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A NEW CHARACTERIZATION OF HOMOGENEOUS
REAL HYPERSURFACES IN COMPLEX SPACE FORMS

JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give a new characterizations of homo-
geneous real hypersurface8 $M$ in complex space forms $M_{n}(c)$ when the covariant
derivative and the Lie derivative of the Ricci tensor of $M$ are equal to each other
along the direction of the structure vector $\xi$ .

1. Introduction

A complex n-dimensional K\"ahler manifold of constant holomorphic sectional cur-
vature $c$ is called a complex space forvn, which is denoted by $M_{n}(c)$ . The complete
and simply connected complex space form is isometric to a complex projective
space $P_{n}C$ , a complex Euclidean space $C^{n}$ , or a complex hyperbolic space $H_{\mathfrak{n}}C$

according as $c>0,$ $c=0$ or $c<0$ respectively. The induced almost contact metric
structure of a real hypersurface $M$ of $M_{n}(c)$ is denoted by $(\phi, \xi, \eta,g)$ .

Now, there exist many studies about real hypersurfaces of $M_{n}(c),$ $c\neq 0$ . One
of the first researches is the classification of homogeneous real hypersurfaces of a
complex projective space $P_{n}C$ by Takagi [14], who showed that these hypersurfaces
of $P_{n}C$ could be divided into six types which are said to be of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$

and $E$ . This result is generalized by many authors (See [3], [5], [8], [9], [11] and
[13]).

On the other hand, real hypersurfaces of $H_{n}C$ have been also investigated by
many authors (See [1], [6], [10] and [12]) from different points of view. In particular,
Berndt [1] proved the folowing.

Theorem A. Let $M$ be a real hypersurface of $H_{n}C,$ $n\geqq 3$ . Then $M$ has constant
$p$rincipal curwatures and $\xi$ is principal if and only if $M$ is locally congruent to one
of the followings :

$(A_{0})$ a horosphere in $H_{n}C$ , that is, a Montiel tube,
$(A_{1})$ a tube over a totally geodesic hyperplane $H_{k}C$ ($k=0$ or $n-1$ ),
$(A_{2})$ a tube over a totally geodesic $H_{k}C(1\leqq k\leqq n-2)$ ,
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$(B)$ a tube over a totally real hyperbolic space $H_{n}R$ .

Among the classffication of homogeneous real hypersurfaces in $M_{n}(c)$ real hy-
persurfaces of type $A_{1}$ or type $A_{2}$ in $P_{n}C$ or those of type $A_{0},$ $A_{1}$ or $A_{2}$ in $H_{n}C$

are said to be of type $A$ . By a theorem due to Okumura [13] and to Montiel and
Romero [12] we have

Theorem B. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . If it satisfies
(1.1) $A\phi-\phi A=0$ ,

where A denotes the shape operator of $M$ , then $M$ is locally congruent to one of
type $A$ .

Now let us denote by $\mathcal{L}_{\xi}$ the Lie derivative with respect to the structure vector
field $\xi$ . As is easily seen, the condition (1.1) is equivalent to

(1.2) $\mathcal{L}_{\xi}g=0$ .

In this paper we also consider the Lie derivative and the covariant derivative
of the Ricci tensor $S$ of $M$ in $M_{n}(c)$ . So the purpose of this paper is to give a
new characterization of homogeneous real hypersurfaces $M$ in complex space forms
$M_{n}(c)$ when the covariant derivative of the Ricci tensor coincides with the Lie
derivative along the direction of the structure vector $\xi$ . We prove the following.
Theorem 1. Let $M$ be a real hypersurface in a complex projective space $P_{n}C$ ,
$n\geqq 3$ . If it satisfies
$(*)$ $\mathcal{L}_{\xi}S=\nabla_{\xi}S$,

where $S$ denotes the Ricci tensor on $M$ , then the stnlcture vector field $\xi$ is principal.
Moreover, if it satisfies $\alpha^{2}>(n-2)c/2$ and $(*)$ , then $M$ is locally congruent to a
tube of radius $r$ over one of the folloutng Kahler manifolds ;

$(A_{1})$ a hyperplane $P_{m}C$ , where $m=n-1,0<r<\pi/2$ ,
$(A_{2})$ a totally geodesic $P_{k}C$ , where $1\leqq k\leqq n-2,0<r<\pi/2$ ,
$(B)$ a complex quadric $Q_{n-1}$ , where the radius $r$ satisfies $cot^{2}2r=n-2$ .

