ON PSEUDO-UMBILICAL SURFACES WITH NONZERO PARALLEL MEAN CURVATURE VECTOR IN $\mathbb{C}P^{3}(\tilde{c})$

Noriaki Sato

Abstract. Any pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^3(\tilde{c})$ is a totally real isotropic surface in $\mathbb{C}P^3(\tilde{c})$.

1. INTRODUCTION

Let $\mathbb{C}P^m(\tilde{c})$ be a complex *m*-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature \tilde{c} .

Chen and Ogiue [1]classified totally umbilical submanifolds in $\mathbb{C}P^m(\tilde{c})$. However, it is well known that the class of pseudo-umbilical submanifolds in $\mathbb{C}P^m(\tilde{c})$ is too wide to classify. Thus, it is reasonable to study pseudo-umbilical submanifolds in $\mathbb{C}P^m(\tilde{c})$ under some additional condition.

Recently, the author proved that any pseudo-umbilical submanifold M^n with nonzero parallel mean curvature vector in $\mathbb{C}P^m(\tilde{c})$ is a totally real submanifold and satisfies 2m > n ([3]). Thus, we see that $\mathbb{C}P^2(\tilde{c})$ admits no pseudo-umbilical surfaces with nonzero parallel mean curvature vector.

In the previous paper [4], the author showed that any complete pseudo-umbilical isotropic surface of $P(\mathbb{R})$ -type (see Preliminaries) with nonzero parallel mean curvature vector in $\mathbb{C}P^4(\tilde{c})$ is an extrinsic hypersphere in a 3-dimensional real projective space $\mathbb{R}P^3(\tilde{c}/4)$ of $\mathbb{C}P^3(\tilde{c})$.

The aim of this paper is to prove the following result.

— 91 —

Theorem1.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$. Then M is a totally real isotropic surface in $\mathbb{C}P^{3}(\tilde{c})$.

Corollary1.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^3(\tilde{c})$. If the surface is of $P(\mathbb{R})$ type, then M is an extrinsic hypersphere in a 3-dimensional real projective space $\mathbb{R}P^3(\tilde{c}/4)$ of $\mathbb{C}P^3(\tilde{c})$.

The author would like to express his hearty thanks to Professor Yoshio Matsuyama for his valuable suggestions and encouragements.

2. PRELIMINARIES

Let M be an *n*-dimensional submanifold of a complex *m*-dimensional Kaehler manifold \tilde{M} with complex structure J and Kaehler metric g. A submanifold M of a Kaehler manifold \tilde{M} is said to be *totally real* if each tangent space of M is mapped into the normal space by the complex structure of \tilde{M} .

Let $\nabla(\operatorname{resp}, \tilde{\nabla})$ be the covariant differentiation on $M(\operatorname{resp}, \tilde{M})$. We denote by σ the second fundamental form of M in \tilde{M} . Then the Gauss formula and the Weingarten formula are given respectively by

$$\sigma(X,Y) = \tilde{\nabla}_X Y - \nabla_X Y, \tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi$$

for vector fields X, Y tangent to M and a normal vector field ξ normal to M, where $-A_{\xi}X$ (resp. $D_X\xi$) denotes the tangential (resp.normal) component of $\tilde{\nabla}_X \xi$. A normal vector field ξ is said to be *paralle* if $D_X \xi = 0$ for any vector field X tangent to M.

The covariant derivative $\bar{\nabla}\sigma$ of the second fundamental form σ is defined by

$$(\nabla_X \sigma)(Y, Z) = D_X(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$$

for all vector fields X, Y and Z tangent to M. The second fundamental form σ is said to be *parallel* if $\overline{\nabla}_X \sigma = 0$.

Let $\zeta = 1/n$ trace σ and $H = |\zeta|$ denote the mean curvature vector and the mean curvature of M in \tilde{M} , respectively. If the second fundamental form σ satisfies $\sigma(X,Y) = g(X,Y)\zeta$, then M is said to be *totally umbilical* submanifold in \tilde{M} . If the second fundamental form σ satisfies $g(\sigma(X,Y),\zeta) = g(X,Y)g(\zeta,\zeta)$, then M is said to be

pseudo-umbilical submanifold of \tilde{M} . The submanifold M in \tilde{M} is said to be a λ -isotropic submanifold if $|\sigma(X, X)| = \lambda$ for all unit tangent vectors X at each point. In particular, if the function is constant, then M is called a *constant isotropic* submanifold of \tilde{M} .

