put δr1 = ∞. In this consequence, the interval which has no

conjugate pairs extends from [0,∞) to (−δr1 ,∞) as showed in Corollary 2.2 and this

is the maximal disconjugate interval. Since the solution of (JG) depends continuously

on the initial condition, the function δr1is continuous on r1 (cf. Figure 3). �

y

yr1,∞

0
t

t(r1)

1

Figure 3. The maximum zero of zeros of yr1,∞.

We enter our final stage to the proof of Theorem 1.2.

Lemma 4.6. Assume that lim inf
t→∞

m(t) > 0 and
∫

∞

1
m(r)−2dr < ∞. Then there

exists a positive b such that any point q with d(p, q) ≤ b is a pole.

Proof. By assumption that
∫

∞

1
m(r)−2dr < ∞, we have a δ0 > 0, where δ0 is given

by putting r1 = 0 for δr1 in Lemma 4.5. There exists an a2 > 0 such that if
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0 ≤ r1 < a2 < a1, then |δr1 − δ0| ≤ δ0/2, that is, δr1 ≥ δ0/2. Put b := min{a2, δ0/2}.

For any point q in the b-neighborhood of p, there is no conjugate pair along any

geodesic emanating from q. For a geodesic β : [0,∞) → M with r(β(0)) = r1 < b

whose velocity vector at t = 0 is defined as (4.1), we have y(t) =
√

m(r(t))2 − c2 6= 0

on (0,∞) for any fixed c ∈ [0, m(r1)]. Therefore, (JG) is disconjugate on (0,∞) along

β by Lemma 2.3. For a geodesic γ : [0,∞) → M whose velocity vector at t = 0

is defined as (4.2), the following is true. Let q0 be a point such that r′(q0) = 0,

that is, d(p, q0) = d
(

p, γ([0,∞))
)

with r(q0) < r1. Let q1 be a point such that

d(p, q1) = d(p, q) , q1 6= q and q1 ∈ γ([0,∞)). Since

d(q0, q) = d(q, q1)/2 ≤
(

d(q, p) + d(p, q1)
)/

2 ≤ b ≤ δ0/2 ≤ δr1 ,

there also exist no points conjugate to q along γ by Lemma 4.5 (cf. Figure 4).

Therefore, every point q in the b-neighborhood of p is a pole. �

β

γ

q

q1

q0
p

b

r1
β

γ

q

q1

q0
p

b

r1

Figure 4. The geodesics β, γ emanating from q.

By Corollary 4.1 and Lemma 4.6, we have Theorem 1.2.

5. The proof of Theorem 1.3

In this section we prove Theorem 1.3. Let M be a von Mangoldt surface. We

determine the number r(M). In addition, we make the meaning of the constant

c(m) clear. The proof is based on the following lemma.

Lemma 5.1. ([3, Lemma 1.2].) Let M be a von Mangoldt surface with a vertex at

p. Let q ∈ M \ {p}. If the geodesic τq : [0,∞) → M emanating from q = τq(0)

through p has no points conjugate to q along itself, then q is a pole.

As a result of this lemma we have

r(M) = max{r(q) | there are no points conjugate to q = τq(0) along τq}
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for a von Mangoldt surface M . We find the equation whose solution is r(M). Since

m(0) = 0, m′(0) = 1 and from (2.3) we have

y′u(0)− y′s(0) =

∫ u

s

m(r)−2dr =

∫ u

1

m(r)−2dr −

∫ s

1

m(r)−2dr.

Thus,

y′u(0)−

∫ u

1

m(r)−2dr = y′s(0)−

∫ s

1

m(r)−2dr.

This shows that these values do not depend on parameter s. Then we can set

C = y′s(0)−

∫ s

1

m(r)−2dr = y′1(0)

where C is a constant. From Corollary 2.1 and the assumption, both

y∞(t) = m(t)

∫

∞

t

m(r)−2dr (t > 0) and y′
∞
(0) =

∫

∞

1

m(r)−2dr + C

exist. Let an x > 0 be a number such that the maximal disconjugate interval of

(JG) along τq is (−x,∞). Then

y′
∞
(0) =

∫

∞

1

m(r)−2dr + y′x(0)−

∫ x

1

m(r)−2dr

=

∫

∞

x

m(r)−2dr + y′x(0).

