A GENERALIZATION OF THE BANACH-STONE THEOREM FOR COMMUTATIVE BANACH ALGEBRAS

GO HIRASAWA, TAKESHI MIURA, AND RUMI SHINDO

Abstract

Let I be an index set, not necessarily a subset of any Banach algebra. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively. If surjective mappings $S_{1}, S_{2}: I \rightarrow \mathcal{A}$ and $T_{1}, T_{2}: I \rightarrow \mathcal{B}$ satisfy $\mathrm{r}\left(T_{1}(\lambda)-T_{2}(\mu)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{2}(\mu)\right)$ for all $\lambda, \mu \in I$, where $\mathrm{r}(a)$ is the spectral radius of a, then there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that $|\hat{w}|=1$ on $M_{\mathcal{B}}$

 and that$$
\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)= \begin{cases}\hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in K \\ \hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $\lambda \in I(k=1,2)$. In particular, if \mathcal{A} and \mathcal{B} are uniform algebras, and if $S_{1}, S_{2}: I \rightarrow \mathcal{A}$ and $T_{1}, T_{2}: I \rightarrow \mathcal{B}$ satisfy

$$
\sigma_{\pi}\left(T_{1}(\lambda)-T_{2}(\mu)\right) \cap \sigma_{\pi}\left(S_{1}(\lambda)-S_{2}(\mu)\right) \neq \emptyset \quad(\forall \lambda, \mu \in I),
$$

where $\sigma_{\pi}(f)$ is the peripheral spectrum of f, then $\widehat{T_{k}(\lambda)}(y)=\hat{p}(y)+\widehat{S_{k}(\lambda)}(\varphi(y))$ for all $\lambda \in I$ and $y \in M_{\mathcal{B}}(k=1,2)$.

1. Introduction

The study of spectrum preserving surjections between Banach algebras is one of the most active areas in Banach algebra theory. The theorem of Kowalski and Słodkowski [8, Theorem 1.2] states that if a complex-valued mapping $T: \mathcal{A} \rightarrow \mathbb{C}$ defined on a Banach algebra \mathcal{A} satisfies $T(a)-T(b)=\sigma(a-b)$ for all $a, b \in \mathcal{A}$, then T is linear and multiplicative (cf. [5, Theorem 3.1]), where $\sigma(\cdot)$ denotes the spectrum of the algebra element. This result is a generalization of the theorem of Gleason, Kahane and Żelazko [3, 7, 23].

[^0]It seems interesting to consider a part of the spectrum instead of the spectrum. In fact, Rao, Tonev and Toneva [18] considered the peripheral spectrum $\sigma_{\pi}(f)$ of f defined by $\sigma_{\pi}(f)=\left\{z \in \sigma(f):|z|=\max _{\lambda \in \sigma(f)}|\lambda|\right\}$, and proved that a surjective mapping $T: A \rightarrow B$ between uniform algebras is an isometric isomorphism whenever T satisfies $\sigma_{\pi}(T(f)+T(g))=\sigma_{\pi}(f+g)$ for all $f, g \in A$ under some additional assumption on the maximum moduli of functions. Tonev and Yates introduced norm-linear condition $\|\alpha T(f)+\beta T(g)\|_{\infty}=\|\alpha f+\beta g\|_{\infty}$ for $f, g \in A$ and $\alpha, \beta \in \mathbb{C}$, where $\|f\|_{\infty}$ is the supremum norm of f. Among other things, they [21, Theorem 20] proved that if $T: A \rightarrow B$ is a norm-linear surjective mapping between uniform algebras with $T(1)=1$ and $T(i)=i$, then T is an isometric algebra isomorphism. Tonev [20, Corollary 6] proved that if a surjective mapping $T: \mathcal{A} \rightarrow \mathcal{B}$ between unital semisimple commutative Banach algebras satisfies $\mathrm{r}(\alpha T(a)+\beta T(b))=\mathrm{r}(\alpha a+\beta b)$ for all $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$, then T is an algebra isomorphism. Here, $\mathrm{r}(a)$ denotes the spectral radius of a. Let $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ be maximal ideal spaces of \mathcal{A} and \mathcal{B}, respectively. It was shown in [6] that if a surjective mapping $T: \mathcal{A} \rightarrow \mathcal{B}$ satisfies $\mathrm{r}(T(a)+T(b))=\mathrm{r}(a+b)$ for all $a, b \in \mathcal{A}$, then there exit a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow$ $M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that

$$
\widehat{T(a)}(y)= \begin{cases}\widehat{T(e)}(y) \hat{a}(\varphi(y)) & y \in K \\ \widehat{T(e)}(y) \hat{\hat{a}(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $a \in \mathcal{A}$, where e is unit of \mathcal{A} and \hat{a} is the Gelfand transform of a.
In this paper we investigate surjective mappings $S_{1}, S_{2}: I \rightarrow \mathcal{A}$ and $T_{1}, T_{2}: I \rightarrow \mathcal{B}$ satisfying $\mathrm{r}\left(T_{1}(\lambda)-T_{2}(\mu)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{2}(\mu)\right)$ for all $\lambda, \mu \in I$, where I is an index set. We will prove that $\left(S_{k}, T_{k}\right)$ are represented by a homeomorphism between maximal ideal spaces of \mathcal{A} and $\mathcal{B}(k=1,2)$. We also investigate surjective mappings that satisfy $\sigma_{\pi}\left(T_{1}(\lambda)-T_{2}(\mu)\right) \subset \sigma_{\pi}\left(S_{1}(\lambda)-S_{2}(\mu)\right)$ for all $\lambda, \mu \in I$.

