ON PSEUDO-UMBILICAL SURFACES WITH NONZERO PARALLEL MEAN CURVATURE VECTOR IN $\mathbb{C} P^{3}(\tilde{c})$

Noriaki Sato

Abstract

Any pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$ is a totally real isotropic surface in $\mathbb{C} P^{3}(\tilde{c})$.

1. Introduction

Let $\mathbb{C} P^{m}(\tilde{c})$ be a complex m-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature \tilde{c}.

Chen and Ogiue [1]classified totally umbilical submanifolds in $\mathbb{C} P^{m}(\tilde{c})$. However, it is well known that the class of pseudo-umbilical submanifolds in $\mathbb{C} P^{m}(\tilde{c})$ is too wide to classify. Thus, it is reasonable to study pseudo-umbilical submanifolds in $\mathbb{C} P^{m}(\tilde{c})$ under some additional condition.

Recently,the author proved that any pseudo-umbilical submanifold M^{n} with nonzero parallel mean curvature vector in $\mathbb{C} P^{m}(\tilde{c})$ is a totally real submanifold and satisfies $2 m>n$ ([3]). Thus, we see that $\mathbb{C} P^{2}(\tilde{c})$ admits no pseudo-umbilical surfaces with nonzero parallel mean curvature vector.

In the previous paper [4], the author showed that any complete pseudo-umbilical isotropic surface of $P(\mathbb{R})$-type (see Preliminaries) with nonzero parallel mean curvature vector in $\mathbb{C} P^{4}(\tilde{c})$ is an extrinsic hypersphere in a 3-dimensional real projective space $\mathbb{R} P^{3}(\tilde{c} / 4)$ of $\mathbb{C} P^{3}(\tilde{c})$.

The aim of this paper is to prove the following result.

Theorem1.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$. Then M is a totally real isotropic surface in $\mathbb{C} P^{3}(\tilde{c})$.

Corollary1.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$. If the surface is of $P(\mathbb{R})$ type, then M is an extrinsic hypersphere in a 3-dimensional real projective space $\mathbb{R} P^{3}(\tilde{c} / 4)$ of $\mathbb{C} P^{3}(\tilde{c})$.

The author would like to express his hearty thanks to Professor Yoshio Matsuyama for his valuable suggestions and encouragements.

2.PRELIMINARIES

Let M be an n-dimensional submanifold of a complex m-dimensional Kaehler manifold \tilde{M} with complex structure J and Kaehler metric g. A submanifold M of a Kaehler manifold \tilde{M} is said to be totally real if each tangent space of M is mapped into the normal space by the complex structure of \tilde{M}.

Let ∇ (resp. $\tilde{\nabla})$ be the covariant differentiation on M (resp. $\tilde{M})$. We denote by σ the second fundamental form of M in \tilde{M}. Then the Gauss formula and the Weingarten formula are given respectively by

$$
\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y, \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi
$$

for vector fields X, Y tangent to M and a normal vector field ξ normal to M, where $-A_{\xi} X$ (resp. $D_{X} \xi$) denotes the tangential (resp.normal) component of $\tilde{\nabla}_{X} \xi$. A normal vector field ξ is said to be paralle if $D_{X} \xi=0$ for any vector field X tangent to M.

The covariant derivative $\bar{\nabla} \sigma$ of the second fundamental form σ is defined by

$$
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)
$$

for all vector fields X, Y and Z tangent to M. The second fundamental form σ is said to be parallel if $\bar{\nabla}_{X} \sigma=0$.

Let $\zeta=1 / n$ trace σ and $H=|\zeta|$ denote the mean curvature vector and the mean curvature of M in \tilde{M}, respectively. If the second fundamental form σ satisfies $\sigma(X, Y)=g(X, Y) \zeta$, then M is said to be totally umbilical submanifold in \tilde{M}. If the second fundamental form σ satisfies $g(\sigma(X, Y), \zeta)=g(X, Y) g(\zeta, \zeta)$, then M is said to be
pseudo-umbilical submanifold of \tilde{M}. The submanifold M in \tilde{M} is said to be a λ-isotropic submanifold if $|\sigma(X, X)|=\lambda$ for all unit tangent vectors X at each point. In particular, if the function is constant, then M is called a constant isotropic submanifold of \tilde{M}.

The first normal space at $x, N_{x}^{1}(M)$ is defined to be the vector space spanned by all vectors $\sigma(X, Y)$. The first osculating space $O_{x}^{1}(M)$ at x is defined by

$$
O_{x}^{1}(M)=T_{x}(M)+N_{x}^{1}(M)
$$

The submanifold M of \tilde{M} is called a submanifold of $P(\mathbb{R})$-type (resp. $P(\mathbb{C})$-type $)$ if $J T_{x}(M) \subset\left(N_{x}^{1}(M)\right)^{\perp}\left(\right.$ resp. $\left.J T_{x}(M) \subset N_{x}^{1}(M)\right)$ for every point $x \in M$.