By the definition of the Lie derivative, it is easily seen that condition $(*)$ is
equivalent to

$(**)$ $S\phi A-\phi AS=0$ .

Now let us consider a real hypersurface in a complex hyperbolic space $H_{n}C$

satisfying the condition $(**)$ . Then in this case by virtue of Theorem A we have
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Theorem 2. Let $M$ be a real hypersurface in a complex hyperbolic space $H_{n}C$ ,
$n\geqq 3$ . If it satisfies $(**)$ and the structure vector field $\xi$ is pnncipal, then $M$ is
locally congruent to one of real hypersurfaces of type $A_{0},$ $A_{1}$ and $A_{2}$ .

The present authors would like to express their sincere gratitude to the referee
for his valuable suggestions and comments.

2. Preliminaries
First of all, we recall fundamental properties of real hypersurfaces of a complex

space form. Let $M$ be a real hypersurface of a complex n-dimensional complex
space form $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ and let $C$ be a unit normal vector field on a
neighborhood of a point $x$ in $M$ . We denote by $J$ an almost complex structure of
$M_{n}(c)$ . For a local vector field $X$ on a neighborhood of $x$ in $M$ , the transformation
of $X$ and $C$ under $J$ can be represented as

$JX=\phi X+\eta(X)C$, $ JC=-\xi$ ,

where $\phi$ defines a skew-symmertic transformation on the tangent bundle $TM$ of
$M$ , while $\eta$ and $\xi$ denotea l-form anda vector field onaneighborhood ofx in M,
respectively. Moreover it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes the induced
Riemannian metric on $M$ .

By properties of the almost complex structure $J$ , the set $(\phi,\xi)\eta,g)$ of tensors
satisfies

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation and $X$ denotes any vector field tangent
to $M$ . Accordingly, this set $(\phi, \xi, \eta, g)$ defines the almost contact metric structure
on $M$ . Furthermore the covariant derivative of the structure tensors are given by

(2.1) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ , $\nabla_{X}\xi=\phi AX$

for any vector fields $X$ and $Y$ on $M$ , where V is the Riemannian connection of $g$

and $A$ denotes the shape operator with respect to the unit normal $C$ on $M$ .
Since the ambient space is of constant holomorphic sectional curvature $c$ , the

equations of Gauss and Codazzi are respectively given as follows :

(2.2) $R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z\}+g(AY, Z)AX-g(AX, Z)AY$,

(2.3) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{C}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ . Let $T_{0}$ be a
distribution defined by the subspace $T_{0}(x)=\{u\in T_{x}M : g(u, \xi(x))=0\}$ of
the tangent space $T_{x}M$ of the hypersurface $M$ at $x$ . It is called a holomorphic
distribution on $M$ .
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Next we suppose that the structure vector field $\xi$ is principal with corresponding
principal curvature $\alpha$ . Then it is seen in [5] and [11] that $\alpha$ is locally constant on
$M$ and it satisfies

(2.4) $2A\phi A=\frac{1}{2}c\phi+\alpha(A\phi+\phi A)$ .

Therefore if a vector field $X$ orthogonal to $\xi$ is principal with principal curvature
$\lambda$ and if $2\lambda-\alpha\neq 0$ , then $\phi X$ is also principal with principal curvature $\mu=$

$(2\alpha\lambda+c)/2(2\lambda-\alpha)$ , namely we have

(2.5) $A\phi X=\mu\phi X$ , $\mu=\frac{2\lambda\alpha+c}{4\lambda-2\alpha}$ .

3. The Ricci tensor
Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ . This section is to investigate

a sufficient condition for the structure vector $\xi$ to be principal in terms of the Ricci
tensor. It is closely related with another characterization of real hypersurfaces of
type $A$ concerning the Lie derivative with respect to the structure vector $\xi$ . Its
Ricci tensor $S$ of $M$ is given by

$S=\frac{1}{4}c\{(2n+1)I-3\xi\otimes\eta\}+hA-A^{2}$ ,

where $I$ denotes the identity transformation on $M$ and $h$ is the trace of the shape
operator $A$ . Then the Lie derivative of the Ricci tensor $S$ with respect to the
structure vector $\xi$ on $M$ is given by

$\mathcal{L}_{\xi}S=\nabla_{\xi}S+S\phi A-\phi AS$,

with the help of (2.1).

Assume that $M$ is a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , whose Ricci tensor
$S$ satisfies $(**)$ . Namely we assume that

$(**)$ $S\phi A-\phi AS=0$ .

