A GENERALIZATION OF THE BANACH-STONE THEOREM FOR COMMUTATIVE BANACH ALGEBRAS

GO HIRASAWA, TAKESHI MIURA, AND RUMI SHINDO

ABSTRACT. Let I be an index set, not necessarily a subset of any Banach algebra. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively. If surjective mappings $S_1, S_2: I \to \mathcal{A}$ and $T_1, T_2: I \to \mathcal{B}$ satisfy $r(T_1(\lambda) - T_2(\mu)) = r(S_1(\lambda) - S_2(\mu))$ for all $\lambda, \mu \in I$, where r(a) is the spectral radius of a, then there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi: M_{\mathcal{B}} \to M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that $|\hat{w}| = 1$ on $M_{\mathcal{B}}$ and that

$$\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \begin{cases} \hat{w}(y)\widehat{S_k(\lambda)}(\varphi(y)) & y \in K\\ \widehat{w}(y)\overline{\widehat{S_k(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \setminus K \end{cases}$$

for all $\lambda \in I$ (k = 1, 2). In particular, if \mathcal{A} and \mathcal{B} are uniform algebras, and if $S_1, S_2: I \to \mathcal{A}$ and $T_1, T_2: I \to \mathcal{B}$ satisfy

$$\sigma_{\pi} \left(T_1(\lambda) - T_2(\mu) \right) \cap \sigma_{\pi} \left(S_1(\lambda) - S_2(\mu) \right) \neq \emptyset \qquad (\forall \lambda, \mu \in I),$$

where $\sigma_{\pi}(f)$ is the peripheral spectrum of f, then $\widetilde{T}_k(\lambda)(y) = \hat{p}(y) + \widehat{S}_k(\lambda)(\varphi(y))$ for all $\lambda \in I$ and $y \in M_{\mathcal{B}}$ (k = 1, 2).

1. Introduction

The study of spectrum preserving surjections between Banach algebras is one of the most active areas in Banach algebra theory. The theorem of Kowalski and Słodkowski [8, Theorem 1.2] states that if a complex-valued mapping $T: \mathcal{A} \to \mathbb{C}$ defined on a Banach algebra \mathcal{A} satisfies $T(a) - T(b) = \sigma(a - b)$ for all $a, b \in \mathcal{A}$, then T is linear and multiplicative (cf. [5, Theorem 3.1]), where $\sigma(\cdot)$ denotes the spectrum of the algebra element. This result is a generalization of the theorem of Gleason, Kahane and Żelazko [3, 7, 23].

²⁰⁰⁰ Mathematics Subject Classification. Primary 46J10.

Key words and phrases. Uniform algebra, commutative Banach algebra, maximal ideal space, Shilov boundary, algebra isomorphism, norm-additive operator, normlinear operator.

The first author was partly supported by the Grant-in-Aid for Scientific Research(C) No.20540154, from the Japan Society for the Promotion of Science.

The second author was partly supported by the Grant-in-Aid for Scientific Research.

It seems interesting to consider a part of the spectrum instead of the spectrum. In fact, Rao, Tonev and Toneva [18] considered the peripheral spectrum $\sigma_{\pi}(f)$ of f defined by $\sigma_{\pi}(f) = \{z \in \sigma(f) : |z| = \max_{\lambda \in \sigma(f)} |\lambda|\}$, and proved that a surjective mapping $T: A \to B$ between uniform algebras is an isometric isomorphism whenever T satisfies $\sigma_{\pi}(T(f) + T(g)) = \sigma_{\pi}(f+g)$ for all $f, g \in A$ under some additional assumption on the maximum moduli of functions. Tonev and Yates introduced norm-linear condition $\|\alpha T(f) + \beta T(g)\|_{\infty} = \|\alpha f + \beta g\|_{\infty}$ for $f, g \in A$ and $\alpha, \beta \in \mathbb{C}$, where $||f||_{\infty}$ is the supremum norm of f. Among other things, they [21, Theorem 20] proved that if $T: A \to B$ is a norm-linear surjective mapping between uniform algebras with T(1) = 1 and T(i) = i, then T is an isometric algebra isomorphism. Tonev [20, Corollary 6] proved that if a surjective mapping $T: \mathcal{A} \to \mathcal{B}$ between unital semisimple commutative Banach algebras satisfies $r(\alpha T(a) + \beta T(b)) = r(\alpha a + \beta b)$ for all $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$, then T is an algebra isomorphism. Here, r(a) denotes the spectral radius of a. Let $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ be maximal ideal spaces of \mathcal{A} and \mathcal{B} , respectively. It was shown in [6] that if a surjective mapping $T: \mathcal{A} \to \mathcal{B}$ satisfies r(T(a)+T(b)) = r(a+b) for all $a, b \in \mathcal{A}$, then there exit a homeomorphism $\varphi \colon M_{\mathcal{B}} \to \mathcal{A}$ $M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that

$$\widehat{T(a)}(y) = \begin{cases} \widehat{T(e)}(y)\hat{a}(\varphi(y)) & y \in K\\ \widehat{T(e)}(y)\overline{\hat{a}(\varphi(y))} & y \in M_{\mathcal{B}} \setminus K \end{cases}$$

for all $a \in \mathcal{A}$, where e is unit of \mathcal{A} and \hat{a} is the Gelfand transform of a.

