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Abstract

In this paper, we describe a basic minimization problem with respect to a
continuous time Markov decision process with non-stationary transition proba-
bility rates, a general state space and a general action space. We establish the
existence of solutions of the optimality equation which plays an important role in
the analysis of the minimization problem.
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1. Introduction and formulation of Markov decision processes

Continuous time Markov decision processes have been investigated by many authors,
e.g., Miller (1968), Kakumanu (1971), Doshi (1976), Lai and Tanaka (1991) and Qiying
(1993). Miller (1968) investigated the case of a finite state space. Kakumanu (1971)
and Qiying (1993) extended Miller’s results to the case of a countable state space and
a countable action space. Doshi (1976) discussed the case of a general state space and
a general action space.

In this paper, a constrained Markov decision process as a dynamic programming
model is specified by a set of seven elements (X, A, T, r,II, py, ). We assume the fol-
lowing. The state space X is a nonempty Borel subset of a Polish (that is, complete
separable metrizable) space with Borel o-algebra Bg, the set of states of the dynamic
decision system. The action space A is a nonempty Borel subset of a Polish space,
the set of actions of the decision system. T = [0,t*] is the time set with t* < +oo.
The decisions are continuously taken on the time set. The loss rate function r is a
bounded measurable real-valued function on TxXx.4 with a bound M. Throughout
this paper, we confine ourselves to Markov policies. A Markov policy = = m(Alt,z) is
a Borel measurable stochastic kernel on A for fixed (¢,z) € T'x X, that is, #(:|t,z) is a
probability measure on A for each (¢,z) € TxX and m(A|-,+) is a measurable function
on T'xX for each Borel set A. II is the set of all admissible policies and consists of
Markov policies. pr is a non-stationary transition probability function under a policy
m € II, that is, px(s,x;t,T) is defined for 0 < s <t < +00, £ € X and T € Bg, each
px(s,z;t,-) is a probability measure on X with p,(s,z;s,{z}) = 1, each px(s,t,T)
is a measurable function, and p, satisfies the Chapman-Kolmogorov equation. « is a
nonnegative constant, the discount rate for the loss.
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The dynamic decision system is interpreted as follows. Suppose a policy = € II is
employed. If the system is in a state ; € X at a time ¢, then the system at the time ¢4 At
transfers to a new state z;4 a; € X which is governed by transition probability measure
px(t,zs;t + At,-) and, as a result, the state £;+4: and an action a € A determined by
probability w(da|t+ At, ;4 a¢) cause the controller to incur continuously a loss according
to loss rate r(t + At, 21441, 0).

We give the following decision’s quality. We define a loss rate function ry under a
policy m defined by rx(t,z) = [, r(t, z, a)w(da|t, z) for (t,z) € TxX. When the decision
system starts from a state r at time ¢ and a policy = is used, then the total ezpected
discounted loss is given by

o
Va(t,z) = Ex [/t e'“("‘)r,(s,X,)dlet = z]

t*—t

=/ e'“’{/ r,(t+s,y)px(t,z;t“’dy)}ds’
0 x

where E. is the expectation operator with respect to p» and e™* means a discount
factor. In general, our aim is to get an optimal policy or an e-optimal policy.

Definition 1.1
(i) The optimal value function is given by Vopi(t,z) = infren Va (2, 2);
(ii) A policy 7* € II is called optimal if Vz«(t,2) = Vopi(t, z) for any (¢,z) € TxX;
(iii) For a constant ¢ > 0, a policy 7 € Il is called e-optimalif Vy (t,2) < Vope(t, x)+€
for any (t,z) € TxX.

2. Optimality equation
The following equation, which is called the optimality equation, plays a crucial role in
the analysis of the minimization problem.
aV(t,z) = ig%{r,,(t, )+ Q.V(t,z)} + D;V(t,z), V(t*,:)=0o0nX, (1)
n

where Q, is a certain operator, transforming a function on T'xX into a function on
TxX, and D,V (¢, z) is the differential coefficient of V(-,z) with respect to ¢. In order
to introduce @, we impose an assumption on the differentiability of p.

Assumption A; For each m € II, there exists g : TxXxBx — R such that each

gx(t,+;T) and g (-, z;T) are measurable, and g, satisfies inf g¢.(t,z;{z}) > —c for
. (t,z)eETxX

some constant ¢ > 0 and

limsup sup |h™'{p«(t,z;t + h,T) — 65(T)} — gx(t,2;T)| =0
hio reXTeBx

for each t € T, where 6,(I') = 1 if ¢ € T, 6;(I") = 0 otherwise.
It is easy to show that function ¢, has the following properties.