From the definition of $S$ it folows that the condition $(**)$ is equivalent to

(3.1) $h(A\phi A-\phi A^{2})+\phi A^{3}-A^{2}\phi A+\frac{3}{4}c\phi A\xi\otimes\eta=0$ ,

that is,

(3.2) $h(A\phi-\phi A)A+(\phi A-A\phi)A^{2}+A(\phi A-A\phi)A+\frac{3}{4}c\phi A\xi\otimes\eta=0$ .
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Let $X$ be a principal vector with principal curvature $\lambda$ . Taking the inner product
of $X$ with (3.1) and taking account of the skew-symmetry of the structure tensor
$\phi$ , we have

(3.3) $A^{3}\phi X-hA^{2}\phi X+\lambda(h-\lambda)A\phi X-\frac{3}{4}cg(X, \phi A\xi)\xi=0$ .

At any point $x$ in the real hypersurface $M$ the tangent space of $M$ at $x$ is
denoted by $T_{x}M$ . Now let us denote by $L(X_{1}, \ldots, X_{m})$ a linear subspace of $T_{x}M$

spanned by the vectors $X_{1},$
$\ldots,$

$X_{m}$ in $T_{x}M$ . When the subspace $L(X_{1}, \ldots, X_{m})$ is
invariant by the shape operator $A$ of $M$ , we say that the subspace $L(X_{1}, \ldots , X_{m})$

is A-invariant.

If we assume that $\xi$ is not principal, there is a vector $Y$ orthogonal to $\xi$ such
that

$A\xi=\alpha\xi+Y$,

where $\alpha=g(A\xi,\xi)$ . Since $Y$ is non zero, the vector $AY$ can be expressed as

$AY=\beta\xi+\gamma Y+Y_{1}$ ,

where $Y_{1}$ is orthogonal to $\xi$ and $Y$ , and $\beta=g(Y, Y)$ and $\gamma=g(AY, Y)/\beta$ .
Now in order to get our result let us prove the folowing.

Lemma 3.1. Let $M$ be a real hypersurface in a complex space form $M_{n}(c),$ $c\neq 0$ ,
$n\geqq 3$ . If it satisfies the condition $S\phi A-\phi AS=0_{f}$ then the subspace $L(\xi, A\xi)$ is
A-invariant.

Proof. Now let us consider the transpose of (3.1). Then it follows

(3.4) $h(A\phi A-A^{2}\phi)+A^{3}\phi-A\phi A^{2}+\frac{3}{4}c\xi\otimes\eta oA\phi=0$ .

Let us transform the shape operator $A$ to (3.1) to the left and to (3.4) to the
right respectively. Then the combination of these two equations yields

$A\phi A\xi\otimes\eta+\xi\otimes\eta oA\phi A=0$ .
From this, by applying $\xi$ we have

(3.5) $A\phi A\xi=0$ .

Now applying $\xi$ to (3.1) and using (3.5), we have

$\phi(A^{3}\xi-hA^{2}\xi+\frac{3}{4}cA\xi)=0$ .

So it follows

(3.6) $A^{3}\xi-hA^{2}\xi+\frac{3}{4}cA\xi\equiv 0$ (mod $\xi$).
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Next, let us apply $\xi$ to (3.4) and use (3.5). Then

(3.7) $A\phi A^{2}\xi=0$ .

By operating $ A\xi$ to (3.1) to the right and using (3.7) we obtain

(3.8) $\phi(A^{4}\xi-hA^{3}\xi+\frac{3}{4}cg(A\xi,\xi)A\xi)=0$ .

From this it folows

(3.9) $A^{4}\xi-hA^{3}\xi+\frac{3}{4}cg(A\xi,\xi)A\xi\equiv 0$ (mod $\xi$).

Finaly, let us transform the shape operator $A$ to (3.6). Then by substracting (3.9)
from this, we have

$cA^{2}\xi\equiv 0$ (mod $\xi,$ $ A\xi$).

This means that the linear subspace $L(\xi,A\xi)$ is A-invariant. It completes the proof
of Lemma 3.1. $\square $

Lemma 3.2. Let $M$ be a real hypersurface in a complex projective space $P_{n}C$ ,
$n\geqq 3$ . If it satisfies $S\phi A-\phi AS=0$ , then the structure vector $\xi$ is principal.