In this paper we investigate surjective mappings $S_1, S_2: I \to \mathcal{A}$ and $T_1, T_2: I \to \mathcal{B}$ satisfying $r(T_1(\lambda) - T_2(\mu)) = r(S_1(\lambda) - S_2(\mu))$ for all $\lambda, \mu \in I$, where I is an index set. We will prove that (S_k, T_k) are represented by a homeomorphism between maximal ideal spaces of \mathcal{A} and \mathcal{B} (k = 1, 2). We also investigate surjective mappings that satisfy $\sigma_{\pi} (T_1(\lambda) - T_2(\mu)) \subset \sigma_{\pi} (S_1(\lambda) - S_2(\mu))$ for all $\lambda, \mu \in I$.

2. The main theorem

Let \mathcal{A} be a unital semisimple commutative Banach algebra with maximal ideal space $M_{\mathcal{A}}$ and Shilov boundary $\partial \mathcal{A}$, the smallest closed boundary of \mathcal{A} . Denote by $\sigma(a)$ the spectrum of $a \in \mathcal{A}$, namely, $\sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda e \notin \mathcal{A}^{-1}\} = \{\hat{a}(x) \in \mathbb{C} : x \in M_{\mathcal{A}}\},$ where \hat{a} is the Gelfand transform of $a \in \mathcal{A}$. Recall that the spectral radius r(a) of an element $a \in \mathcal{A}$ is the maximum modulus of λ in the spectrum of a, that is $r(a) = \sup_{x \in M_{\mathcal{A}}} |\hat{a}(x)| = \sup_{x \in \partial \mathcal{A}} |\hat{a}(x)|$. The peripheral spectrum $\sigma_{\pi}(a)$ of $a \in \mathcal{A}$ is defined by $\sigma_{\pi}(a) = \{\lambda \in \mathbb{C} : |\lambda| = r(a)\}$. The norm ||a|| of $a \in \mathcal{A}$ and the spectral radius r(a) are not equal in general. However, if \mathcal{A} is a uniform algebra, then the supremum norm $||a||_{\infty}$ and the spectral radius r(a) of $a \in \mathcal{A}$ coincide. Let A be a uniform algebra on a compact Hausdorff space X with the supremum norm $\|\cdot\|$. Recall that $h \in A$ is a *peaking function* of A if and only if $\|h\| = 1$ and $h(x) \neq 1$ implies |h(x)| < 1 for $x \in X$. Equivalently, $h \in A$ is a peaking function of A if and only if $\sigma_{\pi}(h) = \{1\}$. We say that $K \subset X$ is a peak set of A if $K = h^{-1}(1) = \{x \in X : h(x) = 1\}$ for some peaking function h of A. If the intersection of a family of peak sets of A is a singleton, then the unique element in the intersection is called a *weak peak point*, or a *p-point* of A. The set of all weak peak points of A is the *Choquet boundary* of A, denoted by Ch(A), which is a boundary of A, and dense in the Shilov boundary ∂A of A.

Theorem 2.1. Let I be an index set, not necessarily a subset of any Banach algebras. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, and Shilov boundaries $\partial \mathcal{A}$ and $\partial \mathcal{B}$, respectively. If $S_1, S_2: I \to \mathcal{A}$ and $T_1, T_2: I \to \mathcal{B}$ are surjective mappings satisfying

$$\mathbf{r}(T_1(\lambda) - T_2(\mu)) = \mathbf{r}(S_1(\lambda) - S_2(\mu)) \qquad (\forall \lambda, \mu \in I),$$
(2.1)

then there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi \colon M_{\mathcal{B}} \to M_{\mathcal{A}}$ and a closed and open set K of $M_{\mathcal{B}}$ such that $|\hat{w}| = 1$ on $M_{\mathcal{B}}$ and that

$$\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \begin{cases} \widehat{w}(y)\widehat{S_k(\lambda)}(\varphi(y)) & y \in K\\ \\ \widehat{w}(y)\overline{\widetilde{S_k(\lambda)}}(\varphi(y)) & y \in M_{\mathcal{B}} \setminus K \end{cases}$$

for all $\lambda \in I$ (k = 1, 2).