2. The main theorem

Let \mathcal{A} be a unital semisimple commutative Banach algebra with maximal ideal space $M_{\mathcal{A}}$ and Shilov boundary $\partial \mathcal{A}$, the smallest closed boundary of \mathcal{A}. Denote by $\sigma(a)$ the spectrum of $a \in \mathcal{A}$, namely, $\sigma(a)=\left\{\lambda \in \mathbb{C}: a-\lambda e \notin \mathcal{A}^{-1}\right\}=\left\{\hat{a}(x) \in \mathbb{C}: x \in M_{\mathcal{A}}\right\}$, where \hat{a} is the Gelfand transform of $a \in \mathcal{A}$. Recall that the spectral radius $\mathrm{r}(a)$ of an element $a \in \mathcal{A}$ is the maximum modulus of λ in the spectrum of a, that is $\mathrm{r}(a)=\sup _{x \in M_{\mathcal{A}}}|\hat{a}(x)|=\sup _{x \in \partial \mathcal{A}}|\hat{a}(x)|$. The peripheral spectrum $\sigma_{\pi}(a)$ of $a \in \mathcal{A}$ is defined by $\sigma_{\pi}(a)=\{\lambda \in \mathbb{C}:|\lambda|=\mathrm{r}(a)\}$. The norm $\|a\|$ of $a \in \mathcal{A}$ and the spectral radius $\mathrm{r}(a)$ are not equal in general. However, if \mathcal{A} is a uniform algebra, then the supremum norm $\|a\|_{\infty}$ and the spectral radius $\mathrm{r}(a)$ of $a \in \mathcal{A}$ coincide.

Let A be a uniform algebra on a compact Hausdorff space X with the supremum norm $\|\cdot\|$. Recall that $h \in A$ is a peaking function of A if and only if $\|h\|=1$ and $h(x) \neq 1$ implies $|h(x)|<1$ for $x \in X$. Equivalently, $h \in A$ is a peaking function of A if and only if $\sigma_{\pi}(h)=\{1\}$. We say that $K \subset X$ is a peak set of A if $K=h^{-1}(1)=\{x \in X: h(x)=1\}$ for some peaking function h of A. If the intersection of a family of peak sets of A is a singleton, then the unique element in the intersection is called a weak peak point, or a p-point of A. The set of all weak peak points of A is the Choquet boundary of A, denoted by $\operatorname{Ch}(A)$, which is a boundary of A, and dense in the Shilov boundary ∂A of A.

Theorem 2.1. Let I be an index set, not necessarily a subset of any Banach algebras. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, and Shilov boundaries $\partial \mathcal{A}$ and $\partial \mathcal{B}$, respectively. If $S_{1}, S_{2}: I \rightarrow \mathcal{A}$ and $T_{1}, T_{2}: I \rightarrow \mathcal{B}$ are surjective mappings satisfying

$$
\begin{equation*}
\mathrm{r}\left(T_{1}(\lambda)-T_{2}(\mu)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{2}(\mu)\right) \quad(\forall \lambda, \mu \in I), \tag{2.1}
\end{equation*}
$$

then there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow M_{\mathcal{A}}$ and a closed and open set K of $M_{\mathcal{B}}$ such that $|\hat{w}|=1$ on $M_{\mathcal{B}}$ and that

$$
\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)= \begin{cases}\hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in K \\ \hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $\lambda \in I(k=1,2)$.
Proof. Let $\mu \in I$. Since T_{2} is surjective, there exists $\mu^{\prime} \in I$ such that $T_{2}\left(\mu^{\prime}\right)=T_{1}(\mu)$. According to (2.1), $\mathrm{r}\left(S_{1}(\mu)-S_{2}\left(\mu^{\prime}\right)\right)=\mathrm{r}\left(T_{1}(\mu)-T_{2}\left(\mu^{\prime}\right)\right)=\mathrm{r}\left(T_{1}(\mu)-T_{1}(\mu)\right)=0$. Since \mathcal{A} is semisimple, $S_{2}\left(\mu^{\prime}\right)=S_{1}(\mu)$. Therefore, for each $\lambda \in I, \mathrm{r}\left(T_{1}(\lambda)-T_{1}(\mu)\right)=$ $\mathrm{r}\left(T_{1}(\lambda)-T_{2}\left(\mu^{\prime}\right)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{2}\left(\mu^{\prime}\right)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{1}(\mu)\right)$. Consequently,

$$
\begin{equation*}
\mathrm{r}\left(T_{1}(\lambda)-T_{1}(\mu)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{1}(\mu)\right) \quad(\forall \lambda, \mu \in I) \tag{2.2}
\end{equation*}
$$