Proof. Suppose that the structure vector $\xi$ is not principal. Namely suppose that
$A\xi=\alpha\xi+Y$ , where $Y$ is a vector in $T_{0}$ and $\beta=g(Y, Y)$ is a smooth non-negative
function on $M$ . Let $M_{0}$ be a subset in $M$ consisting of points $x$ at which $\beta(x)\neq 0$ .
Suppose that the subset $M_{0}$ is not empty.

By Lemma 3.1 we have proved that the subspace $L(\xi, Y)$ is A-invariant. Taking
the inner product (3.1) with the vector $\phi Y$ and making use of the property $A\phi Y=0$

derived from the formula (3.5) in the proof of Lemma 3.1, we have

(3.10) $A^{3}Y-hA^{2}Y+\frac{3}{4}c\beta\xi=0$ ,

where we have used the properties that $A$ is symmetric, $\phi$ is skew-symmetric and
$\phi^{2}Y=-Y$ . Then Lemma 3.1 gives that

$AY=\beta\xi+\gamma Y$, $A^{2}Y=\beta(\alpha+\gamma)\xi+(\beta+\gamma^{2})Y$,
$A^{3}Y=\beta\{\alpha(\alpha+\gamma)+(\beta+\gamma^{2})\}\xi+\{\beta(\alpha+\gamma)+\gamma(\beta+\gamma^{2})\}Y$,

from the above equation, (3.10) is equivalent to

$\beta\{(\alpha^{2}+\alpha\gamma+\gamma^{2}+\beta)-h(\alpha+\gamma)+\frac{3}{4}c\}\xi$

$+\{(\alpha\beta+2\beta\gamma+\gamma^{3})-h(\beta+\gamma^{2})\}Y=0$ .
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This implies that we have

$(\alpha^{2}+\alpha\gamma+\gamma^{2}+\beta)-h(\alpha+\gamma)+\frac{3}{4}c=0$ ,
(3.11)

$(\alpha\beta+2\beta\gamma+\gamma^{3})-h(\beta+\gamma^{2})=0$ .

Mutiplying $(\beta+\gamma^{2})$ to the first of (3.11) and $(\alpha+\gamma)$ to the second of (3.11) and
substracting the obtained second equation from the first, we have

(3.12) $(\alpha\gamma-\beta)^{2}+\frac{3}{4}c(\beta+\gamma^{2})=0$ .

From this we have
$\alpha\gamma=\beta$ and $\beta+\gamma^{2}=0$ ,

because $\beta=g(Y, Y)\geq 0$ and $c>0$ . So it follows $\beta=\gamma=0$ . This implies that the
open subset $M_{0}$ should be empty. That is, $\xi$ is principal.

Theorem 3.3. Let $M$ be a real hypersurface in a complex hyperbolic space $H_{n}C$ ,
$n\geqq 3$ . If it satisfies the condition $S\phi A-\phi AS=0$ and the structure vector field $\xi$

is principal, then $M$ has at most five distinct constant principal curvatures.

Proof. By the assumption the structure vector $\xi$ is principal, namely we have $A\xi=$

$\alpha\xi$ .
Suppose that a principal unit vector $X$ in $T_{0}$ with principal curvature $\lambda\neq\alpha/2$ .

Then the vector $\phi X$ is also principal with principal curvature $\mu=(2\alpha\lambda+c)/(4\lambda-$

$2\alpha)$ by (2.5). By (3.3) and $ A\xi=\alpha\xi$ , we get

(3.13) $\mu(\mu-\lambda)(\mu+\lambda-h)=0$ .

Suppose that $\mu=0$ . By (3.1) we see $\lambda^{2}(\lambda-h)=0$ . Then in this case, because
of $2\alpha\lambda=-c\neq 0$ , we have $\lambda=h$ and therefore we have $\lambda+\mu=h$ . Combining the
above situation with the case $\mu\neq 0$ , we have

(3.14) $(\lambda-\mu)(\lambda+\mu-h)=0$ ,

namely we have

(3.15) $\lambda=\mu$ or $\lambda+\mu=h$ .

For the principal curvature $\lambda(\neq\alpha/2)$ the corresponding principal curvature $\mu$ is
given by $(2\alpha\lambda+c)/(4\lambda-2\alpha)$ and hence if $\lambda=\mu$ , then the principal curvature $\lambda$

satisfies the equation

(3.16) $4x^{2}-4\alpha x-c=0$ .