Proof. Let $\mu \in I$. Since T_2 is surjective, there exists $\mu' \in I$ such that $T_2(\mu') = T_1(\mu)$. According to (2.1), $r(S_1(\mu) - S_2(\mu')) = r(T_1(\mu) - T_2(\mu')) = r(T_1(\mu) - T_1(\mu)) = 0$. Since \mathcal{A} is semisimple, $S_2(\mu') = S_1(\mu)$. Therefore, for each $\lambda \in I$, $r(T_1(\lambda) - T_1(\mu)) = r(T_1(\lambda) - T_2(\mu')) = r(S_1(\lambda) - S_2(\mu')) = r(S_1(\lambda) - S_1(\mu))$. Consequently,

$$\mathbf{r}(T_1(\lambda) - T_1(\mu)) = \mathbf{r}(S_1(\lambda) - S_1(\mu)) \qquad (\forall \lambda, \mu \in I).$$
(2.2)

Define $\hat{T}_1: \hat{\mathcal{A}} \to \hat{\mathcal{B}}$ by $\hat{T}_1(\hat{a}) = \widehat{T_1(\lambda_a)}$ for $\hat{a} \in \hat{\mathcal{A}}$, where λ_a is any element of $\{\lambda \in I : S_1(\lambda) = a\}$. Here, $T_1(\lambda_a)$ does not depend on a choice of an element in $\{\lambda \in I : S_1(\lambda) = a\}$: for if $S_1(\lambda) = S_1(\lambda')$, then $T_1(\lambda) = T_1(\lambda')$ by (2.2). Since \mathcal{A} is semisimple, \hat{T}_1 is well-defined. Let $\hat{a}_i \in \hat{\mathcal{A}}$ and take $\lambda_i \in I$ so that $S_1(\lambda_i) = a_i$ for i = 1, 2. According to (2.2),

$$\sup_{y \in M_{\mathcal{B}}} |\hat{T}_{1}(\hat{a}_{1})(y) - \hat{T}_{1}(\hat{a}_{2})(y)| = \sup_{y \in M_{\mathcal{B}}} |\widehat{T}_{1}(\lambda_{1})(y) - \widehat{T}_{1}(\lambda_{2})(y)|$$

= $r(T_{1}(\lambda_{1}) - T_{1}(\lambda_{2})) = r(S_{1}(\lambda_{1}) - S_{1}(\lambda_{2}))$
= $r(a_{1} - a_{2}) = \sup_{x \in M_{\mathcal{A}}} |\hat{a}_{1}(x) - \hat{a}_{2}(x)|.$

Thus, $\hat{T}_1: \hat{\mathcal{A}} \to \hat{\mathcal{B}}$ is an isometry with respect to the supremum norms. Since T_1 is surjective, for each $\hat{b} \in \hat{\mathcal{B}}$, there exists $\lambda \in I$ such that $T_1(\lambda) = b$, and thus $\hat{T}_1(\widehat{S_1(\lambda)}) = \widehat{T_1(\lambda)} = \hat{b}$. Consequently, \hat{T}_1 is a surjective isometry between normed linear spaces $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. By the Mazur-Ulam theorem [12], \hat{T}_1 is affine (cf. [22]). Set $\mathcal{T} = \hat{T}_1 - \hat{T}_1(0)$. Then $\mathcal{T}: \hat{\mathcal{A}} \to \hat{\mathcal{B}}$ is a real-linear surjective isometry with respect to the supremum norms.

Next, we show that there exists a real-linear surjective isometry $\tilde{\mathcal{T}}: A \to B$ such that $\tilde{\mathcal{T}}|_{\hat{\mathcal{A}}} = \mathcal{T}$, where A and B are uniform closures of $\hat{\mathcal{A}} \subset C(M_{\mathcal{A}})$ and $\hat{\mathcal{B}} \subset C(M_{\mathcal{B}})$, respectively. It should be mentioned that the following arguments are used in [6]. Just for the sake of convenience, here we give a proof. It is well-known that A and B are uniform algebras on $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively, so that $M_A = M_{\mathcal{A}}, M_B = M_{\mathcal{B}}, \partial A = \partial \mathcal{A}$ and $\partial B = \partial \mathcal{B}$. Since A is the uniform closure of $\hat{\mathcal{A}}$, for each $f \in A$, there exists $\{\hat{a}_n\} \subset \hat{\mathcal{A}}$ such that $\sup_{x \in M_{\mathcal{A}}} |\hat{a}_n(x) - f(x)| \to 0$ as $n \to \infty$. Thus, $\{\mathcal{T}(\hat{a}_n)\} \subset \hat{\mathcal{B}}$ is a Cauchy sequence since \mathcal{T} is a real-linear isometry with respect to the supremum norms. Therefore, there exists an element $\tilde{\mathcal{T}}(f) \in B$ such that $\sup_{y \in M_{\mathcal{B}}} |\mathcal{T}(\hat{a}_n)(y) - \tilde{\mathcal{T}}(f)(y)| \to 0$ as $n \to \infty$. We see that $\tilde{\mathcal{T}}(f)$ does not depend on a choice of $\{\hat{a}_n\} \subset \hat{\mathcal{A}}$ so that $\sup_{x \in M_{\mathcal{A}}} |\hat{a}_n(x) - f(x)| \to 0$ as $n \to \infty$. Thus, there arises a well-defined, real-linear surjective isometry $\tilde{\mathcal{T}}: A \to B$ such that $\tilde{\mathcal{T}}|_{\hat{\mathcal{A}}} = \mathcal{T}$ as claimed.

