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DUNKL-WILLIAMS INEQUALITY FOR OPERATORS
ASSOCIATED WITH p-ANGULAR DISTANCE
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ABSTRACT. We present several operator versions of the Dunkl-Williams inequal-
ity with respect to the p-angular distance for operators. More precisely, we show
that if A, B € B(#) such that |A| and |B| are invertible, - + 1 =1 (r > 1) and
p € R, then

AP = BB [P < APt (rlA = B +s||AB - |BI[*) |4

In the case that 0 < p < 1, we remove the invertibility assumption and show that
if A=U|A| and B = V|B| are the polar decompositions of A and B, respectively,
t > 0, then

|l = VIBIP) A [* < (1+) 1A~ B + (1 + 1) |BP|A]* 7 — |B||”.

We obtain several equivalent conditions, when the case of equalities hold.

1. Introduction

In 1964, Dunkl and Williams [3] showed that, for any two nonzero vectors = and y
in a normed space (X, || - ),
Allz — 9l

-l =
5 177 |
In the same paper, the authors proved that the constant 4 can be replaced by 2 if

(1.1)

X is an inner product space. This inequality has some applications in the study of
geometry of Banach spaces. Kirk and Smiley [7] showed that inequality (1.1) with
2 instead of 4 characterizes inner product spaces. Thus, the smallest number which
can replace 4 in inequality (1.1) measures “how much” this space is close (or far) to
be a Hilbert space, cf. [6].

Now the inequality (1.1) is regarded as an estimation of the angular distance
between given vectors x and y. It has many interesting refinements which have
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obtained over the years, e.g., Maligranda [8], Mercer [9], Dragomir [2], and Pecarié¢
and Raji¢ [11].

Now we pay our attention to the following improvement of Dunkl-Williams in-
equality due to Pecari¢ and Rajic:

‘ 20|z — ylI* + 2(l=ll — llyl)*)
max{]|z], [|y[[}
Also they introduced an operator version of (1.2) by estimating | A|A|~! — B|B|™!|,

N|=

(1.2)

Ty ” < !
2l i

where A and B are Hilbert space operators such that |A| and |B| are invertible (see
Corollary 2.4 below).

In [8], Maligranda considered the p-angular distance (p € R), as a generalization
of the concept of angular distance (when p = 0), between nonzero elements x and y
in a normed space (X, || - ||) as a,[z,y] := |[|z||P~ 'z — ||y||P~ y]|; see also [1].

In this paper, we introduce an operator version of the p-angular distance for
Hilbert space operators as a generalization of the Pecari¢c—Raji¢ inequality presented
in [12]. Thus we will obtain the following estimation of it: If |A| and |B| are
invertible, £ + 1 =1 (r > 1) and p € R, Then

AP~ = BIBP P < AP (rlA = B+ s | AP B — | BI[7) |4

On the other hand, Saito and Tominaga [13] recently generalized Pecari¢ and
Raji¢ inequality by deleting the invertibility condition on |A| and |B|. We also
discuss their result.

Our basic tool is the generalized parallelogram law for operators;

1 1
A= BP + S 1tA+ Bl = (1+1) AP + <1+ ;) 1B’

for any nonzero t € R. We, in addition, consider several equivalent conditions when
the case of equality holds in the obtained inequality. The reader is referred to [4, 10]
for undefined notation and terminology related to Hilbert space operators.

2. Dunkl-Williams inequality for operators

In this section, we consider Dunkl-Williams inequality for operators as an application
of the generalized parallelogram law of operators (GPL):

1 1
|A—B|” + p tA+ B> = (1 + t) |A]* + (1 + ;) |B|?
for any nonzero t € R. This equality can be easily verified by using |C]? = C*C

(C € B(#)).

The following lemma follows from it easily, cf. [5].



Lemma 2.1. Let A, B € B(JZ) be operators with the polar decompositions A = U|A|
and B = V|B|. Then for each t >0

1
|A— B> < (1 + t) |A]” + (1 - ;) |B|?.
The equality holds if and only if tA+ B = 0.

We now state our main results, which are understood as an application of the
above lemma.