Lemma 2.1 (i) Ifz € T, then —c < ¢«(t,2;T) < 0. (ii) Ifz ¢ T, then 0 < ¢g«(t,z;T) <
c. (iil) g« (t,z;X) = 0. (iv) Each gqx(t,z;-) is a finite signed measure on X.
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We put [, f(z)v(dz) = [, f(y)vt(de) — [, f(y)r~(dz) for a signed measure v on
X and a bounded measurable function f on X, where v+ and v~ are upper and lower
variation measures by the Jordan decomposition of v. Let B(T x X) be the Banach space
of all bounded measurable real-valued functions on T'x X with the supremum norm ||u||.

We define an operator Q. on B(T'xX) by

Qwu(t,a:)=/u(t,y)qn(t,w;dy)
: x
in the sense of the above integral. By Lemma 2.1, we have

1Qru(t, 2)| < {ar(t, 2; X\{2}) — ax(t, z; {z}) }lull < 2¢llu]l. (2)
For s € T, we define an operator P from B(T'xX) into itself by

Plu(t,z) = / u(t + s,y)px (¢, z;t + s,dy)
x

if0<t<t*—sandz € X, and Pfu(t,z) =0ift* —s <t <t* and z € X. It is easy to
verify that Pg is the identity operator, ||Pu|| < ||u|| and P] P, = P ,,,. The total
loss is represented by

t*—t .
Ve (t,z) =/ e~ Plrp(t,z)ds. (3)
0

We must make the preparations for giving useful properties of (1). For each function
uon TxX, let D(u), D(u,t), D(u,t,z) be the set of all (¢,z) € T'xX such that D;u(t, z)
exists, the set of all z € X such that D;u(t,z) exists, the set of all s € [0,t* — ¢] such
that D;u(t + s, z) exists, respectively.

Let Bp(Tx X) be the set of all u € B(T'xX) which satisfies the following conditions
(Bl) and (Bz)
~ (By) F(s) := PTu(t,z) is an absolutely continuous function on [0,t* — t] for each
(t,z) € [0,t*)xX and 7 € II. See Billingsley (1979, Section 31) for the definition
and some properties of absolutely continuous functions.

(B2) u(+,z) is differentiable at almost all ¢t € T for all x € X. For each t € T, D;u(t, )
is bounded on D(u,t), and there exists a constant @ such that
A~ Hu(t + h,z) —u(t,z)}| < T
for all z € X and all non-zero h in some neighborhood of 0. D;u is measurable on
D(u).

Assumption A; (i) Foreach7€Il,0<t <7 <t* and z € X, there exist a § > 0
and a finite measure p on X such that supgcc<s Pr(t, z;7 — ¢,T) < p(T) for any
I' e By.

(ii) limsup sup A~ !|px(t — h,z;t,T) — pr(t,z;t + h,T)| = O for each = € II and
hl0 zeXIeBx
t € (0,t*].

Lemma 2.2 Suppose that (t,z) is in [0,t*)xX and u € B(Txx) satisfies condition
(B2). If s € D(u,t,z), then F(s) := PJu(t,z) is differentiable at s and

—(%P,"u(t, z) = P} Qru(t,z) + P, Dyu(t, z).
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Proof. First, we show the differentiability of F' from the left. Let s be in D(u,t,z) N
(0,t* —t]. We put

A_p = h~YF(s)— F(s— h)} — P Qnru(t,z) — PTDu(t,z), he(0,s).
We have

A_p = /x [P,:’[h'lu — Qru— Diu] — h'lu] (t+s—h,y)px(t,z;t + s — h,dy).
By using signed measure

Ly (T) =pa(t+5—h,y;t +5,T) = 6,(T) — hgr(t + 5,3;T)
on X in Pf[h~'u — Qru — Diu)(t + s — h, y), we obtain

Al <E+G+ / H(y)ps (¢, 75t + 5 — b, dy),
X

where
= sugl/ (A~ u — Qru — Dyu)(t + s, 2) Ll ,(d2)],
yE
G = hsup |Qx [Qru + Du] (t+s,9)|,
yeX

H(y) = b~ {u(t +5,9) — u(t+ s — h,y)} = (D) (t + 5,9)|.