Let $\gamma_A \colon A \to A|_{\partial \mathcal{A}}$ and $\gamma_B \colon B \to B|_{\partial \mathcal{B}}$ are restriction mappings. Then γ_A and γ_B are isometric algebra isomorphisms. Set $\widetilde{\mathcal{T}}_{\gamma} = \gamma_B \circ \widetilde{\mathcal{T}} \circ \gamma_A^{-1}$, and thus the mapping $\widetilde{\mathcal{T}}_{\gamma} \colon A|_{\partial \mathcal{A}} \to B|_{\partial \mathcal{B}}$ is a real-linear surjective isometry.

$$\begin{array}{ccc} A & \stackrel{\mathcal{T}}{\longrightarrow} & B \\ & & & \downarrow^{\gamma_B} \\ A|_{\partial \mathcal{A}} & \stackrel{\mathcal{T}}{\longrightarrow} & B|_{\partial \mathcal{B}} \end{array}$$

By a result of Ellis [2, Theorem], $\tilde{\mathcal{T}}_{\gamma}(1)$ satisfies $|\tilde{\mathcal{T}}_{\gamma}(1)| = 1$ on $\partial \mathcal{B}$, and there exist a homeomorphism $\phi: \partial \mathcal{B} \to \partial \mathcal{A}$ and a closed and open subset E of $\partial \mathcal{B}$ such that

$$\widetilde{\mathcal{T}}_{\gamma}(h)(y) = \begin{cases} \widetilde{\mathcal{T}}_{\gamma}(1)(y)h(\phi(y)) & y \in E\\ \widetilde{\mathcal{T}}_{\gamma}(1)(y)\overline{h(\phi(y))} & y \in \partial \mathcal{B} \setminus E \end{cases}$$

for all $h \in A|_{\partial \mathcal{A}}$. Since $\widetilde{\mathcal{T}}_{\gamma}(1) = \widetilde{\mathcal{T}}(1)|_{\partial \mathcal{B}} = \mathcal{T}(\hat{e})|_{\partial \mathcal{B}} \in \widehat{\mathcal{B}}|_{\partial \mathcal{B}}$, there exists $w \in \mathcal{B}$ such that $\hat{w} = \widetilde{\mathcal{T}}(1) \in B$, where e is unit of \mathcal{A} , and thus, $|\hat{w}| = 1$ on $\partial \mathcal{B}$, and

$$\widetilde{\mathcal{T}}(f)(y) = \begin{cases} \widehat{w}(y)f(\phi(y)) & y \in E\\ \widehat{w}(y)\overline{f(\phi(y))} & y \in \partial \mathcal{B} \setminus E \end{cases}$$
(2.3)

for all $f \in A$.

Choose an element $f_0 \in A$ such that $\widetilde{\mathcal{T}}(f_0) = 1$. Such $f_0 \in A$ exists since $\widetilde{\mathcal{T}}$ is surjective. By (2.3), $f_0 \circ \phi = 1/\hat{w}$ on E and $\overline{f_0} \circ \phi = 1/\hat{w}$ on $\partial \mathcal{B} \setminus E$. Set $f_1 = f_0^2 \in A$. Then (2.3) shows that $\widetilde{\mathcal{T}}(f_1) = 1/\hat{w}$ on $\partial \mathcal{B}$ and therefore, $\hat{w}\widetilde{\mathcal{T}}(f_1) = 1$ on $\partial \mathcal{B}$. It follows that $|\hat{w}| = 1$ on $M_{\mathcal{B}}$. Define $\mathcal{U} \colon A \to B$ by $\mathcal{U}(f) = \widetilde{\mathcal{T}}(f_1)\widetilde{\mathcal{T}}(f)$ for $f \in A$. Then \mathcal{U} is surjective since so is $\widetilde{\mathcal{T}}$. By (2.3)

$$\mathcal{U}(f)(y) = \begin{cases} f(\phi(y)) & y \in E\\ \overline{f(\phi(y))} & y \in \partial \mathcal{B} \setminus E \end{cases}$$
(2.4)