Let R (resp. \tilde{R}) be the Riemannian curvature for ∇ (resp. $\tilde{\nabla}$). Then the Gauss equation is given by

$$
\begin{aligned}
g(\tilde{R}(X, Y) Z, W)= & g(R(X, Y) Z, W)+g(\sigma(X, Z), \sigma(Y, W)) \\
& -g(\sigma(Y, Z), \sigma(X, W))
\end{aligned}
$$

for all vector fields X, Y, Z and W tangent to M.

3.LEMMAS

Let M^{2} be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C} P^{m}(\tilde{c})$.

We recall the following results.
Theorem3.1[3]. Let M be an n-dimensional pseudo-umbilical submanifold with nonzero parallel mean curvature vector in $\mathbb{C} P^{m}(\tilde{c})$. Then $2 m>n$ and M^{n} is immersed in $\mathbb{C} P^{m}(\tilde{c})$ as a totally real submanifold.

Since M is a totally real surface in $\mathbb{C} P^{m}(\tilde{c})$, the normal space $T_{x}^{\perp}(M)$ is decomposed in the following way; $T_{x}^{\perp}(M)=J T_{x}(M) \oplus \nu_{x}$ at each point x of M, where ν_{x} denotes the orthogonal complement of $J T_{x}(M)$ in $T_{x}^{\perp}(M)$.

Lemma3.1[4]. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C} P^{m}(\tilde{c})$. Then we have
(1) $\zeta \in \nu_{x}$
(2) $g(\sigma(X, Y), J \zeta)=0$
(3) $g\left(\left(\bar{\nabla}_{X} \sigma\right)(Y, Z), \zeta\right)=0$
for all vector fields X, Y and Z tangent to M.
We prepare the following fundamental fact without proof.
Lemma3.2. Let M^{n} be a totally real submanifold in $\mathbb{C} P^{m}(\tilde{c})$. Then we have

$$
g(\sigma(X, Y), J Z)=g(\sigma(X, Z), J Y)
$$

for all vector fields X, Y and Z tangent to M.
Lemma3.3. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C} P^{m}(\tilde{c})$. If the surface is of $P(\mathbb{R})$-type, then we have
(1) $g\left(\left(\bar{\nabla}_{X} \sigma\right)(Y, Z), J \zeta\right)=0$
(2) $g\left(\left(\bar{\nabla}_{X} \sigma\right)(Y, Z), J W\right)=g(J \sigma(Y, Z), \sigma(X, W))$
for all vector fields X, Y, Z and W tangent to M.
Proof. By Lemma3.1(2), we get

$$
\begin{aligned}
g\left(\left(\bar{\nabla}_{X} \sigma\right)(Y, Z), J \zeta\right) & =g\left(D_{X}(\sigma(Y, Z)), J \zeta\right) \\
& =g\left(\tilde{\nabla}_{X}(\sigma(Y, Z)), J \zeta\right) \\
& =-g\left(\sigma(Y, Z), \tilde{\nabla}_{X}(J \zeta)\right) \\
& =g\left(J \sigma(Y, Z), \tilde{\nabla}_{X} \zeta\right) \\
& =g\left(J \sigma(Y, Z), D_{X} \zeta\right) \\
& =0
\end{aligned}
$$

And this Lemma3.3(2) has been proved in [4].
We recall the following results.
Theorem3.2[2]. If M^{n} is an $n(\geq 2)$-dimensional complete nonzero isotropic totally real submanifold of $P(\mathbb{R})$-type with parallel second fundamental form in $\mathbb{C} P^{m}(\tilde{c})$, there exists a unique totally geodesic submanifold $\mathbb{R} P^{r}(c)$ such that M^{n} is a submanifold in $\mathbb{R} P^{r}(c)$ and that $O_{x}^{1}(M)=T_{x}\left(\mathbb{R} P^{r}(c)\right)$ for every point $x \in M$.

Theorem3.3[2]. If M^{n} is an $n(\geq 2)$-dimensional complete nonzero isotropic totally real submanifold of $P(\mathbb{C})$-type with parallel second fundamental form in $\mathbb{C} P^{m}(\tilde{c})$, there exists a unique totally geodesic Kaehler submanifold $\mathbb{C} P^{r}(\tilde{c})$ such that M^{n} is a submanifold in $\mathbb{C} P^{r}(\tilde{c})$ and that $O_{x}^{1}(M)=T_{x}\left(\mathbb{C} P^{r}(\tilde{c})\right)$ for every point $x \in M$.