Theorem 2.2. Let A, B € B(J) be operators with the polar decompositions A =
UlA| and B=V|B| and lett > 0 and 0 < p < 1 be arbitrary. Then

1
| (UIAP — V|BPP) AP |* < (1 + t) |A— B>+ (1 + ;) | |BP|A* —|B| |*.
The equality holds if and only if t(A — B) + V(| B|P|A|'? — |B|) = 0.

Proof. Replace A and B in the preceding lemma by A — B and V(| B|P|A|'*™? — | B])
respectively. Then we have

| A= VIBPIAP|* < <1+t) |A—B|2+<1+%)|V(|B|p|A|l‘p—|B|)\2

1
— (1 + t) |A— B|* + (1 - ;) | |B[”|A[* —|B]|*

because V*V is a projection onto the closure of the range of B*. Hence we have the
required inequality. The equality holds if and only if t(A—B)+V (|B]P|A|* P —|B|) =
0. O

Next we have an estimation of the operator p-angular distance.

Theorem 2.3. Let A, B € B(J) such that |A| and |B| are invertible, * + 1 =1
(r>1) andp € R. Then

AP~ = BIBP [P < AP (rlA = B+ s | 1BIFIA — | BI[7) |47
Moreover the equality holds if and only if
(r=1(A=B)AP~" =B (AP~ = |BI"™Y) .
Proof. The proof is similar to the above, that is, put
Ay=A-B, B, =B|BPYA'"?"-B

andt =r—1in Lemma 2.1. Sincer =t+1andso s =1+ %, we have the conclusion
including the equality condition.
O



A special case of Theorem 2.3, where p = 0 gives rise to the main result of Pecari¢
and Raji¢ [12, Theorem 2.1].

Corollary 2.4. Let A, B € B(5) such that |A| and |B| are invertible and 1 +1 =1
(r>1). Then

|AJA[™" = BB [ < JAIT (r|A = B + s (|A| = [B)*) |A] ", (2.1)
Further, the equality holds if and only if
(r=1(A=-B)|A[" =B (A" - |B[").
We here give some conditions equivalent to the equality condition in Theorem 2.3.

Proposition 2.5. Letp e R, 1 +1 =1 (r > 1) and A, B € B(’) such that |A]
and |B| are invertible for the case where p < 1. Then the following conditions are
mutually equivalent:
(i) (r=1)(A-B)|AP~" = B(JAP~" = |BIFY);
(i) (s = 1)B (AP~ = |BP~') = (A= B)|AP~;
(iii) 7(A — B)|APP~t + sB(|BJP~t — |A]P™) = 0;
(iv) AJAP~! = BIB|P~ = sB (AP~ — |BJ").

Proof. The equivalence (i)=-(ii)=-(iii) = (i) is easily checked.

To complete the proof, we prove (iii)<(iv). Putting ¢t = r — 1, we have s = %,
by which (iii) and (iv) are written respectively as follows:
t(A— B)|AP + B (|BPF ' — AP =0
and
t (AJAP~" = B|BlP™Y) = (t+ 1)B (JAP~' = |BPTY) .
It is obvious that they are equivalent. O

Next we give some necessary conditions for the equality condition in Theorem 2.3.

Proposition 2.6. Let A, B € B(J¢) such that |A| and |B| are invertible, + ++ =1
(r>1),peR and

(r—1(A=B)AP =B (|AP~ = [BI). (2.2)
Then the following statements hold:
(i) (r = DIA = B = [|A["?[BP|A]" P + (AP — |BJ?;
(i) |B] < (HAI?[BP|A? + L|AP)%;
(iii) r|A — B| = s||BIP|A['""? — [B]].



Proof. Put t = r — 1 and then s = &=
(i) Since t(A — B) = B (1 — |B|P7!|A|'"?) by the assumption, we have

tA— (t+1)B = —B|BP"HA'"?.
Therefore it implies that
[tA — (t+ 1)B|” = |A|*"?|B|*|A|*? = C.
On the other hand, (i) is expressed as
t(t+1)|JA— B]* =C +t|AP” — (t + 1)|B].
So it suffices to check that
tA — (t+ 1)B|> = t(t + 1)|A — B> — t|A]* + (t + 1)| B|~

(ii) It follows from (i) and the Lowner-Heinz inequality.
(iii) Since t(A — B) = B — B|B|P~!|A|'"? by the assumption, we have

t|A—B|=|B - B|BI""'|A|"™"| = ||B| - |BFP|A["™”

9

which is equivalent to (iii).