for all $f \in A$, where we have used $\hat{w}\tilde{\mathcal{T}}(f_1) = 1$ on $\partial \mathcal{B}$. Here, we notice that $\phi(\operatorname{Ch}(B)) = \operatorname{Ch}(A)$ by (2.4). If we define $\epsilon = (1 - i\mathcal{U}(i))/2 \in B$, then (2.4) yields $\epsilon = 1$ on E and $\epsilon = 0$ on $\partial \mathcal{B} \setminus E$, and thus $\epsilon^2 = \epsilon$ on $\partial \mathcal{B}$. Since $\partial \mathcal{B}$ is a boundary of B, ϵ is an idempotent. Now we use the idea of A. Luttman and S. Lambert in [10, Theorem 2.1]. Set $\epsilon' = 1 - \epsilon \in B$. Then ϵ' is an idempotent such that $\epsilon \epsilon' = 0$. Then $B' = B\epsilon \oplus \overline{B}\epsilon'$ is a uniform algebra on $M_{\mathcal{B}}$ with $M_{B'} = M_{\mathcal{B}}$. We define $\tilde{\mathcal{U}} : A \to B'$ by

$$\widetilde{\mathcal{U}}(f) = \mathcal{U}(f)\epsilon + \overline{\mathcal{U}(f)}\epsilon' \qquad (\forall f \in A).$$
(2.5)

By (2.4), with $\epsilon = 1$ on E and $\epsilon = 0$ on $\partial \mathcal{B} \setminus E$, $\widetilde{\mathcal{U}}(f) = f \circ \phi$ on $\partial \mathcal{B}$ for all $f \in A$. Since $\partial \mathcal{B}$ is a boundary of B', $\widetilde{\mathcal{U}}$ is an algebra homomorphism. We show that $\widetilde{\mathcal{U}}$ is a bijection. In fact, if $\widetilde{\mathcal{U}}(f) = \widetilde{\mathcal{U}}(g)$ for $f, g \in A$, then $f \circ \phi = g \circ \phi$ on $\partial \mathcal{B}$, and thus f = g since $\phi(\partial \mathcal{B}) = \partial \mathcal{A}$. Hence $\widetilde{\mathcal{U}}$ is injective. For each $k \in B'$ choose $k_1, k_2 \in B$ such that $k = k_1 \epsilon + \overline{k_2} \epsilon'$. There exists $g_0 \in A$ such that $\mathcal{U}(g_0) = k_1 \epsilon + k_2 \epsilon' \in B$. Since $\epsilon^2 = \epsilon$ and $\epsilon \epsilon' = 0$, (2.5) shows that $\widetilde{\mathcal{U}}(g_0)\epsilon = \mathcal{U}(g_0)\epsilon = k_1\epsilon$ and

$$\widetilde{\mathcal{U}}(g_0)(1-\epsilon) = \widetilde{\mathcal{U}}(g_0)\epsilon' = \overline{\mathcal{U}}(g_0)\epsilon' = \overline{k_2}\epsilon'.$$

Consequently, $\widetilde{\mathcal{U}}(g_0) = k_1 \epsilon + \overline{k_2} \epsilon' = k$, and therefore, $\widetilde{\mathcal{U}}$ is surjective. Hence $\widetilde{\mathcal{U}}$ is a bijection, as claimed. Since $\widetilde{\mathcal{U}}$ is an algebra isomorphism between uniform algebras, there exists a homeomorphism $\varphi \colon M_{\mathcal{B}} \to M_{\mathcal{A}}$ such that $\widetilde{\mathcal{U}}(f) = f \circ \varphi$ for all $f \in A$. According to (2.5), using $\epsilon^2 = \epsilon$ and $\epsilon \epsilon' = 0$, $\widetilde{\mathcal{U}}(f)\epsilon = \mathcal{U}(f)\epsilon$ and $\overline{\widetilde{\mathcal{U}}(f)}\epsilon' = \mathcal{U}(f)\epsilon' = \mathcal{U}(f)(1-\epsilon)$. Therefore,

$$\mathcal{U}(f) = \widetilde{\mathcal{U}}(f)\epsilon + \overline{\widetilde{\mathcal{U}}(f)}\epsilon'$$

for all $f \in A$. Set $K = \{y \in M_{\mathcal{B}} : \epsilon(y) = 1\}$. Since $\epsilon^2 = \epsilon$, K is a (possibly empty) closed and open subset of $M_{\mathcal{B}}$. Using $\widetilde{\mathcal{U}}(f) = f \circ \varphi$,

$$\mathcal{U}(f)(y) = \begin{cases} f(\varphi(y)) & y \in K \\ \hline f(\varphi(y)) & y \in M_{\mathcal{B}} \setminus K \end{cases}$$