By Assumptions A; and Aj(ii), limy o sup, supp [h~1L}(T)| = 0. By (2) and condition
(B2), we have limpjo E = 0. By using condition (B2) and Assumption A,(i), and
applying Lebesgue’s convergence theorem, |. + HY)px(t,z;t + s — h,dy) converges to 0
as h | 0. Since G < 2hc{2c||u|| + sup, [(D:u)(t + s,y)|}, we have limp o G = 0. Hence

limp o A—p = 0. Thus, we get P”u(t z) = PFQru(t,z) + PFDu(t,z).
Next, we show the dlﬁ'erentlablllty of F from the right. Let s be in D(u,t,z) N
[0,t* — t). We put
Ap = h"Y{F(s+ h) — F(s)} — PTQxu(t,z) — P*Du(t,z), h>0.

Then we have
Ap = / [A7'Pfu—h™'u — Qru — Dyu] (¢t + 5,y)p«(t, ;¢ + 5, dy).
S Jx

Using signed measure R} (T') = px(t+s,y;t +5+h, ) — 6,(T) — hgr(t +5,y;T) on X
in PJu(t + s,y), we obtain

14n] < B+ | [ {C@)+ D@)Ipe(t it + 5,dm)|

where

B =h"1 supl/ u(t + s+h,z)'Rf+,(dz)|,
yeX'J X

Cly) = h~u(t + 5 + h, y) — u(t + 5,9)} — (D) (t + 5, y),

D(y) = / {u(t+s+h,z) —u(t+s,2)}gx(t + s,y;dz).
By Assumption A, limpo sup, supp |A~ 'R, (T')| = 0. Therefore, we have lim o B =

0. By condition (Bz), [, C(y)p,r(t z;t + s,dy) and D(y) converge to 0 as h | 0. Since
|D(y)| < 4c||u|| we have limg o [4 D(y)p,,(t z;t + s,dy) = 0. Hence limyjo Ay = 0.

Thus, we get 5—;Pfu(t,z) PrQru(t,z) + P Dyu(t,z). This completes the proof. O

— 56 —



Theorem 2.1 Suppose that
aV < (resp., >) e + QzV + DiV +uon D(V) and V(t*,-)=0onX
for V € Bp(TxX) and u € B(T'xX). Then,

t*—t '
V(t,z) < (resp., >) Va(t, ) +/ e~ ** Plu(t,z)ds, (t,z) e TxX. (4)
0

Proof. Obviously, condition (4) holds for ¢t = t*. Let (¢,z) be in [0,t*)xX. We define
¥ on [0,t* —t] by
ae~**PTV(t,z) — e~ **PrQ.V(t,z) —e~**PI D,V (t,x)
W(s) = if s € D(V,t,z),

e~ Plry(t,z) + e~ ** Plu(t, ) otherwise.
By the hypothesis and monotoneity of Py,
¥(s) < (resp., >) e ** Pl ra(t,z) + e~ ** P u(t, )

for all s € [0,t* — t]. Integrating the inequality from 0 to t* — ¢ and using (3), we have

t*—t

/ ) ¥(s)ds < (resp., >) Vx(t,z) +/ e~ ** Pl u(t,z)ds. (%)
0 0

We put ¥(s) = —e~**PTV(t,z). By Lemma 2.2, ¥ = ¢ on D(V,t,z). By condition
(B1), ¥ is absolutely continuous on [0,t* —t]. By condition (Bz), the left hand side of
inequality (5) is equal to ¥(t* —t) — ¥(0). Since V(t*,:) = 0 on X, ¥(¢* —t) vanishes
and the left hand side of (5) is equal to V(¢,z). Consequently, we get inequality (4). O

We can get a sufficient condition for a policy to be optimal or e-optimal by Theorem
2.1.

Theorem 2.2 Suppose that V, Vs, Vees € Bp(T'xX) and 1(t,z) = 1.
(i) If V is a solution of the following equation, then V = V;:
aV =ry +Q«V + DV on D(V) and V(t*,)=0on X. (6)
(i1) It is a sufficient condition for ©* to be optimal that Vi« is a solution of the
optimality equation

aV = ig%{r,, +Q.V}+ DV on D(V) and V(t*,)=0on X. )

(iii) Given any € > 0, it is a sufficient condition for 7** to be e-optimal that Vye« is a
solution of

aV < irexgl{r,, + Q«V}+ D,V +ael on D(V) and V(t*,-)=0o0n X. (8)

3. Existence of solutions of the optimality equation

We focus on establishing the existence of solutions of optimality equation (7). For
g € B(T'xX), we put

Ty(t,2) = inf {ra(t,2) + Quo(t, 2) = ag(t, 2)}.