Remark 2.7. Assume that
(r=1)(A=B)|AI"" = B(JA["' = [B]™").

This is the same equation (2.2) in the special case when p = 0. From (ii) of Propo-
sition 2.6 we have

1
Bl < (F1AP + J1aP) " =1
T S
and so
“|A—B|=[A] - |BI, or |A| = |B| + |4 - B,
which has been shown by Pecari¢ and Raji¢ [12].

3. Saito-Tominaga’s generalization

Very recently, Saito-Tominaga improved Pecari¢ and Raji¢ inequality without the
assumption of the invertibility of the absolute value of operators.

Theorem 3.1. Let A, B € B(J) be operators with the polar decompositions A =
U|A| and B = V|B]|, and let p,q > 1 with }D + % = 1. Then

|(U—=V)IA[]” < plA = B> +q (Al - |B)".
The equality holds if and only if
p(A—B)=qV (|B] —|4|) and V'V =U"U.



We here remark that it just corresponds to the case p = 0 in Theorem 2.2. In this
section, we consider Theorem 3.1 based on the discussion in the preceding section.
For this, we rewrite it as follows:

Theorem 3.2. Let A, B € B(J#) be operators with the polar decompositions A =
UlA| and B=V|B|, andt > 0. Then
1
(U =WAIP < (t+1)14- B2+ (1 + ¥> (JA| - |BI)*.
The equality holds if and only if
t(A—B)=V(|B|—|A|) and V*V =U'U.

Note that Theorem 3.1 is obtained by taking ¢ = p — 1 in above inequality.
Now we prepare a lemma for the equality condition in above.

Lemma 3.3. Let A, B € B(J7) be operators with the polar decompositions A = U|A]
and B=V|B| andt > 0. Ift(A— B)+V (|A| — |B|) = 0 is satisfied, then

HA - B < AP — |BP,
and so |A| > |B| and U*U > V*V.
In addition, if U*U = V*V, then t|A — B|* = |A|* — | B|*.
Proof. Since tA — (t + 1)B = —V|A| by the assumption, we have
tA— (t +1)B> = |A|V*V]|A]
Adding t|A|*> — (t + 1)| B|* to both sides, we get
t(t +1)|A— B = [A[V'VIA| + AP — (t+ 1)|B* < (¢ + 1) (JA]* — |Bf) ,

so that

0<tA- B> <|AP?—|BJ.
Hence it follows that |A| > |B| and U*U > V*V. Moreover, if U*U = V*V is
assumed, then V*V|A| = |A] and so t|A — B|* = |A|* — |BJ%. O

Proof of Theorem 3.2. We replace A and B in Lemma 2.1 by A— B and V(|A|—|B|)
respectively. Then we have the required inequality, and the condition for which the
equality holds is that

t(A—B)=V(|B] —|A]) and V*V =U"U.

The latter in above is equivalent to |A|[V*V|A| = |A[]?, or V*V|A| = |A|, that is,
V*V > U*U. By the help of the preceding Lemma 3.3, |B| < |A| and V*V < U*U,
so that V*V = U"U. O

Finally, along with the argument due to Saito and Tominaga [13], we investigate
the equality condition in Theorem 3.2.



Theorem 3.4. Let A, B € B(J2) be operators with the polar decompositions A =
UlA| and B = V|B|, and C = W|C| the polar decomposition of C = A— B. Assume
that the equality

(U= V) AP = <t+ 1) |A—BJ* + (1 + %) (14| — |B)*.

holds for some t > 0.
(i) Ift > 1, then A = B.
(ii)) If0 <t <1, then
2t
1—t 1t

and the converse is true.

2
A=B <] - —W*W) and |A| = |B| ([+ W*W) :

We here prepare the following two lemmas.