for all $f \in A$. Since $f \circ \varphi = \widetilde{\mathcal{U}}(f) = f \circ \phi$ on $\partial \mathcal{B}$, we have $\varphi = \phi$ on $\partial \mathcal{B}$. Thus, $\varphi(\partial \mathcal{B}) = \phi(\partial \mathcal{B}) = \partial \mathcal{A}$ and $\varphi(\operatorname{Ch}(B)) = \phi(\operatorname{Ch}(B)) = \operatorname{Ch}(A)$. Finally, by the definition of \mathcal{U} , $\tilde{\mathcal{T}}(f) = \hat{w}\mathcal{U}(f)$ for all $f \in A$. In addition, recall that

$$\widetilde{\mathcal{T}}(\widehat{S_1(\lambda)}) = \mathcal{T}(\widehat{S_1(\lambda)}) = \widehat{T_1(\lambda)} - \widehat$$

for all $\lambda \in I$. Consequently,

$$\widehat{T_1(\lambda)}(y) - \hat{p}(y) = \begin{cases} \widehat{w}(y)\widehat{S_1(\lambda)}(\varphi(y)) & y \in K\\ \widehat{w}(y)\overline{\widehat{S_1(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \setminus K \end{cases}$$

for all $\lambda \in I$, where $p \in \mathcal{B}$ with $\hat{p} = \hat{T}_1(0)$. Since T_1 is surjective, for each $\lambda \in I$ there exists $\lambda' \in I$ such that $T_1(\lambda') = T_2(\lambda)$ and $S_1(\lambda') = S_2(\lambda)$, where we have used (2.1). Thus, for each $y \in K$,

$$\widehat{T_2(\lambda)}(y) - \hat{p}(y) = \widehat{T_1(\lambda')}(y) - \hat{p}(y) = \hat{w}(y)\widehat{S_1(\lambda')}(\varphi(y))$$
$$= \hat{w}(y)\widehat{S_2(\lambda)}(\varphi(y)).$$

By the same argument, we have $\widehat{T_2(\lambda)}(y) - \hat{p}(y) = \hat{w}(y)\overline{\widehat{S_2(\lambda)}(\varphi(y))}$ for all $y \in M_{\mathcal{B}} \setminus K$.

Remark 2.1. In Theorem 2.1 if we consider the case when $I = \mathcal{A} = C(X)$, $\mathcal{B} = C(Y)$, $S_1 = S_2 = \text{Id}$, the identity mapping and $T_1 = T_2$ are complex-linear, then we have the Banach-Stone theorem [1, 19]. Theorem 2.1 is also a generalization of Nagasawa theorem stating that any unital, surjective, complex-linear isometry between uniform algebras is an algebra isomorphism.

Corollary 2.2. Let I be an index set, not necessarily a subset of any Banach algebras. bras. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively. If $S_1, S_2: I \to \mathcal{A}$ and $T_1, T_2: I \to \mathcal{B}$ are surjective mappings satisfying

$$\sigma_{\pi} \left(T_1(\lambda) - T_2(\mu) \right) \subset \sigma_{\pi} \left(S_1(\lambda) - S_2(\mu) \right) \qquad (\forall \lambda, \mu \in I),$$
(2.6)

then there exist $p \in \mathcal{B}$ and a homeomorphism $\varphi \colon M_{\mathcal{B}} \to M_{\mathcal{A}}$ such that

$$\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \widehat{S_k(\lambda)}(\varphi(y))$$

for all $\lambda \in I$ and $y \in M_{\mathcal{B}}$ (k = 1, 2).

Proof. By (2.6), $r(T_1(\lambda) - T_2(\mu)) = r(S_1(\lambda) - S_2(\mu))$ holds for all $\lambda, \mu \in I$. According to Theorem 2.1, there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi \colon M_{\mathcal{B}} \to M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that $|\hat{w}| = 1$ on $M_{\mathcal{B}}$ and that

$$\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \begin{cases} \hat{w}(y)\widehat{S_k(\lambda)}(\varphi(y)) & y \in K\\ \widehat{w}(y)\overline{\widehat{S_k(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \setminus K \end{cases}$$
(2.7)

for all $\lambda \in I$ (k = 1, 2). Since S_2 is surjective, there exists $\mu_0 \in I$ such that $S_2(\mu_0) = 0$. Thus $\widehat{T_2(\mu_0)} = \hat{p}$ on M_B , and consequently $T_2(\mu_0) = p$. By (2.6),

$$\sigma_{\pi} \left(T_1(\lambda) - p \right) \subset \sigma_{\pi} \left(S_1(\lambda) \right) \tag{2.8}$$