Here we note that the constant a can not vanish. Now the roots of (3.16) give

(3.17) $\lambda=\frac{1}{2}(\alpha+\sqrt{\alpha^{2}+c})$ or $\lambda=\frac{1}{2}(\alpha-\sqrt{\alpha^{2}+c})$ .
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We denote by $\lambda+and\lambda_{-}$ the above two principal curvatures, respectively. Let
$\alpha,$

$\lambda_{a},$ $\lambda_{r},$ $\lambda_{x},$
$\mu_{x}$ be all principal curvatures on $M$ , where the indices run over

the following ranges : $1\leqq a\leqq p,$ $p+1\leqq r\leqq 2q$ and $2q+1\leqq x\leqq n+q-1$

and $\lambda_{x}+\mu_{x}=h$ . Because $\alpha$ is constant, the principal curvatures $\lambda+and\lambda$-are
constant. The trace $h$ of the shape operator $A$ is given by

(3.18) $h=\alpha+p\lambda++(2q-p)\lambda_{-}+(n-1-q)h$ ,

and therefore we have

(3.19) $(q+1)\alpha+(p-q)\sqrt{\alpha^{2}+c}+(n-q-2)h=0$ .

From this we assert that the trace $h$ is constant. In fact, we suppose that $q=n-2$ .
Then we have

$(q+1)^{2}\alpha^{2}=(p-q)^{2}(\alpha^{2}+c)$ ,

namely
$(p+1)(2q-p+1)a^{2}=(p-q)^{2}c\neq 0$ .

Because of $2q>p$ the constant $c$ must be positive, a contradiction. Thus we have
$q<n-2$ , which yields that the trace $h$ is constant.

By $\lambda+\mu=h$ and $\mu=(2\alpha\lambda+c)/(4\lambda-2\alpha)$ , the principal curvatures $\lambda_{x}$ and $\mu_{x}$

satisfy the equation
$4x^{2}-4hx+2\alpha h+c=0$ .

Consequently, these principal curvatures are also constant. This shows that all of
principal curvatures on $M$ are at most five. If there does not exist a principal vector
$X$ in $T_{0}$ with principal curvature $\lambda\neq\alpha/2$ , then distinct principal curvatures are
only $\alpha$ and $\alpha/2$ . It means that $M$ has two distinct constant principal curvatures.
It completes the proof of Theorem 3.3. $\square $

Remark. Under the condition $\mathcal{L}_{\xi}S=0$ Kimura and Maeda [8] have asserted that
the structure vector $\xi$ is principal. But the method in Lemmas 3.1 and 3.2 which
are used to obtain the fact that the structure vector field $\xi$ is principal is quite
different $hom$ the Kimura and Maeda’s one. So it seems to be sure to the present
authors that the method in above wil be also useful to derive the result that $\xi$ is
principal for the case $c<0$ .

4. Proof of Theorem 1
In this section we consider the case where the ambient space is a complex pro-

jective space. Let $M$ be a real hypersurface of $M_{n}(c),$ $c>0,$ $n\geqq 3$ . We assume
that the Ricci tensor $S$ satisfies

$(**)$ $S\phi A-\phi AS=0$ .

Then, by Lemma 3.2 the structure vector $\xi$ is principal and hence the above as-
sumption gives us

(4.1) $h(A\phi A-\phi A^{2})+\phi A^{3}-A^{2}\phi A=0$ ,
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which is reformed as
(4.2) $h(A\phi-\phi A)A+(\phi A-\phi A)A^{2}+A(\phi A-A\phi)A=0$ .
Let $X$ be a unit principal vector in $T_{0}$ with principal curvature $\lambda$ . Since $c$ is positive,
we have $2\lambda-\alpha\neq 0$ , unless we have $2\alpha\lambda+c=0$ by (2.5), that is, $\alpha^{2}+c=0$ ,
a contradiction. So $\phi X$ is also a unit principal vector in $T_{0}$ with corresponding
principal curvature $\mu$ by (2.5). Again by (2.5) we see that $\mu=(2\alpha\lambda+c)/(4\lambda-2\alpha)$ .
Thus we have

$\lambda(\lambda-\mu)(\lambda+\mu-h)=0$

and then we have
$\mu(\lambda-\mu)(\lambda+\mu-h)=0$ .

Accordingly we see
(4.3) $(\lambda-\mu)(\lambda+\mu-h)=0$

and therefore we have

(4.4) $(4\lambda^{2}-4\alpha\lambda-c)(4\lambda^{2}-4h\lambda+2h\alpha+c)=0$ .