Define $\hat{T}_{1}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ by $\hat{T}_{1}(\hat{a})=\widehat{T_{1}\left(\lambda_{a}\right)}$ for $\hat{a} \in \hat{\mathcal{A}}$, where λ_{a} is any element of $\left\{\lambda \in I: S_{1}(\lambda)=a\right\}$. Here, $T_{1}\left(\lambda_{a}\right)$ does not depend on a choice of an element in $\left\{\lambda \in I: S_{1}(\lambda)=a\right\}$: for if $S_{1}(\lambda)=S_{1}\left(\lambda^{\prime}\right)$, then $T_{1}(\lambda)=T_{1}\left(\lambda^{\prime}\right)$ by (2.2). Since \mathcal{A} is semisimple, \hat{T}_{1} is well-defined. Let $\hat{a}_{i} \in \hat{\mathcal{A}}$ and take $\lambda_{i} \in I$ so that $S_{1}\left(\lambda_{i}\right)=a_{i}$ for $i=1,2$. According to (2.2),

$$
\begin{aligned}
\sup _{y \in M_{\mathcal{B}}}\left|\hat{T}_{1}\left(\hat{a}_{1}\right)(y)-\hat{T}_{1}\left(\hat{a}_{2}\right)(y)\right| & =\sup _{y \in M_{\mathcal{B}}}\left|\widehat{T_{1}\left(\lambda_{1}\right)}(y)-\widehat{T_{1}\left(\lambda_{2}\right)}(y)\right| \\
& =\mathrm{r}\left(T_{1}\left(\lambda_{1}\right)-T_{1}\left(\lambda_{2}\right)\right)=\mathrm{r}\left(S_{1}\left(\lambda_{1}\right)-S_{1}\left(\lambda_{2}\right)\right) \\
& =\mathrm{r}\left(a_{1}-a_{2}\right)=\sup _{x \in M_{\mathcal{A}}}\left|\hat{a}_{1}(x)-\hat{a}_{2}(x)\right| .
\end{aligned}
$$

Thus, $\hat{T}_{1}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ is an isometry with respect to the supremum norms. Since T_{1} is surjective, for each $\hat{b} \in \hat{\mathcal{B}}$, there exists $\lambda \in I$ such that $T_{1}(\lambda)=b$, and thus $\hat{T}_{1}\left(\widehat{S_{1}(\lambda)}\right)=\widehat{T_{1}(\lambda)}=\hat{b}$. Consequently, \hat{T}_{1} is a surjective isometry between normed linear spaces $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. By the Mazur-Ulam theorem [12], \hat{T}_{1} is affine (cf. [22]). Set $\mathcal{T}=\hat{T}_{1}-\hat{T}_{1}(0)$. Then $\mathcal{T}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ is a real-linear surjective isometry with respect to the supremum norms.

Next, we show that there exists a real-linear surjective isometry $\widetilde{\mathcal{T}}: A \rightarrow B$ such that $\left.\widetilde{\mathcal{T}}\right|_{\hat{\mathcal{A}}}=\mathcal{T}$, where A and B are uniform closures of $\hat{\mathcal{A}} \subset C\left(M_{\mathcal{A}}\right)$ and $\hat{\mathcal{B}} \subset C\left(M_{\mathcal{B}}\right)$, respectively. It should be mentioned that the following arguments are used in [6]. Just for the sake of convenience, here we give a proof. It is well-known that A and B are uniform algebras on $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively, so that $M_{A}=M_{\mathcal{A}}, M_{B}=M_{\mathcal{B}}$, $\partial A=\partial \mathcal{A}$ and $\partial B=\partial \mathcal{B}$. Since A is the uniform closure of $\hat{\mathcal{A}}$, for each $f \in A$, there exists $\left\{\hat{a}_{n}\right\} \subset \hat{\mathcal{A}}$ such that $\sup _{x \in M_{\mathcal{A}}}\left|\hat{a}_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus, $\left\{\mathcal{T}\left(\hat{a}_{n}\right)\right\} \subset \hat{\mathcal{B}}$ is a Cauchy sequence since \mathcal{T} is a real-linear isometry with respect to the supremum norms. Therefore, there exists an element $\widetilde{\mathcal{T}}(f) \in B$ such that $\sup _{y \in M_{\mathcal{B}}}\left|\mathcal{T}\left(\hat{a}_{n}\right)(y)-\widetilde{\mathcal{T}}(f)(y)\right| \rightarrow 0$ as $n \rightarrow \infty$. We see that $\widetilde{\mathcal{T}}(f)$ does not depend on a choice of $\left\{\hat{a}_{n}\right\} \subset \hat{\mathcal{A}}$ so that $\sup _{x \in M_{\mathcal{A}}}\left|\hat{a}_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus, there arises a well-defined, real-linear surjective isometry $\widetilde{\mathcal{T}}: A \rightarrow B$ such that $\left.\widetilde{\mathcal{T}}\right|_{\hat{\mathcal{A}}}=\mathcal{T}$ as claimed.