— 57 —



We impose the following assumption for measurability.

Assumption Az J, and I(t,z) := f:. J4(s,z)ds are measurable on T'xX for any g €
B(TxX).

For 0 < A < 1, the discount rate o and ¢ in Assumption A;, we can construct a
strictly increasing finite sequence {¢, }05,15 n of times such that ¢, =0, t§y = ¢* and

(tn —tn_1)(a+2¢) < A

for n = 1,2,.---,N. For each n, let T, be interval [t,_;,t,] and let B(T,xX) be the
Banach space of all bounded measurable functions on T,, x X with the supremum norm

Il

Lemma 3.1 There exists a unique collection g7 € B(T1xX),g5 € B(T2xX),...,gk €
B(Tn x X) such that

N

ontz)= | Iy (s 2)ds

for all (t,z) € TnxX and

tn

gn(t,z) = Jgs(s,z)ds + gp1(tn, z)
t
for all (t,z) € T,xXandn=1,2,---,N —1.

Proof. We define an operator Sy on B(TnxX) by Sng(t,z) = f:" J4(s,z)ds for
(t,z) € TnxX. By inequality (2), the boundedness of r» and Assumption Az, Syg €
B(Tn xX) for every g € B(TnxX). Taking f,g € B(TnxX), we have

tN
ISn£(t, ) — Sna(t, )| < / s (s, %) — J, (5, 2)|ds
t
tN
< [T s
tny—y "EII
By using (2),

ISNf — Sngllv < (N — tN-1)(a_ +2c)||f —glIn < A|f —9lIn-

Hence Sy is a contraction mapping. According to the Banach fixed point theorem, Sy
has a unique fixed point gy in B(Tn xX), that is, g5 = Snvgx. Thus, we have the first
equation in the lemma. Next, we define an operator Sy_; from B(Tn-1xX) into itself
by

Qr(f — 9)(s,z) — a{f(s7$) —9g(s,z)}|ds.

IN-1
Sn_19(t,z) =/ J,(s,2)ds + g (tn—1,2)
t

for (t,z) € Tny-1xX. Similarly, Sy_1 has a unique fixed point gy _, in B(Tn-1xX).
By the exactly same argument, for n = N —2,..- 2,1, we can define operators S,, by

tp
Sng(t,z) = / Jo(s,z)ds + gn1(tn, x)
t
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for (t,2) € T, xX, where g, is the fixed point of S,41. Thus, we get the second
equation in the lemma. ]

For g, 1 <n < N, in Lemma 3.1, we define a function V* on T'xX by
V*=g] on Ty xX and V* =g, on (th—1,t,]x X. (9)
We need the following assumption to verify V* belongs to Bp(T'x X).

Assumption A, For each (¢,z) € [0,t* )xx and 7 € II, there exist constants é; ; > 0
and Lo > 0 such that sup,¢, <4« suppeg, h~tpx(t, z;5 + B, T) — pr(t,z;5,T)| < Ly
for a.ny 0< h<bys.

Lemma 3.2 For u € B(T'xX), if there exists an absolutely continuous function 1 on
T such that

sup lu(b, z) — u(a, z)| < |9(b) — n(a)]

for all a,b € T, then U(s) = P”u(t z) is absolutely continuous on [0,t* — t] for each
(t,z) € [0 t*)xx ,
Proof. We suppose that [a;, b;), i = 1,-- -, k, is an arbitrary finite collection of disjoint

subintervals of [0,¢* —t]. Putting v*(T') = pr(¢,z;s+ h,T') —p.(¢,2;s,T) for t < s < ¢t*
and h > 0, we have

k

ZlU(b)—U(a,)|<2uunZs;p i (r)|+Z|n(t+b) n(t + a;)| .

i=1 i=1

By Assumption A4, there exist §; > 0 and L > 0 such that sup, supr [v2(T)| < Lh
whenever 0 < A < §;. By the absolute continuity of 7, given € > 0, take a 62 > 0 such
that, for a.ny finite collection [c;,d;), i = 1,-- -, k, of disjoint subintervals of [¢,¢*] which

satisfies Y°F_ | (d; — ¢;) < 62,

k
E In(di) — n(es)| < 27 1e.