The first normal space at x, $N_x^1(M)$ is defined to be the vector space spanned by all vectors $\sigma(X, Y)$. The first osculating space $O_x^1(M)$ at x is defined by

$$O_x^1(M) = T_x(M) + N_x^1(M)$$

The submanifold M of \tilde{M} is called a submanifold of $P(\mathbb{R})$ -type (resp. $P(\mathbb{C})$ -type) if $JT_x(M) \subset (N_x^1(M))^{\perp}$ (resp. $JT_x(M) \subset N_x^1(M)$) for every point $x \in M$.

Let R (resp. R) be the Riemannian curvature for ∇ (resp. ∇). Then the Gauss equation is given by

$$g(R(X,Y)Z,W) = g(R(X,Y)Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(Y,Z),\sigma(X,W))$$

for all vector fields X, Y, Z and W tangent to M.

3.LEMMAS

Let M^2 be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C}P^m(\tilde{c})$.

We recall the following results.

Theorem3.1[3]. Let M be an n-dimensional pseudo-umbilical submanifold with nonzero parallel mean curvature vector in $\mathbb{C}P^m(\tilde{c})$. Then 2m > n and M^n is immersed in $\mathbb{C}P^m(\tilde{c})$ as a totally real submanifold.

Since M is a totally real surface in $\mathbb{C}P^m(\tilde{c})$, the normal space $T_x^{\perp}(M)$ is decomposed in the following way; $T_x^{\perp}(M) = JT_x(M) \oplus \nu_x$ at each point x of M, where ν_x denotes the orthogonal complement of $JT_x(M)$ in $T_x^{\perp}(M)$.

Lemma3.1[4]. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C}P^m(\tilde{c})$. Then we have

(1) $\zeta \in \nu_x$

(2)
$$g(\sigma(X,Y),J\zeta) = 0$$

(3) $g((\bar{\nabla}_X \sigma)(Y, Z), \zeta) = 0$

for all vector fields X, Y and Z tangent to M.

We prepare the following fundamental fact without proof.

Lemma3.2. Let M^n be a totally real submanifold in $\mathbb{C}P^m(\tilde{c})$. Then we have

$$g(\sigma(X,Y),JZ) = g(\sigma(X,Z),JY)$$

for all vector fields X, Y and Z tangent to M.

Lemma3.3. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C}P^m(\tilde{c})$. If the surface is of $P(\mathbb{R})$ -type, then we have

(1)
$$g((\bar{\nabla}_X \sigma)(Y, Z), J\zeta) = 0$$

(2) $g((\bar{\nabla}_X \sigma)(Y, Z), JW) = g(J\sigma(Y, Z), \sigma(X, W))$

for all vector fields X, Y, Z and W tangent to M.

Proof. By Lemma 3.1(2), we get

$$g((\nabla_X \sigma)(Y, Z), J\zeta) = g(D_X(\sigma(Y, Z)), J\zeta)$$

= $g(\tilde{\nabla}_X(\sigma(Y, Z)), J\zeta)$
= $-g(\sigma(Y, Z), \tilde{\nabla}_X(J\zeta))$
= $g(J\sigma(Y, Z), \tilde{\nabla}_X\zeta)$
= $g(J\sigma(Y, Z), D_X\zeta)$
= 0

And this Lemma 3.3(2) has been proved in [4]. \Box

We recall the following results.

Theorem3.2[2]. If M^n is an $n \geq 2$ -dimensional complete nonzero isotropic totally real submanifold of $P(\mathbb{R})$ -type with parallel second fundamental form in $\mathbb{C}P^m(\tilde{c})$, there exists a unique totally geodesic submanifold $\mathbb{R}P^r(c)$ such that M^n is a submanifold in $\mathbb{R}P^r(c)$ and that $O_x^1(M) = T_x(\mathbb{R}P^r(c))$ for every point $x \in M$.

Theorem3.3[2]. If M^n is an $n \geq 2$ -dimensional complete nonzero isotropic totally real submanifold of $P(\mathbb{C})$ -type with parallel second fundamental form in $\mathbb{C}P^m(\tilde{c})$, there exists a unique totally geodesic Kaehler submanifold $\mathbb{C}P^r(\tilde{c})$ such that M^n is a submanifold in $\mathbb{C}P^r(\tilde{c})$ and that $O_x^1(M) = T_x(\mathbb{C}P^r(\tilde{c}))$ for every point $x \in M$.