Theorem 4.1. Let $M$ be a real hypersurface in a complex projective space $P_{n}C$ ,
$n\geqq 3$ . If it satisfies $\alpha^{2}>(n-2)c/2$ and if it satisfies $(**)$ , then $M$ has at most
five distinct constant principal curwatures.

Proof. By Lemma 3.2 the structure vector $\xi$ is principal, namely we have $ A\xi=\alpha\xi$ .
For a principal unit vector $X$ in $T_{0}$ with principal curvature, the vector $\phi X$ is
also a principal unit vector $X$ in $T_{0}$ with corresponding principal curvature $\mu=$

$(2\alpha\lambda+c)/(4\lambda-2\alpha)$ by (2.5). If $\lambda=\mu$ , then the principal curvature $\lambda$ satisfies the
quadratic equation

$4x^{2}-4\alpha x-c=0$ .
We denote by $\lambda+and\lambda$-these two principal curvatures. Let their multiplicities

be $p$ and $2q-p$ , respectively. Then by (3.19) we have

(4.5) $(q+1)\alpha+(p-q)\sqrt{\alpha^{2}+c}+(n-q-2)h=0$ .
It is seen that $\alpha$ is locally constant and moreover the fact and the above equation
means that the trace $h$ of the shape operator $A$ is constant in the case where
$q<n-2$ . So it tells us that $M$ has at most five distinct constant principal
curvatures.

Suppose that $q=n-2$ . Then by (4.5) $\alpha$ is expressed as

(4.6) $\alpha^{2}=\frac{(p-q)^{2}c}{(p+1)(2q-p+1)}$ $0\leqq p\leqq 2q=2(n-2)$

We denote by $g(p)$ the right hand side of the above equation. Then it is easily
seen that we have

$g(q)\leqq g(p)\leqq g(O)=g(2q)=(n-2)^{2}c/(2n-3)<(n-2)c/2$ ,
from which it follows that if $\alpha^{2}>(n-2)c/2$ , then the equation (4.6) does not hold.
Hence the case where $q=n-2$ cannot occur. It completes the proof. $\square $
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Theorem 1. Let $M$ be a real hypersurface in a complex projective space $P_{n}C$ ,
$n\geqq 3$ . If it satisfies
$(**)$ $S\phi A-\phi AS=0$ ,

where $S$ denotes the Ricci tensor on $M$ , then the structure vector field $\xi$ is principal.
Moreover, if it satisfies $\alpha^{2}>(n-2)c/2$ and $(**)$ , then $M$ is locally congruent to a
tube of radius $r$ over one of the $follou\prime ing$ Kahler manifolds ;

$(A_{1})$ a hyperplane $P_{m}C$ , where $m=n-1,0<r<\pi/2$ ,
$(A_{2})$ a totally geodesic $P_{k}C$ , where $1\leqq k\leqq n-2,0<r<\pi/2$ ,
$(B)$ a complex quadric $Q_{n-1}$ , where the radius $r$ satisfies $cot^{2}2r=n-2$ .

Proof. According to a theorem due to Kimura [7] and Theorem 4.1, $M$ is homo-
geneous. By virtue of the classification theorem of Takagi, $M$ is one of type $A_{1}$ ,
$A_{2},$ $B,$ $C,$ $D$ and $E$ . Hence, in order to prove above theorem, we may check the
condition $(**)$ one by one for the above six model spaces.

First, let $M$ be of type $C,$ $D$ and $E$ . Without loss of generality, we may put $c=4$ .
Then, for the table of TaJvagi [15], it follows that there is a principal curvature $\lambda$

different from the corresponding principal curvature $\mu$ and they $satis\Phi$

$\lambda+\mu=-\frac{4}{\alpha}$ , $\lambda\mu=-1$ ,

where we have $\lambda=cot(r-\pi/4),$ $\mu=-tan(r-\pi/4)$ and $a=2\omega t2r$ .
On the other hand, the other two principal curvatures $\lambda$ and the corresponding

principal curvature $\mu$ are given by $\lambda=cotr,$ $\mu=-tanr$ and $\alpha=2cot2r$ . So we
have also