Lemma 3.5. Let A, B € B() be operators with the polar decompositions A = U|A|
and B =V|B|, and t > 0. Suppose that V*V = U*U. Then

t(A—=B) =V (|B|-|Al])
iof and only if
|A| = |B|+t|A—B| and A— B= -V (|B| —|4]).
Proof. Since t(A — B) = =V (JA| — | B]), it follows from Lemma 3.3 that
t|A =Bl =|]|A] - |B|| = [A] - [B|

and moreover

A-B- %V(|B| _14]) = —% {V|A—B| = —V|A— B|.
Conversely, since |A| — |B| = t|A — B|, we have

t(A—B)+V (Al —|B|) = —-tV|A— B|+tV|A— B| =0.

U

Lemma 3.6. Let A, B € B(7) be operators with the polar decompositions A = U|A|
and B =V|B|, and t > 0. Suppose that V*V =U*U. Ift(A— B) =V (|B| — |A|),
then

[BI[A— B| + |4~ B||B| = (1— t)|A - BJ.

Proof. Put C' = A — B. The preceding lemma ensures that
t|C] =|B+C|—|B| and C' = =V|C]|.

Then it follows that
|B+ C| = |B|+t|C],



and that
B*C =-B*V|C|=—-(|B|V*V)|C| =—|B||C].
Hence we have
B+ CJ* = (B - |C])* and |B+ C[* = (|B| +t[C]),
so that
(t+1) (IBlICI+|C]|B]) = (1 =) |CT",

which is equivalent to the conclusion. O
Concluding this paper, we give a proof:

Proof of Theorem 3.4. The preceding lemma leads us the fact that if positive oper-
ators S and T satisfy ST + T'S = rS5? for some r € R, then (i) S = 0 if r < 0, and
(i) S and T commute if r > 0. (Since S*T = ST'S — 53 is selfadjoint, S? commutes
with 7" and so does S.) Thus we apply it for S =|A— B|, T =|B|and r =1 — 1.

(i) Since r = 1 —t < 0, we first suppose that » < 0. Then S = |A — B| =0,
that is, A = B, as desired. Next we suppose r = 0. Then S = |C| commutes with

= |B| and so ST = 0. Hence we have |C|V*V = 0. Moreover, since C' = —V|C|

by Lemma 3.5, it follows that |C|*> = |C|V*V|C| =0, i.e., C = 0.

(ii) We apply the second case (ii) in above. Namely we have

|B||C] = |C|B| = —|C|2
so that
1—1¢
B\CIZVIBIICIZTV!CIZ——C\CI —AICI——BICI-

It implies that
2 f—1 P41
AlC| = 1(1+ } )B|C| LB|(J|

and so

t4+1
AW*W = LBW*W

Therefore we have
A:AWW+A(]—WW):t—BWW+B(I WW):B(I—k;WW).

For the second equality, it suffices to show that W*WW commutes with | B| because

2 2t
[— = WW|=I+-""W*
’ 1—t ‘ i



is easily seen. For this commutativity, we note that C = A — B = %BW*W
by the first equality, C' = —V|C| by Lemma 3.5, and V*V > W*W by W*W <
sup{V*V,U*U} and V*V = U*U. So we prove that

1—t 1—t 1—t
[BIW*W = VBW*W = ——=V*C = —=V"V|C| = —~|C|.

Incidentally the converse implication in (ii) is as follows: We first note that the
second equality assures the commutativity of |B| and W*W. Next it follows that

2t .
Al =B = — | BW*W

and o
VIA| — B=V(|A| - |B]) = —1—_tBW*W = —t(A— B)

by the first equality. Hence we have
(U-V)JA|l=A-VI|A|=A+t(A—-B)—B=(1+t)(A—- B);
(U= V)IA|]* = (1 +t)*|A - B”.
On the other hand, since
B a1 = (2) mmwew = ela- s,

we have

(1 + t> |A— B+ (1 + %) (14| — |B])?

:(@A¢>+<1+%)ﬂ)M%—BF=(l+ﬂ%4—BP
O
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