Let $\gamma_{A}:\left.A \rightarrow A\right|_{\partial \mathcal{A}}$ and $\gamma_{B}:\left.B \rightarrow B\right|_{\partial \mathcal{B}}$ are restriction mappings. Then γ_{A} and γ_{B} are isometric algebra isomorphisms. Set $\widetilde{\mathcal{T}}_{\gamma}=\gamma_{B} \circ \widetilde{\mathcal{T}} \circ \gamma_{A}{ }^{-1}$, and thus the mapping $\widetilde{\mathcal{T}}_{\gamma}:\left.\left.A\right|_{\partial \mathcal{A}} \rightarrow B\right|_{\partial \mathcal{B}}$ is a real-linear surjective isometry.

By a result of Ellis [2, Theorem], $\widetilde{\mathcal{T}}_{\gamma}(1)$ satisfies $\left|\widetilde{\mathcal{T}}_{\gamma}(1)\right|=1$ on $\partial \mathcal{B}$, and there exist a homeomorphism $\phi: \partial \mathcal{B} \rightarrow \partial \mathcal{A}$ and a closed and open subset E of $\partial \mathcal{B}$ such that

$$
\widetilde{\mathcal{T}}_{\gamma}(h)(y)= \begin{cases}\widetilde{\mathcal{T}}_{\gamma}(1)(y) h(\phi(y)) & y \in E \\ \widetilde{\mathcal{T}}_{\gamma}(1)(y) \overline{h(\phi(y))} & y \in \partial \mathcal{B} \backslash E\end{cases}
$$

for all $\left.h \in A\right|_{\partial \mathcal{A}}$. Since $\widetilde{\mathcal{T}}_{\gamma}(1)=\left.\widetilde{\mathcal{T}}(1)\right|_{\partial \mathcal{B}}=\left.\left.\mathcal{T}(\hat{e})\right|_{\partial \mathcal{B}} \in \hat{\mathcal{B}}\right|_{\partial \mathcal{B}}$, there exists $w \in \mathcal{B}$ such that $\hat{w}=\widetilde{\mathcal{T}}(1) \in B$, where e is unit of \mathcal{A}, and thus, $|\hat{w}|=1$ on $\partial \mathcal{B}$, and

$$
\widetilde{\mathcal{T}}(f)(y)= \begin{cases}\hat{w}(y) f(\phi(y)) & y \in E \tag{2.3}\\ \hat{w}(y) \overline{f(\phi(y))} & y \in \partial \mathcal{B} \backslash E\end{cases}
$$

for all $f \in A$.

Choose an element $f_{0} \in A$ such that $\widetilde{\mathcal{T}}\left(f_{0}\right)=1$. Such $f_{0} \in A$ exists since $\widetilde{\mathcal{T}}$ is surjective. $\operatorname{By}(2.3), f_{0} \circ \phi=1 / \hat{w}$ on E and $\overline{f_{0} \circ \phi}=1 / \hat{w}$ on $\partial \mathcal{B} \backslash E$. Set $f_{1}=f_{0}^{2} \in A$. Then (2.3) shows that $\widetilde{\mathcal{T}}\left(f_{1}\right)=1 / \hat{w}$ on $\partial \mathcal{B}$ and therefore, $\hat{w} \widetilde{\mathcal{T}}\left(f_{1}\right)=1$ on $\partial \mathcal{B}$. It follows that $|\hat{w}|=1$ on $M_{\mathcal{B}}$. Define $\mathcal{U}: A \rightarrow B$ by $\mathcal{U}(f)=\widetilde{\mathcal{T}}\left(f_{1}\right) \widetilde{\mathcal{T}}(f)$ for $f \in A$. Then \mathcal{U} is surjective since so is $\widetilde{\mathcal{T}}$. By (2.3)

$$
\mathcal{U}(f)(y)= \begin{cases}f(\phi(y)) & y \in E \tag{2.4}\\ \frac{f(\phi(y))}{} & y \in \partial \mathcal{B} \backslash E\end{cases}
$$

for all $f \in A$, where we have used $\hat{w} \widetilde{\mathcal{T}}\left(f_{1}\right)=1$ on $\partial \mathcal{B}$. Here, we notice that $\phi(\operatorname{Ch}(B))=\operatorname{Ch}(A)$ by (2.4). If we define $\epsilon=(1-i \mathcal{U}(i)) / 2 \in B$, then (2.4) yields $\epsilon=1$ on E and $\epsilon=0$ on $\partial \mathcal{B} \backslash E$, and thus $\epsilon^{2}=\epsilon$ on $\partial \mathcal{B}$. Since $\partial \mathcal{B}$ is a boundary of B, ϵ is an idempotent. Now we use the idea of A. Luttman and S. Lambert in [10, Theorem 2.1]. Set $\epsilon^{\prime}=1-\epsilon \in B$. Then ϵ^{\prime} is an idempotent such that $\epsilon \epsilon^{\prime}=0$. Then $B^{\prime}=B \epsilon \oplus \bar{B}^{\prime} \epsilon^{\prime}$ is a uniform algebra on $M_{\mathcal{B}}$ with $M_{B^{\prime}}=M_{\mathcal{B}}$. We define $\widetilde{\mathcal{U}}: A \rightarrow B^{\prime}$ by

$$
\begin{equation*}
\widetilde{\mathcal{U}}(f)=\mathcal{U}(f) \epsilon+\overline{\mathcal{U}(f)} \epsilon^{\prime} \quad(\forall f \in A) \tag{2.5}
\end{equation*}
$$