$\lambda+\mu=\alpha$ , $\lambda\mu=-1$ .
Since the principal curvatures $\lambda=cotr$ and $\mu=-tanr$ are derived $hom$ the

equation $\lambda=\mu$ , namely they are the roots of the quadratic equation $x^{2}-\alpha x-1=0$

and hence the others $\lambda=cot(r-\pi/4)$ and $\mu=-tan(r-\pi/4)$ are derived from
the equation $\lambda+\mu=h$ . We denote all principal curvatures $\alpha,$ $\lambda_{a}=\lambda+=cotr$ ,
$\lambda_{r}=\lambda_{-}=-tanr,$ $\lambda_{x}$ and $\mu_{x}$ , whose indices runs over the ranges $1\leqq a\leqq p$,
$p+1\leqq r\leqq 2q,$ $2q+1\leqq x\leqq n+q-1$ . Furthermore we see $\lambda_{x}+\mu_{x}=-4/\alpha=h$ .
The trace $h$ of the shape operator $A$ is given by

$h=\alpha+p\lambda_{a}+(2q-p)\lambda_{r}+(n-1-q)(\lambda_{x}+\mu_{x})$ .

Namely, we have

$\alpha+p\lambda_{+}+(2q-p)\lambda_{-}+(n-2-q)h=0$ .

Substituting the values of principal curvatures and the trace $h$ into this equation
we get

$4(n-1)x^{4}-\{4(n-1)+2(p-q)\}x^{2}+(p+1)=0$ ,

where $x=sinr$ .
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On the other hand, the assumption for $\alpha$ is equivalent to

$2nx^{4}-2nx^{2}+1>0$ .

By these two relations we have

(4.7) $2n(p-q)sin^{2}r>np-n+2$ .

On each real hypersurface $M$ of type $C\sim E$ , the multiplicity $p$ or $q$ of the principal
curvature $\lambda_{+}$ or $\lambda_{-}$ is greater than or equal to 1. Hence the right hand side of (4.7)
is positive and therefore we have $p>q$ . On the other hand, since the radius $r$ is
less than $\pi/4$ , we see 2$sin^{2}r<1,$ $hom$ which together with (4.7) it follows that

$0>n(q-1)+2$ ,

a contradiction. Thus the real hypersurface $M$ of type $C\sim E$ cannot occur.
Next, let $M$ be of type $B$ . By virtue of the table of Takagi [15], we see that any

principal curvature $\lambda$ is different from the corresponding principal curvature $\mu$ and
they satisfy

$\lambda+\mu=-\frac{4}{\alpha}$ , $\lambda\mu=-1$ ,

where we have $\lambda=cot(r-\pi/4),$ $\mu=-tan(r-\pi/4)$ and $\alpha=2cot2r,$ $0<r<\pi/4$ .
Since $M$ is supposed to be of type $B$ , we have

$h=\alpha+(n-1)(\lambda+\mu)$ ,

$hom$ which, together with the fact that $h=\lambda+\mu,$ $\lambda\neq\mu$ , it follows

$\alpha+(n-2)h=0$ , $\alpha^{2}=4cot^{2}2r=4(n-2)$ .

Hence $M$ is a tube of the radius $r$ over a complex quadric $Q_{n-1}$ , where the radius
$r$ satisfies $cot^{2}2r=n-2$ .

It is trivial that the real hypersurface $M$ of type $A$ satisfies (4.2) and hence it
satisfies the assumption $(**)$ . It completes the proof. $\square $

5. Proof of Theorem 2
In this section we prove Theorem 2 which is another characterization of real

hypersurfaces of type $A$ concerning the Lie derivative and the covariant derivative
with respect to the structure vector $\xi$ .

Let $M$ be a real hypersurface in a complex hyperbolic space $H_{n}C,$ $n\geqq 3$ . Assume
that its Ricci tensor $S$ satisfies

$(**)$ $S\phi A-\phi AS=0$ .

From the definition of $S$ it follows that the condition $(**)$ is equivalent to

(5.1) $h(A\phi-\phi A)A+(\phi A-A\phi)A^{2}+A(\phi A-A\phi)A+\frac{3}{4}c\phi A\xi\otimes\eta=0$ .
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Then let us suppose that the structure vector $\xi$ is principal with constant principal
curvature $\alpha$ . Let $X$ be a principal vector in $T_{0}$ with principal curvature $\lambda$ . Then
$\phi X$ is also the principal vector in $T_{0}$ with princopal curvature $\mu$ . If $\lambda\neq\alpha/2$ , then
$\mu=(\alpha\lambda+c)/(4\lambda-2\alpha)$ . We can consider the following two cases ;

I. $\alpha^{2}+c\neq 0$ , II. $\alpha^{2}+c=0$ .

Now let us consider the first case.
The Case I. Let $X$ be a unit principal vector in $T_{0}$ with principal curvature