By putting 6o = min{e(4L|jul])~!, 61, 62}, for each finite collection [a;,b;), i =1, -, k,
of disjoint subintervals of [0,¢* — ¢] with 3°F_ (b — a;) < &g, we obtain

k
D U (bs) = U(as)| < 2L]Jullbo + 27 e < €

i=1
Thus, U is absolutely continuous on [0,¢* — ¢]. a

Theorem 3.1 There exists a solution in Bp (T'xX) which satisfies the optimality equa-
tion.

Proof. Using Lemma 3.1, we have V* = g} on T, xX for function V* defined by (9)
and

tn N Ty
gt 2)= [ Jp(s,z)ds+ > Jgx (s, z)ds, (t,z) € ToxX
t

k=n+1 te-1
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for each n. Hence we obtain

-

V*(t,z) = Z 7irenlfI{r,..(s,:l:) + QxV*(s,z) — aV*(s,:c)}ds, (t,z) € TxX. (10)

According to Lebesgue’s differentiation theorem (Dudley, 1989, Theorem 7.2.1), differ-
ential coefficient D;V*(t, ) exists for all £ € X and almost all ¢ € T, and we obtain
D:V* = —infy{rz + QxV*—aV*} on D(V*) and V*(t*,-) = 0 on X. Thus, V* satisfies
optimality equation (7). We show V* € Bp(T'xX). We have V* € B(T'xX) by its
definition and g}, € B(T,, xX). Using (10) and (2), we get

sup |V*(b,2) — V*(a,2)| < {M + 2+ )|V*[}b—al, abeT.
ceX
Hence F(s) := P,V*(t,z) is absolutely continuous on [0,¢* — ¢] by Lemma 3.2. By (2)
and (7), D,V*(t,-) is bounded on D(V*,t). Moreover, A~ {V*(t + h,z) — V*(t,z)} is

bounded. Finally, by (7) and Assumption A3z, D;V* is measurable on D(V*). Thus V*
belongs to Bp(T'xX). O

Theorem 3.2 V; is the unique solution in Bp(T xX) of (6), that is,
aV,[ = 1'-,.- + QwVw + D"V”.

Proof. By Theorem 2.2, any solution in Bp(T'xX) of (6) must be V. Supposing II
is singleton {x} in Theorem 3.1, we can show the existence of a solution in Bp (T xX)
of equation (6). _ Q

Corollary 3.1 If infren{rx+QxVa+} = rze+Qx+Vz+ on D(V.), then ©* is an optimal
policy. If infren{rz +QxVx.} > rx. + Qx Va, — @l on D(Vy,), then 7, is an e-optimal
policy.

Proof. By Theorems 3.2 and 2.2, the assertion of the corollary is straightforward. O

Theorem 3.3 Assume that, for any ¢ > 0 and a solution V € Bp(T xX) of optimality
equation (7), there exists w, € Il such that

ixelfl:l{r,, +QV}2>rr, + Q. V —acl on D(V).

Then Vyp¢ Is the unique solution in Bp(T'xX) of the optimality equation. Moreover,
there exists an e-optimal policy for any € > 0.

Proof. Let V be a solution in Bp(T xX) of the optimality equation. Then we obtain
aV <ry+QxV+D:Von D(V) for all # € Il and V(t*,-) = 0 on X. Applying Theorem
2.1, we have V < V,p¢. By the hypothesis, for any € > 0 there exists . € II such that
aV > rx, +Qx.V+ DV —ae on D(V). Applying Theorem 2.1, we get

V Z VW‘ '—61 Z Vopt—el.

Letting € | 0, we get V > Vopr. Thus, we obtain V = Ve and Vi, < Vope + €1 for every
e>0. (]
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Theorem 3.4 Assume Vo Is a solution in Bp(T'xX) of (7). Then the following as-
sertions are equivalent to each other.

(i) =* is an optimal policy;
(ii) infrem{rs + QrVopt} = ras + Qnr+ Vopt on D(Vopt);
(i) infren{rs + QrVrs} =7re + Qg+ Vye on D(Vge).

Proof. By the hypothesis, assertion (ii) implies aVopt = rre + Qe Vopt + D¢Vopt on
D(Vope). Applying Theorem 2.1, we have assertion (i). By Corollary 3.1, assertion (1ii)
implies assertion (i). Next, if 7* is optimal, then Vy. = Vopt- By Theorem 3.2 and the
hypothesis, Vx+ is a solution of both equations (6) and (7). Hence, we have assertion
(iii). Consequently, assertion (i) implies assertions (ii) and (iii). O

The preceding theorem shows that a key to the existence of optimal policies is the
existence of policies which attain the infimum in assertions (ii) or (iii).
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