By (2.4), with $\epsilon=1$ on E and $\epsilon=0$ on $\partial \mathcal{B} \backslash E, \tilde{\mathcal{U}}(f)=f \circ \phi$ on $\partial \mathcal{B}$ for all $f \in A$. Since $\partial \mathcal{B}$ is a boundary of $B^{\prime}, \tilde{\mathcal{U}}$ is an algebra homomorphism. We show that $\tilde{\mathcal{U}}$ is a bijection. In fact, if $\widetilde{\mathcal{U}}(f)=\widetilde{\mathcal{U}}(g)$ for $f, g \in A$, then $f \circ \phi=g \circ \phi$ on $\partial \mathcal{B}$, and thus $f=g$ since $\phi(\partial \mathcal{B})=\partial \mathcal{A}$. Hence $\tilde{\mathcal{U}}$ is injective. For each $k \in B^{\prime}$ choose $k_{1}, k_{2} \in B$ such that $k=k_{1} \epsilon+\overline{k_{2}} \epsilon^{\prime}$. There exists $g_{0} \in A$ such that $\mathcal{U}\left(g_{0}\right)=k_{1} \epsilon+k_{2} \epsilon^{\prime} \in B$. Since $\epsilon^{2}=\epsilon$ and $\epsilon \epsilon^{\prime}=0$, (2.5) shows that $\widetilde{\mathcal{U}}\left(g_{0}\right) \epsilon=\mathcal{U}\left(g_{0}\right) \epsilon=k_{1} \epsilon$ and

$$
\widetilde{\mathcal{U}}\left(g_{0}\right)(1-\epsilon)=\widetilde{\mathcal{U}}\left(g_{0}\right) \epsilon^{\prime}=\overline{\mathcal{U}\left(g_{0}\right)} \epsilon^{\prime}=\overline{k_{2}} \epsilon^{\prime}
$$

Consequently, $\tilde{\mathcal{U}}\left(g_{0}\right)=k_{1} \epsilon+\overline{k_{2}} \epsilon^{\prime}=k$, and therefore, $\tilde{\mathcal{U}}$ is surjective. Hence $\tilde{\mathcal{U}}$ is a bijection, as claimed. Since $\widetilde{\mathcal{U}}$ is an algebra isomorphism between uniform algebras, there exists a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow M_{\mathcal{A}}$ such that $\tilde{\mathcal{U}}(f)=f \circ \varphi$ for all $f \in A$. According to (2.5), using $\epsilon^{2}=\epsilon$ and $\epsilon \epsilon^{\prime}=0, \widetilde{\mathcal{U}}(f) \epsilon=\mathcal{U}(f) \epsilon$ and $\overline{\widetilde{\mathcal{U}}(f) \epsilon^{\prime}}=\mathcal{U}(f) \epsilon^{\prime}=\mathcal{U}(f)(1-\epsilon)$. Therefore,

$$
\mathcal{U}(f)=\widetilde{\mathcal{U}}(f) \epsilon+\overline{\widetilde{\mathcal{U}}(f)} \epsilon^{\prime}
$$

for all $f \in A$. Set $K=\left\{y \in M_{\mathcal{B}}: \epsilon(y)=1\right\}$. Since $\epsilon^{2}=\epsilon, K$ is a (possibly empty) closed and open subset of $M_{\mathcal{B}}$. Using $\widetilde{\mathcal{U}}(f)=f \circ \varphi$,

$$
\mathcal{U}(f)(y)= \begin{cases}f(\varphi(y)) & y \in K \\ \overline{f(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $f \in A$. Since $f \circ \varphi=\widetilde{\mathcal{U}}(f)=f \circ \phi$ on $\partial \mathcal{B}$, we have $\varphi=\phi$ on $\partial \mathcal{B}$. Thus, $\varphi(\partial \mathcal{B})=\phi(\partial \mathcal{B})=\partial \mathcal{A}$ and $\varphi(\operatorname{Ch}(B))=\phi(\operatorname{Ch}(B))=\operatorname{Ch}(A)$.

Finally, by the definition of $\mathcal{U}, \widetilde{\mathcal{T}}(f)=\hat{w} \mathcal{U}(f)$ for all $f \in A$. In addition, recall that

$$
\tilde{\mathcal{T}}\left(\widehat{S_{1}(\lambda)}\right)=\mathcal{T}\left(\widehat{S_{1}(\lambda)}\right)=\hat{T}_{1}\left(\widehat{S_{1}(\lambda)}\right)-\hat{T}_{1}(0)=\widehat{T_{1}(\lambda)}-\hat{T}_{1}(0)
$$

for all $\lambda \in I$. Consequently,

$$
\widehat{T_{1}(\lambda)}(y)-\hat{p}(y)= \begin{cases}\hat{w}(y) \widehat{S_{1}(\lambda)}(\varphi(y)) & y \in K \\ \hat{w}(y) \widehat{\widehat{S_{1}(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $\lambda \in I$, where $p \in \mathcal{B}$ with $\hat{p}=\hat{T}_{1}(0)$. Since T_{1} is surjective, for each $\lambda \in I$ there exists $\lambda^{\prime} \in I$ such that $T_{1}\left(\lambda^{\prime}\right)=T_{2}(\lambda)$ and $S_{1}\left(\lambda^{\prime}\right)=S_{2}(\lambda)$, where we have used (2.1). Thus, for each $y \in K$,