$\lambda$ . Then we see that $\phi A$ is also the unit principal vector in $T_{0}$ with principal
curvature $\mu$ such that $\mu=(\alpha\lambda+c)/(4\lambda-2\alpha)$ . By (3.14) in Theorem 3.3, the
principal curvatures satisfy

(5.2) $(4\lambda^{2}-4\alpha\lambda-c)(4\lambda^{2}-4h\lambda+2\alpha h+c)=0$ ,

where $\alpha$ and $h$ are constant. This means that $M$ has at most five distinct constant
principal curvatures. Thus, according to the theorem due to Berndt [1] $M$ is
homogeneous. Then, taking account of the classification theorem, we obtain the
fact that $M$ is localy congruent to one of the homogeneous real hypersurfaces of
type $A_{0},$ $A_{1},$ $A_{2}$ and $B$ . Thus we may check whether or not these four model spaces
satisfy the condition (5.1) one by one. In this case we assume $\alpha^{2}+c\neq 0$ . So it is
enough to check (5.1) for the type $A_{1},$ $A_{2}$ and $B$ .

First, let $M$ be of type $B$ . In the sequel we suppose that $c=-4$ . Then, for the
table of Berndt [1], we get

$\alpha=2$ tanh $2r$ , $\lambda=tanhr$, $\mu=cothr$,

which satisfy
$\lambda\neq\mu$ , $\lambda+\mu=\frac{4}{\alpha}$ , $\lambda\mu=1$ .

Accordingly we have $h=\alpha+(n-1)(\lambda+\mu)$ . Combining this with (5.2) we see
$\alpha=-(n-2)(\lambda+\mu)$ , namely we have $\alpha^{2}=-4(n-2)$ , a contradiction. Thus the
real hypersurface of type $B$ cannot occour.

Next, let $M$ be of type $A$ . Then it is easily seen that it satisfies the condition
(5.1) by Theorem $B$ due to Montiel and Romero [12].

The Case II: $\alpha^{2}=4$ . First we consider the subcase where $\alpha=2$ . Then by (2.4)
we obtain the fact that if $X$ in $T_{0}$ is a principal vector with principal curvatures $\lambda$ ,
then the following equation

$(4\lambda-2\alpha)A\phi X=(2\alpha\lambda+c)\phi X$ ,

and hence we have
$(\lambda-1)A\phi X=(\lambda-1)\phi X$ .

Let $M_{1}$ be a subset in $M$ consisting of points $x$ at which $\lambda(x)\neq 1$ . Suppose that
$M_{1}$ is not empty. On $M_{1},$ $\phi X$ is a vector with principal curvature 1. Since the
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structure vector is principal, it implies that $\phi X$ is a principal vector with principal
curvature $\mu$ such that $\lambda\neq\mu$ . Accordingly by (5.1) we have $\lambda+\mu=h$ .

On the other hand, the trace $h$ of the shape operator $A$ is given by $ h=\alpha+p\lambda+q\mu$ ,
where $p+q=2n-2$ , from which together with the last equation it folows that

$(p-1)\lambda+(q+1)=0$

on $M_{1}$ . Thus the principal curvature $\lambda$ is a constant different $hom1$ on $M_{1}$ .
By the definition the principal curvature $\lambda$ is equal to 1 on the subset $M-M_{1}$ .
By the continuity of the principal curvatures the subset $M-M_{1}$ must be empty.
Namely, the subset $M_{1}$ coincides with the whole $M$ and every principal curvatures
are constant on $M$ . Then by a Theorem of Berndt [1] $M$ is locally congruent to
a horosphere. Thus its principal curvatures are given by $\alpha=2,$ $\lambda=1$ with its
multiplicities 1, $2(n-1)$ respectively. This makes a contradiction. So the subset
$M_{1}$ should be empty. Then we see that the principal curvature $\lambda$ satisfies $\lambda=1$ on
$M$ . This shows that $M$ is of type $A_{0}$ .

Conversely, let $M$ be a real hypersurface of type $A_{0}$ in $M_{n}(c),$ $c<0$ . Then $M$

has two distinct principal curvatures $\alpha=2$ and $\lambda=1$ . So it satisfies the condition
(5.1).

Finally let us consider the case $\alpha=-2$ . Then in this case the global unit normal
vector field $C$ on $M$ can be oriented in such a way that $\alpha$ is positive, because $\alpha$

is the principal curvature corresponding to the principal direction $\xi=-JC$ (See
Berndt [1]). Thus by the same method to the above argument we find that $M$ is
of type $A_{0}$ . It completes the proof.
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