for all $\lambda \in I$. First, we will prove that $\hat{w} = 1$ on $M_{\mathcal{B}}$. Let $\lambda_0 \in I$ with $S_1(\lambda_0) = e$, unit element of \mathcal{A} . On one hand,

$$\sigma_{\pi}\left(T_{1}(\lambda_{0})-p\right)\subset\sigma_{\pi}\left(S_{1}(\lambda_{0})\right)=\{1\},\$$

and thus $\sigma_{\pi} (T_1(\lambda_0) - p) = \{1\}$. On the other hand, $\widehat{T_1(\lambda_0)} - \hat{p} = \hat{w}$ on $M_{\mathcal{B}}$ by (2.7), and hence $|\widehat{T_1(\lambda_0)} - \hat{p}| = |\hat{w}| = 1$ on $M_{\mathcal{B}}$. It follows that $\widehat{T_1(\lambda_0)} - \hat{p} = 1$ on $M_{\mathcal{B}}$, and consequently, $\hat{w} = 1$ on $M_{\mathcal{B}}$ as claimed. Finally, we show that $K = M_{\mathcal{B}}$. Suppose, on the contrary, that there exists $y_1 \in M_{\mathcal{B}} \setminus K$. Choose $\lambda_1 \in I$ so that $S_1(\lambda_1) = ie$. According to (2.7), $\widehat{T_1(\lambda_1)}(y_1) - \hat{p}(y_1) = -i$ and $\widehat{T_1(\lambda_1)}(y) - \hat{p}(y) = \pm i$ for $y \in M_{\mathcal{B}}$. Hence $-i \in \sigma_{\pi} (T_1(\lambda_1) - p)$. By (2.8), $\sigma_{\pi} (T_1(\lambda_1) - p) \subset \sigma_{\pi} (S_1(\lambda_1)) = \{i\}$, which is a contradiction. This implies that $K = M_{\mathcal{B}}$. Thus, $\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \widehat{S_k(\lambda)}(\varphi(y))$ for all $\lambda \in I$ and $y \in M_{\mathcal{B}} (k = 1, 2)$.

Corollary 2.3. Let I be an index set, not necessarily a subset of any Banach algebras. Let A and B be uniform algebras with maximal ideal spaces M_A and M_B , respectively. If $S_1, S_2: I \to A$ and $T_1, T_2: I \to B$ are surjective mappings satisfying

$$\sigma_{\pi} \left(T_1(\lambda) - T_2(\mu) \right) \cap \sigma_{\pi} \left(S_1(\lambda) - S_2(\mu) \right) \neq \emptyset \qquad (\forall \lambda, \mu \in I),$$
(2.9)

then there exist $p \in B$ and a homeomorphism $\varphi \colon M_B \to M_A$ such that

$$T_k(\lambda)(y) - \hat{p}(y) = S_k(\lambda)(\varphi(y))$$

for all $\lambda \in I$ and $y \in M_B$ (k = 1, 2).

Proof. According to Theorem 2.1, there exist $p, w \in B$, a homeomorphism $\varphi \colon M_B \to M_A$ and a closed and open subset K of M_B such that |w| = 1 on M_B and that (2.7) holds for all $\lambda \in I$ (k = 1, 2). By the same argument to the Proof of Corollary 2.2, we see that

$$\sigma_{\pi} \left(T_1(\lambda) - p \right) \cap \sigma_{\pi} \left(S_1(\lambda) \right) \neq \emptyset \tag{2.10}$$

for all $\lambda \in I$. As mentioned in the proof of Theorem 2.1, we also have that $\varphi(Ch(B)) = Ch(A)$.

First, we will prove that w = 1. Let $\lambda_0 \in I$ with $S_1(\lambda_0) = 1$, the unit element of A. By (2.7) and (2.10), $1 \in \sigma_{\pi} (T_1(\lambda_0) - p) = \sigma_{\pi} (w)$. Thus, $F = \{y \in \partial B : w(y) = 1\}$ is a non-empty closed subset of the Shilov boundary ∂B of B. Suppose, on the contrary, that there exists $y_0 \in \partial B \setminus F$. Since Ch(B) is dense in ∂B , we may and do assume that $y_0 \in Ch(B) \setminus F$. Set $x_0 = \varphi(y_0) \in Ch(A)$. Then $\varphi(F)$ is a closed subset of $\varphi(\partial B) = \partial A$ with $x_0 \notin \varphi(F)$. Hence, there exists $\lambda_1 \in I$ such that $\sigma_{\pi}(S_1(\lambda_1)) = \{1\}$, $S_1(\lambda_1)(x_0) = 1$ and $|S_1(\lambda_1)| < 1$ on $\varphi(F)$. On one hand, $1 \in \sigma_{\pi}(T_1(\lambda_1) - p)$ by (2.9). Thus $T_1(\lambda_1)(y_1) - p(y_1) = 1$ for some $y_1 \in Ch(B)$. Then $y_1 \notin F$ because $|T_1(\lambda_1)(y) - p(y)| = |S_1(\lambda_1)(\varphi(y))| < 1$ for all $y \in F$. Hence, $w(y_1) \neq 1$ by the definition of F. On the other hand, since $\sigma_{\pi}(S_1(\lambda_1)) = \{1\}$, $1 = |T_1(\lambda_1)(y_1) - p(y_1)| = |S_1(\lambda_1)(\varphi(y_1))|$ implies that $S_1(\lambda_1)(\varphi(y_1)) = 1$. According to (2.7), $T_1(\lambda_1)(y_1) - p(y_1) = w(y_1) \neq 1$, which is a contradiction. Consequently, $\partial B = F$, that is w = 1 on ∂B . Since ∂B is a boundary of B, we obtain that w = 1as claimed.