$$
\begin{aligned}
\widehat{T_{2}(\lambda)}(y)-\hat{p}(y) & =\widehat{T_{1}\left(\lambda^{\prime}\right)}(y)-\hat{p}(y)=\hat{w}(y) \widehat{S_{1}\left(\lambda^{\prime}\right)}(\varphi(y)) \\
& =\hat{w}(y) \widehat{S_{2}(\lambda)}(\varphi(y)) .
\end{aligned}
$$

By the same argument, we have $\widehat{T_{2}(\lambda)}(y)-\hat{p}(y)=\hat{w}(y) \widehat{\widehat{S_{2}(\lambda)}(\varphi(y))}$ for all $y \in$ $M_{\mathcal{B}} \backslash K$.

Remark 2.1. In Theorem 2.1 if we consider the case when $I=\mathcal{A}=C(X), \mathcal{B}=$ $C(Y), S_{1}=S_{2}=\mathrm{Id}$, the identity mapping and $T_{1}=T_{2}$ are complex-linear, then we have the Banach-Stone theorem [1, 19]. Theorem 2.1 is also a generalization of Nagasawa theorem stating that any unital, surjective, complex-linear isometry between uniform algebras is an algebra isomorphism.

Corollary 2.2. Let I be an index set, not necessarily a subset of any Banach algebras. Let \mathcal{A} and \mathcal{B} be unital semisimple commutative Banach algebras with maximal ideal spaces $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$, respectively. If $S_{1}, S_{2}: I \rightarrow \mathcal{A}$ and $T_{1}, T_{2}: I \rightarrow \mathcal{B}$ are surjective mappings satisfying

$$
\begin{equation*}
\sigma_{\pi}\left(T_{1}(\lambda)-T_{2}(\mu)\right) \subset \sigma_{\pi}\left(S_{1}(\lambda)-S_{2}(\mu)\right) \quad(\forall \lambda, \mu \in I), \tag{2.6}
\end{equation*}
$$

then there exist $p \in \mathcal{B}$ and a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow M_{\mathcal{A}}$ such that

$$
\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)=\widehat{S_{k}(\lambda)}(\varphi(y))
$$

for all $\lambda \in I$ and $y \in M_{\mathcal{B}}(k=1,2)$.
Proof. By (2.6), $\mathrm{r}\left(T_{1}(\lambda)-T_{2}(\mu)\right)=\mathrm{r}\left(S_{1}(\lambda)-S_{2}(\mu)\right)$ holds for all $\lambda, \mu \in I$. According to Theorem 2.1, there exist $p, w \in \mathcal{B}$, a homeomorphism $\varphi: M_{\mathcal{B}} \rightarrow M_{\mathcal{A}}$ and a closed and open subset K of $M_{\mathcal{B}}$ such that $|\hat{w}|=1$ on $M_{\mathcal{B}}$ and that

$$
\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)= \begin{cases}\hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in K \tag{2.7}\\ \hat{w}(y) \widehat{\widehat{S_{k}(\lambda)}(\varphi(y))} & y \in M_{\mathcal{B}} \backslash K\end{cases}
$$

for all $\lambda \in I(k=1,2)$. Since S_{2} is surjective, there exists $\mu_{0} \in I$ such that $S_{2}\left(\mu_{0}\right)=0$. Thus $\widehat{T_{2}\left(\mu_{0}\right)}=\hat{p}$ on M_{B}, and consequently $T_{2}\left(\mu_{0}\right)=p$. By (2.6),

$$
\begin{equation*}
\sigma_{\pi}\left(T_{1}(\lambda)-p\right) \subset \sigma_{\pi}\left(S_{1}(\lambda)\right) \tag{2.8}
\end{equation*}
$$

for all $\lambda \in I$. First, we will prove that $\hat{w}=1$ on $M_{\mathcal{B}}$. Let $\lambda_{0} \in I$ with $S_{1}\left(\lambda_{0}\right)=e$, unit element of \mathcal{A}. On one hand,

$$
\sigma_{\pi}\left(T_{1}\left(\lambda_{0}\right)-p\right) \subset \sigma_{\pi}\left(S_{1}\left(\lambda_{0}\right)\right)=\{1\}
$$