4.Proof of Theorem1.1

Let M^2 be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C}P^3(\tilde{c})$. We choose a local orthonormal frame field

$$e_1, e_2, e_3, e_4 = Je_1, e_5 = Je_2, e_6 = Je_3$$

of $\mathbb{C}P^3(\tilde{c})$ such that e_1, e_2 are tangent to M. By Lemma3.1(1), we choose e_3 in such a way that its direction coincides with that of the mean curvature vector ζ . Since M is a pseudo-umbilical surface, it is umbilic with respect to the direction of the mean curvature vector ζ . Thus, by Lemma3.1(2), the surface satisfies

(4.1)
$$\begin{cases} \sigma(e_1, e_1) = He_3 + ae_4 + be_5 \\ \sigma(e_1, e_2) = fe_4 + ge_5 \\ \sigma(e_2, e_2) = He_3 - ae_4 - be_5 \end{cases}$$

for some functions a, b, f, g with respect to the orthonormal local frame field $\{e_i\}$. By Lemma3.2, we get

(4.2)
$$g(\sigma(e_1, e_2), Je_1) = g(\sigma(e_1, e_1), Je_2)$$

(4.3)
$$g(\sigma(e_2, e_1), Je_2) = g(\sigma(e_2, e_2), Je_1)$$

Thus by (4.1), (4.2) and (4.3) we obtain f = b and g = -a. Therefore we have the following.

Proposition4.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^3(\tilde{c})$. Then the surface satisfies

(4.4)
$$\begin{cases} \sigma(e_1, e_1) = He_3 + ae_4 + be_5 \\ \sigma(e_1, e_2) = be_4 - ae_5 \\ \sigma(e_2, e_2) = He_3 - ae_4 - be_5 \end{cases}$$

for some functions a, b with respect to the orthonormal local frame field $\{e_i\}$.

By Proposition 4.1, for any unit tangent vector $(ke_1+le_2)/\sqrt{k^2+l^2}$, where k, l are some real numbers, we get

(4,5)
$$|\sigma((ke_1+le_2)/\sqrt{k^2+l^2}, (ke_1+le_2)/\sqrt{k^2+l^2})|^2 = H^2+a^2+b^2$$

- 95 -

Thus we see that the surface is isotropic. This completes the proof of Theorem 1.1.

Remark4.1. By Proposition4.1 and (2.1), we get the Gauss curvature $K = \tilde{c}/4 + H^2 - 2(a^2 + b^2)$. If the Gauss curvature is constant, then $a^2 + b^2$ is constant. By (4.5), we see that the surface in Theorem1.1 is constant isotropic.

Now we prove Corollary1.1. If the surface M is of $P(\mathbb{R})$ -type, then by (4.4) we see that the surface is immersed in $\mathbb{C}P^3(\tilde{c})$ as a totally umbilical submanifold. Immediately, by Lemma3.1(3) and Lemma3.3 , we have $\bar{\nabla}\sigma \equiv 0$. The assertion of Corollary1.1 follows immediately from Theorem3.2.

Finally, we remark the following Proposition 4.2. If a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^3(\tilde{c})$ is not totally umbilical, then we see that $ab \neq 0$ in (4.4). Thus, by Proposition 4.1 we get $\dim N_x^1(M) = 3$ and $\dim O_x^1(M) = 5$. By Theorem 3.3, if $\bar{\nabla}\sigma \equiv 0$, then there exists a real 5-dimensional complex projective space. This is a contradiction. Therefore we get

Proposition4.2. Let M be a complete pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C}P^3(\tilde{c})$. If M is not totally umbilical, then the surface is a totally real isotropic surface in $\mathbb{C}P^3(\tilde{c})$ whose second fundamental form is not parallel.

References

- 1. B.Y.Chen and K.Ogiue, Two theorems on Kaehler manifolds, Michigan Math .J. 21 (1974), 225-229.
- 2. H.Naitoh, Isotropic submanifolds with parallel second fundamental form in $P^{m}(c)$, Osaka J. Math. 18 (1981), 427-464.
- 3. N.Sato, Totally real submanifolds of a complex space form with nonzero parallel mean curvature vector, Yokohama Math.J. 44 (1997), 1-4.
- 4. _____, Pseudo-umbilical surfaces with nonzero parallel mean curvature vector in $\mathbb{C}P^4$, Yokohama Math.J. (to appear).

Department of Mathematics, Shirayuri Educational Institution Kudankita Chiyoda-ku Tokyo, 102–8185, Japan

Received October 14, 1997