Next, we show that $K \neq \emptyset$. In fact, choose $\lambda_2 \in I$ so that $S_1(\lambda_2) = i$. Then by (2.7) with w = 1, $\widehat{T_1(\lambda_2)} - \hat{p} = i$ on K and $\widehat{T_1(\lambda_2)} - \hat{p} = -i$ on $M_{\mathcal{B}} \setminus K$. Since $\sigma_{\pi}(S_1(\lambda_2)) = \{i\}$, (2.10) yields $K \neq \emptyset$. Finally, we prove that $K = M_B$. Suppose that there exists $y_2 \in Ch(B) \setminus K$. Since K is a non-empty closed subset of M_B with $y_2 \notin K$, there exists $\lambda_3 \in I$ so that $\sigma_{\pi}(S_1(\lambda_3)) = \{i\}$, $S_1(\lambda_3)(y_2) = i$ and $|S_1(\lambda_3)| < 1$ on K. By (2.7), $\sigma_{\pi}(T_1(\lambda_3) - p) = \{-i\}$, which contradicts (2.10). This shows that $Ch(B) \setminus K = \emptyset$, and thus $Ch(B) \subset K$. By the choice of $\lambda_2 \in I$, $T_1(\lambda_2) - p = i$ on Ch(B). Since Ch(B) is a boundary of B, $T_1(\lambda_2) - p = i$, and thus $M_B \setminus K$ is empty. Consequently, $K = M_B$ as claimed. According to (2.7), we conclude that $\widehat{T_k(\lambda)}(y) - \hat{p}(y) = \widehat{S_k(\lambda)}(\varphi(y))$ for all $\lambda \in I$ and $y \in M_B$ (k = 1, 2). \Box

Acknowledgement. The authors would like to thank the referee for valuable suggestions and comments to improve the manuscript.

References

- [1] S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- [2] A.J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 22 (1990), 381–385.
- [3] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171–172.
- [4] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property, Proc. Amer. Math. Soc., 134 (2006), 2923–2930.
- [5] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrumpreserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl., **326** (2007), 281–296.
- [6] O. Hatori, G. Hirasawa and T. Miura, Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math., 8 (2010), 597–601.
- [7] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 29 (1968), 339–343.

- [8] S. Kowalski and Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math., 67 (1980), 215–223.
- [9] S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math., 435 (2007), 265–281.
- [10] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Eur. J. Math., 6 (2008), 272–280.
- [11] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc., 135 (2007), 3589–3598.
- [12] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- [13] T. Miura, D. Honma and R. Shindo, *Divisibly norm-preserving maps between commutative Banach algebras*, to appear in Rocky Mountain J. Math.
- [14] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc., **130** (2002), 111–120.
- [15] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 11 (1959), 182–188.
- [16] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc., 133 (2005), 1135–1142.
- [17] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinburgh Math. Soc., 48 (2005), 219–229.
- [18] N. V. Rao, T. V. Tonev and E. T. Toneva, Uniform algebra isomorphisms and peripheral spectra, Contemp. Math., 427 (2007), 401–416.
- [19] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375–481.
- [20] T. Tonev, The Banach-Stone theorem for Banach algebras, preprint.
- [21] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 357 (2009), 45–53.
- [22] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 110
 (7) (2003), 633–635.
- [23] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83–85.

(Go Hirasawa) Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan *E-mail address:* gou@mx.ibaraki.ac.jp

(Takeshi Miura) Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992–8510, Japan *E-mail address:* miura@yz.yamagata-u.ac.jp

(Rumi Shindo) NSG Academy Co. Ltd., 1-11-32, Higashiodori, Chuo-Ku, Niigata 950–0087, Japan *E-mail address*: rumi_shindo@email.plala.or.jp

Received October 6, 2010 Revised November 10, 2010