and thus $\sigma_{\pi}\left(T_{1}\left(\lambda_{0}\right)-p\right)=\{1\}$. On the other hand, $\widehat{T_{1}\left(\lambda_{0}\right)}-\hat{p}=\hat{w}$ on $M_{\mathcal{B}}$ by (2.7), and hence $\left|\widehat{T_{1}\left(\lambda_{0}\right)}-\hat{p}\right|=|\hat{w}|=1$ on $M_{\mathcal{B}}$. It follows that $\widehat{T_{1}\left(\lambda_{0}\right)}-\hat{p}=1$ on $M_{\mathcal{B}}$, and consequently, $\hat{w}=1$ on $M_{\mathcal{B}}$ as claimed. Finally, we show that $K=M_{\mathcal{B}}$. Suppose, on the contrary, that there exists $y_{1} \in M_{\mathcal{B}} \backslash K$. Choose $\lambda_{1} \in I$ so that $S_{1}\left(\lambda_{1}\right)=i e$. According to $(2.7), \widehat{T_{1}\left(\lambda_{1}\right)}\left(y_{1}\right)-\hat{p}\left(y_{1}\right)=-i$ and $\widehat{T_{1}\left(\lambda_{1}\right)}(y)-\hat{p}(y)= \pm i$ for $y \in M_{\mathcal{B}}$. Hence $-i \in \sigma_{\pi}\left(T_{1}\left(\lambda_{1}\right)-p\right)$. By (2.8), $\sigma_{\pi}\left(T_{1}\left(\lambda_{1}\right)-p\right) \subset \sigma_{\pi}\left(S_{1}\left(\lambda_{1}\right)\right)=\{i\}$, which is a contradiction. This implies that $K=M_{\mathcal{B}}$. Thus, $\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)=\widehat{S_{k}(\lambda)}(\varphi(y))$ for all $\lambda \in I$ and $y \in M_{\mathcal{B}}(k=1,2)$.

Corollary 2.3. Let I be an index set, not necessarily a subset of any Banach algebras. Let A and B be uniform algebras with maximal ideal spaces M_{A} and M_{B}, respectively. If $S_{1}, S_{2}: I \rightarrow A$ and $T_{1}, T_{2}: I \rightarrow B$ are surjective mappings satisfying

$$
\begin{equation*}
\sigma_{\pi}\left(T_{1}(\lambda)-T_{2}(\mu)\right) \cap \sigma_{\pi}\left(S_{1}(\lambda)-S_{2}(\mu)\right) \neq \emptyset \quad(\forall \lambda, \mu \in I), \tag{2.9}
\end{equation*}
$$

then there exist $p \in B$ and a homeomorphism $\varphi: M_{B} \rightarrow M_{A}$ such that

$$
\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)=\widehat{S_{k}(\lambda)}(\varphi(y))
$$

for all $\lambda \in I$ and $y \in M_{B}(k=1,2)$.
Proof. According to Theorem 2.1, there exist $p, w \in B$, a homeomorphism $\varphi: M_{B} \rightarrow$ M_{A} and a closed and open subset K of M_{B} such that $|w|=1$ on $M_{\mathcal{B}}$ and that (2.7) holds for all $\lambda \in I(k=1,2)$. By the same argument to the Proof of Corollary 2.2, we see that

$$
\begin{equation*}
\sigma_{\pi}\left(T_{1}(\lambda)-p\right) \cap \sigma_{\pi}\left(S_{1}(\lambda)\right) \neq \emptyset \tag{2.10}
\end{equation*}
$$

for all $\lambda \in I$. As mentioned in the proof of Theorem 2.1, we also have that $\varphi(\operatorname{Ch}(B))=\operatorname{Ch}(A)$.

First, we will prove that $w=1$. Let $\lambda_{0} \in I$ with $S_{1}\left(\lambda_{0}\right)=1$, the unit element of A. By (2.7) and (2.10), $1 \in \sigma_{\pi}\left(T_{1}\left(\lambda_{0}\right)-p\right)=\sigma_{\pi}(w)$. Thus, $F=\{y \in \partial B: w(y)=1\}$ is a non-empty closed subset of the Shilov boundary ∂B of B. Suppose, on the contrary, that there exists $y_{0} \in \partial B \backslash F$. Since $\operatorname{Ch}(B)$ is dense in ∂B, we may and do assume that $y_{0} \in \operatorname{Ch}(B) \backslash F$. Set $x_{0}=\varphi\left(y_{0}\right) \in \operatorname{Ch}(A)$. Then $\varphi(F)$ is a closed subset of $\varphi(\partial B)=\partial A$ with $x_{0} \notin \varphi(F)$. Hence, there exists $\lambda_{1} \in I$ such
that $\sigma_{\pi}\left(S_{1}\left(\lambda_{1}\right)\right)=\{1\}, S_{1}\left(\lambda_{1}\right)\left(x_{0}\right)=1$ and $\left|S_{1}\left(\lambda_{1}\right)\right|<1$ on $\varphi(F)$. On one hand, $1 \in \sigma_{\pi}\left(T_{1}\left(\lambda_{1}\right)-p\right)$ by (2.9). Thus $T_{1}\left(\lambda_{1}\right)\left(y_{1}\right)-p\left(y_{1}\right)=1$ for some $y_{1} \in \operatorname{Ch}(B)$. Then $y_{1} \notin F$ because $\left|T_{1}\left(\lambda_{1}\right)(y)-p(y)\right|=\left|S_{1}\left(\lambda_{1}\right)(\varphi(y))\right|<1$ for all $y \in F$. Hence, $w\left(y_{1}\right) \neq 1$ by the definition of F. On the other hand, since $\sigma_{\pi}\left(S_{1}\left(\lambda_{1}\right)\right)=\{1\}$, $1=\left|T_{1}\left(\lambda_{1}\right)\left(y_{1}\right)-p\left(y_{1}\right)\right|=\left|S_{1}\left(\lambda_{1}\right)\left(\varphi\left(y_{1}\right)\right)\right|$ implies that $S_{1}\left(\lambda_{1}\right)\left(\varphi\left(y_{1}\right)\right)=1$. According to (2.7), $T_{1}\left(\lambda_{1}\right)\left(y_{1}\right)-p\left(y_{1}\right)=w\left(y_{1}\right) \neq 1$, which is a contradiction. Consequently, $\partial B=F$, that is $w=1$ on ∂B. Since ∂B is a boundary of B, we obtain that $w=1$ as claimed.