Since the Gaussian curvature G
(

τq(t)
)

along τq is symmetric with respect to the

y

t

y∞(t)yx(t)

0 x−x

1

Figure 5. The relation of yx to y∞.

vertex p, the x satisfies y′
∞
(0) = −y′x(0) (cf. Figure 5). Since y′s(0) is monotone

increasing on s, we have y′
∞
(0) > y′x(0). In the case where c(m) ≤ 0, we have

−y′x(0) ≤ 0, a contradiction. Namely, (−∞,∞) is the disconjugate interval of (JG)

We then have r(M) = ∞. If c(m) > 0, it follows that

y′
∞
(0) =

∫

∞

x

m(r)−2dr + y′x(0) = −y′x(0).
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Therefore,

0 = 2y′x(0) +

∫

∞

x

m(r)−2dr = 2

(

y′
∞
(0)−

∫

∞

x

m(r)−2dr

)

+

∫

∞

x

m(r)−2dr

= c(m)−

∫

∞

x

m(r)−2dr.

Thus, we have F̄ (x) = 0 and the results. �

The geometrical meaning of the constant is c(m) = 2y′
∞
(0) as above.

Remark 5.1. Furthermore, put

c(m, r1) := 2y′r1,∞(0) and F̄ (r1, x) := c(m, r1)−

∫

∞

x

m′(r1)
2

m(r(t))2 −m(r1)2
dt.

If c(m, r1) > 0, then there exists an x = x(r1) such that F̄ (r1, x(r1)) = 0 and

δr1 = x(r1). Then, (−x(r1),∞) is the maximal disconjugate interval along a geodesic

β such that r
(

β(0)
)

= r1 and r′
(

β(0)
)

= 0.

6. The proof of Theorem 1.1

In this section we prove Theorem 1.1. Let (M, p) be a pointed complete surface

homeomorphic to the plane with a base point at p, whose Gaussian curvature is G.

Let Mi be a von Mangoldt surface with a vertex at pi, whose Gaussian curvature is

Gi (i = 1, 2). Let τq : [0,∞) → M be a geodesic with τq(0) = q, τq(d(p, q)) = p and

let τqi : [0,∞) → Mi be geodesics with τqi(0) = qi, τqi(d(pi, qi)) = pi (i = 1, 2).

(1) Proof of r(M) ≥ r(M2) (cf. Figure 6). We show that if q ∈ M is not a

M M2

q

γq(t)

γq(a)

p

τq2

q2

p2

τq2(t)

γq

Figure 6. In the case G(q) ≤ G2(d(p, q)).

pole, then every point q2 ∈ M2 with d(q2, p2) = d(q, p) is not a pole. Suppose q is

not a pole in M . We then observe that the cut locus of q is not empty. Since M is

homeomorphic to the plane, an endpoint of the cut locus of q is a point conjugate to q

along every minimizing geodesic joining q to the end cut point. Let γq : [0, a] → M

be the minimizing geodesic which satisfies that γq(0) = q and γq(a) is conjugate
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to γq(0) along γq. Let τq2 : [0,∞) → M2 be the geodesic with τq2(0) = q2 and

τq2(d(p, q)) = p2. Then it follows from the triangle inequality that

d(p, γq(t)) ≥ | d(p, q)− t | = | d(p2, q2)− t | = d(p2, τq2(t))

for all t ∈ [0, a]. Thus, G(γq(t)) ≤ G2(d(p, γq(t))) ≤ G2(d(p2, τq2(t))). Since (JG)

is not disconjugate on [0, a], (JG) is not disconjugate on [0, a] from Comparison

Theorem for the solutions of the differential equations of Jacobi type. Namely,

there exists a point conjugate to q2 = τq2(0) along τq2. Therefore, q2 is not a pole.

We then have r(M) ≥ r(M2). The above argument proves that p is a pole in M

because so is p2.

(2) Proof of r(M1) ≥ r(M) (cf. Figure 7). Let q ∈ M satisfy d(p, q) < r(M)

M M1

q

τq

p

τq1

q1

p1

τq1(t)
τq(t)

Figure 7. In the case G1(d(p, q)) ≤ G(q).

and q1 ∈ M1 with d(p, q) = d(p1, q1). Then q is a pole. We must prove that q1
is a pole. Since M1 is a von Mangoldt surface, it is sufficient to show that there

exist no points conjugate to q1 along τq1 by Lemma 5.1. Since q is a pole, there

exist no points conjugate to q along τq. By the definitions of τq and τq1 , it follows

d(τq(t), p) = d(τq1(t), p1) for all t ∈ [0,∞). By assumption, G1(τq1(t)) ≤ G(τq(t)). If

(JG) is disconjugate on [0,∞), then (JG1
) is disconjugate on [0,∞) from Comparison

Theorem. Therefore, q1 is a pole of M1 by Lemma 5.1, that is, r(M1) ≥ r(M). We

have just completed the proof of Theorem 1.1.
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