4.Proof of Theorem1. 1

Let M^{2} be a pseudo-umbilical surface with nonzero parallel mean curvature vector ζ in $\mathbb{C} P^{3}(\tilde{c})$. We choose a local orthonormal frame field

$$
e_{1}, e_{2}, e_{3}, e_{4}=J e_{1}, e_{5}=J e_{2}, e_{6}=J e_{3}
$$

of $\mathbb{C} P^{3}(\tilde{c})$ such that e_{1}, e_{2} are tangent to M. By Lemma3.1(1), we choose e_{3} in such a way that its direction coincides with that of the mean curvature vector ζ. Since M is a pseudo-umbilical surface, it is umbilic with respect to the direction of the mean curvature vector ζ. Thus, by Lemma3.1(2), the surface satisfies

$$
\left\{\begin{array}{l}
\sigma\left(e_{1}, e_{1}\right)=H e_{3}+a e_{4}+b e_{5} \tag{4.1}\\
\sigma\left(e_{1}, e_{2}\right)=f e_{4}+g e_{5} \\
\sigma\left(e_{2}, e_{2}\right)=H e_{3}-a e_{4}-b e_{5}
\end{array}\right.
$$

for some functions a, b, f, g with respect to the orthonormal local frame field $\left\{e_{i}\right\}$. By Lemma3.2, we get

$$
\begin{align*}
& g\left(\sigma\left(e_{1}, e_{2}\right), J e_{1}\right)=g\left(\sigma\left(e_{1}, e_{1}\right), J e_{2}\right) \tag{4.2}\\
& g\left(\sigma\left(e_{2}, e_{1}\right), J e_{2}\right)=g\left(\sigma\left(e_{2}, e_{2}\right), J e_{1}\right) \tag{4.3}
\end{align*}
$$

Thus by (4.1),(4.2) and (4.3) we obtain $f=b$ and $g=-a$. Therefore we have the following.
Proposition4.1. Let M be a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$. Then the surface satisfies

$$
\left\{\begin{array}{l}
\sigma\left(e_{1}, e_{1}\right)=H e_{3}+a e_{4}+b e_{5} \tag{4.4}\\
\sigma\left(e_{1}, e_{2}\right)=b e_{4}-a e_{5} \\
\sigma\left(e_{2}, e_{2}\right)=H e_{3}-a e_{4}-b e_{5}
\end{array}\right.
$$

for some functions a, b with respect to the orthonormal local frame field $\left\{e_{i}\right\}$.

By Proposition4.1,for any unit tangent vector $\left(k e_{1}+l e_{2}\right) / \sqrt{k^{2}+l^{2}}$, where k, l are some real numbers, we get

$$
\begin{gathered}
(4,5)\left|\sigma\left(\left(k e_{1}+l e_{2}\right) / \sqrt{k^{2}+l^{2}},\left(k e_{1}+l e_{2}\right) / \sqrt{k^{2}+l^{2}}\right)\right|^{2}=H^{2}+a^{2}+b^{2} \\
-95-
\end{gathered}
$$

Thus we see that the surface is isotropic. This completes the proof of Theorem1.1.

Remark4.1. By Proposition4.1 and (2.1), we get the Gauss curvature $K=\tilde{c} / 4+H^{2}-2\left(a^{2}+b^{2}\right)$. If the Gauss curvature is constant, then $a^{2}+b^{2}$ is constant. By (4.5), we see that the surface in Theorem1.1 is constant isotropic.

Now we prove Corollary1.1. If the surface M is of $P(\mathbb{R})$-type, then by (4.4) we see that the surface is immersed in $\mathbb{C} P^{3}(\tilde{c})$ as a totally umbilical submanifold. Immediately, by Lemma3.1(3) and Lemma3.3 , we have $\bar{\nabla} \sigma \equiv 0$. The assertion of Corollary1.1 follows immediately from Theorem3.2.

Finally, we remark the following Proposition4.2. If a pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$ is not totally umbilical, then we see that $a b \neq 0$ in (4.4). Thus, by Proposition4.1 we get $\operatorname{dim} N_{x}^{1}(M)=3$ and $\operatorname{dim} O_{x}^{1}(M)=5$. By Theorem3.3, if $\bar{\nabla} \sigma \equiv 0$, then there exists a real 5 -dimensional complex projective space. This is a contradiction. Therefore we get

Proposition4.2. Let M be a complete pseudo-umbilical surface with nonzero parallel mean curvature vector in $\mathbb{C} P^{3}(\tilde{c})$. If M is not totally umbilical, then the surface is a totally real isotropic surface in $\mathbb{C} P^{3}(\tilde{c})$ whose second fundamental form is not parallel.

References

1. B.Y.Chen and K.Ogiue, Two theorems on Kaehler manifolds, Michigan Math .J. 21 (1974), 225-229.
2. H.Naitoh, Isotropic submanifolds with parallel second fundamental form in $P^{m}(c)$, Osaka J. Math 18 (1981), 427-464.
3. N.Sato, Totally real submanifolds of a complex space form with nonzero parallel mean curvature vector, Yokohama Math.J . 44 (1997), 1-4.
4. _-, Pseudo-umbilical surfaces with nonzero parallel mean curvature vector in $\mathbb{C} P^{4}$, Yokohama Math.J . (to appear).

Department of M athematics, Shirayuri Educational Institution Kudankita Chiyoda-ku Tokyo, 102-8185, Japan