Next, we show that $K \neq \emptyset$. In fact, choose $\lambda_{2} \in I$ so that $S_{1}\left(\lambda_{2}\right)=i$. Then by (2.7) with $w=1, \widehat{T_{1}\left(\lambda_{2}\right)}-\hat{p}=i$ on K and $\widehat{T_{1}\left(\lambda_{2}\right)}-\hat{p}=-i$ on $M_{\mathcal{B}} \backslash K$. Since $\sigma_{\pi}\left(S_{1}\left(\lambda_{2}\right)\right)=\{i\},(2.10)$ yields $K \neq \emptyset$. Finally, we prove that $K=M_{B}$. Suppose that there exists $y_{2} \in \operatorname{Ch}(B) \backslash K$. Since K is a non-empty closed subset of $M_{\mathcal{B}}$ with $y_{2} \notin K$, there exists $\lambda_{3} \in I$ so that $\sigma_{\pi}\left(S_{1}\left(\lambda_{3}\right)\right)=\{i\}, S_{1}\left(\lambda_{3}\right)\left(y_{2}\right)=i$ and $\left|S_{1}\left(\lambda_{3}\right)\right|<1$ on K. By $(2.7), \sigma_{\pi}\left(T_{1}\left(\lambda_{3}\right)-p\right)=\{-i\}$, which contradicts (2.10). This shows that $\operatorname{Ch}(B) \backslash K=\emptyset$, and thus $\operatorname{Ch}(B) \subset K$. By the choice of $\lambda_{2} \in I$, $T_{1}\left(\lambda_{2}\right)-p=i$ on $\operatorname{Ch}(B)$. Since $\operatorname{Ch}(B)$ is a boundary of $B, T_{1}\left(\lambda_{2}\right)-p=i$, and thus $M_{B} \backslash K$ is empty. Consequently, $K=M_{B}$ as claimed. According to (2.7), we conclude that $\widehat{T_{k}(\lambda)}(y)-\hat{p}(y)=\widehat{S_{k}(\lambda)}(\varphi(y))$ for all $\lambda \in I$ and $y \in M_{B}(k=1,2)$.

Acknowledgement. The authors would like to thank the referee for valuable suggestions and comments to improve the manuscript.

References

[1] S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
[2] A.J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 22 (1990), 381-385.
[3] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171-172.
[4] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property, Proc. Amer. Math. Soc., 134 (2006), 2923-2930.
[5] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrumpreserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl., 326 (2007), 281-296.
[6] O. Hatori, G. Hirasawa and T. Miura, Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math., 8 (2010), 597-601.
[7] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 29 (1968), 339-343.
[8] S. Kowalski and Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math., 67 (1980), 215-223.
[9] S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math., 435 (2007), 265-281.
[10] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Eur. J. Math., 6 (2008), 272-280.
[11] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc., 135 (2007), 3589-3598.
[12] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
[13] T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, to appear in Rocky Mountain J. Math.
[14] L. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc., 130 (2002), 111-120.
[15] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 11 (1959), 182-188.
[16] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc., 133 (2005), 1135-1142.
[17] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinburgh Math. Soc., 48 (2005), 219-229.
[18] N. V. Rao, T. V. Tonev and E. T. Toneva, Uniform algebra isomorphisms and peripheral spectra, Contemp. Math., 427 (2007), 401-416.
[19] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
[20] T. Tonev, The Banach-Stone theorem for Banach algebras, preprint.
[21] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 357 (2009), 45-53.
[22] J. Väisälä , A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 110 (7) (2003), 633-635.
[23] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.
(Go Hirasawa) Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
E-mail address: gou@mx.ibaraki.ac.jp
(Takeshi Miura) Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan
E-mail address: miura@yz.yamagata-u.ac.jp
(Rumi Shindo) NSG Academy Co. Ltd., 1-11-32, Higashiodori, Chuo-Ku, Niigata 950-0087, Japan E-mail address: rumi_shindo@email.plala.or.jp

Received October 6, 2010
Revised November 10, 2010

[^0]: 2000 Mathematics Subject Classification. Primary 46J10.
 Key words and phrases. Uniform algebra, commutative Banach algebra, maximal ideal space, Shilov boundary, algebra isomorphism, norm-additive operator, normlinear operator.

 The first author was partly supported by the Grant-in-Aid for Scientific Research(C) No.20540154, from the Japan Society for the Promotion of Science.

 The second author was partly supported by the Grant-in-Aid for Scientific Research.

