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1. Introduction
In this paper we deal with the control problem for retarded func-

tional differential equation:

(1.1)

$\frac{d}{dt}x(t)=A0x(t)+A_{1}x(t-h)+/-h0a(s)A2x(t+s)ds$

$+B_{0}u(t)$ ,
(1.2) $x(0)=g^{0}$ , $x(s)=g^{1}(s)$ , $s\in[-h, 0$ )

in the Hilbert space $H$ . After we consider the regularity of solution
of the retarded system, we proceed to necessary optimality condition
of the optimal solution for given cost function $J$ in set of a admissible
controls that is a closed and convex.

As for the regularity of solution we reduce the results of G. Blasio,
K. Kunlsch and A. Sinestrari [2] regarding term by term. There exists
a many literatures which studies optimal control problems of control
systems in Banach spaces. However, most studies have been devoted to
the systems without delay and the papers treating the retarded system
with unbounded operators are not so many([cf. see [3.8] in case where
with bounded operators).

In section 2, we consider some basic results on existence, unique-
ness, and a representation formular functional differential equations
in Hilbert spaces. We establish a form of a mild solution which is
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described by the integral equation in terms of fundamental solution
using structural operator. In section 3,4, we shall give two forms of
quadratic cost functions, which are called the quadratic cost criteria
in linear dynamic system and the feedback control law for regulator
problem. First we consider results on the existence and uniqueness
of optimal control in the closed convex admissable set. So we present
the necessary conditions of optimality which are described by the ad-
joint state and integral inequality. Maximal principle and bang-ban$g$

principle for technologically important costs are also given.

2. Functional differential equation with time delay
Let $V$ and $H$ be two Hilbert spaces The norm on $V(resp. H)$ wil be

denoted by $||\cdot||$ (resp. $|\cdot|$ ) and the corresponding scalar products wil
be denoted by $((\cdot, \cdot))(resp. (\cdot, \cdot))$ . Assume $V\subset H$ , the injection of $V$

into $H$ is continuous and $V$ is dense in H. $H$ will be identified with its
dual space. If $V^{*}$ denotes the dual space, $H$ may be identified with a
subspace of $V^{*}$ and may write $V\subset H\subset V^{*}$ . Since $V$ is dense in $H$ and
$H$ is dense in $V^{*}$ and the corresponding injections are continuous. If
an operator $A_{0}$ is bounded linear operator from $V$ to $V^{*}$ and generates
an analytic semigroup, then it is easily seen that

(2.1) $H=\{x\in V^{*} : /0T||A0e^{\ell A_{O}}x||_{*}^{2}dt<\infty\}$ ,

for the time $T>0$ where $||\cdot||_{*}$ is the norm of the element of $V^{*}$ . The
realization of $A_{0}$ in $H$ which is the restriction of $A_{0}$ to

$D(A_{0})=\{u\in V:A_{0}u\in H\}$

is also denoted by $A_{0}$ . Therefore, in terms of the intermediate theory
we can see that

(2.2) $(V, V^{*})_{\frac{1}{2},2}=H$

and hence we can also replace the intermediate space $F$ in the paper
[2] with the space $H$ . Hence, from now on we derive the same results of
G. Blasio, K. Kunisch and A. Sinestrari [2]. Let $a(u, v)$ be a bounded
sesquilinear form defined in $V\times V$ satisfying $G\circ arding’ s$ inequality

${\rm Re} a(u, v)\geq c_{0}||u||^{2}-c_{1}|c|^{2}$ , $c_{0}>0$ , $c_{1}\geq 0$ .
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Let $A_{0}$ be the operator associated with a sesquilinear form

$(A_{0}u, v)=-a(u, v)$ , $u,$ $v\in V$.

Then $A_{0}$ generates an analytic semigroup in both $H$ and $V^{*}$ and so
the equation (1.1) and (2.2) may be considered as an equation in both
$H$ and $V^{*}$ :

Let the operators $A_{1}$ and $A_{2}$ be a bounded linear operators from $V$

to $V^{*}$ . The function $a(\cdot)$ is assume to be a real valued H\"older continous
in $[-h, 0]$ and the controller operator $B_{0}$ is a bounded linear operator
from some Banach space $U$ to $H$ . Under these conditions, from (2.2)
Theorem 3.3 of [2] we can obtain following result.

PROPOSITION 2.1. Let $g=(g^{0}, g^{1})\in Z=H\times L^{2}(-h, 0;V)$ and
$u\in L^{2}(0, T;U)$ . Then for each $T>0$ , a solution $x$ of the equation
(1.1) and (1.2) belongs to

$L^{2}(0, T;V)\cap W^{1,2}(0, T;V^{*})\subset C([0, T];H)$ .

According to S. Nakagiri [7], we define the fundamental solution
$W(t)$ for (1.1) and (1.2) by

$W(t)g^{0}=\left\{\begin{array}{ll}x(t;0, (g^{0},0)), & t\geq 0\\0 & t<0\end{array}\right.$

for $g^{0}\in H$ . Since we assume that $a(\cdot)$ is H\"older continuous the funda-
mental solution exists as seen in [11]. It is known that $W(t)$ is strongly
continuous and $A_{0}W(t)$ and $dW(t)/dt$ are strongly continuous except
at $t=nr,$ $n=0,1,2,$ $\ldots$ .

For each $t>0$ , we introduce the structual operator $F(\cdot)$ from $Hx$

$L^{2}(0, T;V)$ to $H\times L^{2}(0, T;V^{*})$ defined by

$Fg=([Fg]^{0}, [Fg]^{1})$ ,
$[Fg]^{0}=g^{0}$ ,

$[Fg]^{1}=A_{1}g^{1}(-h-s)+\int_{-h}^{8}a(\tau)A_{2}g^{1}(\tau-s)d\tau$
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for $g=(g^{0}, g^{1})\in H\times L^{2}(0, T;V)$ . The solution $x(t)=x(t;g, u)$ of
(1.1) and (1.2) is represented by

$x(t)=W(t)g^{0}+\int_{-h}^{0}W(t+s)[Fg]^{1}(s)ds+\int_{0}^{t}W(t-s)B_{0}u(s)ds$

for $t\geq 0$ .
Let $I=[0,T],$ $T>0$ be a finite interval. We introduce the trans-

posed syst$em$ which is exactly same as in S. Nakagiri[8]. Let $q_{0}^{*}\in X^{*}$ ,
$q_{1}^{*}\in L^{1}(I;H)$ . The retarded transposed system in $H$ is defined by

(2.3)

$\frac{dy(t)}{dt}+A_{0}^{*}y(t)+A_{1}^{*}y(t+h)+\int_{-h}^{0}a(s)A_{2}y(t-s)ds$

$+q_{1}^{*}(t)=0$ a.e. $t\in I$,
(2.4)

$y(T)=q_{0}^{*}$ , $y(s)=0$ a.e. $s\in(T, T+h$].

Let $W^{*}(t)$ denote the adjoint of $W(t)$ . Then as proved in S. Nakagiri
[8], the mild solution of (2.3) and (2.4) is defined as follows:

$ y(t)=W^{*}(T-t)(q_{0}^{*})+\int^{T}W^{*}(\xi-t)q_{1}^{*}(\xi)d\xi$ ,

for $t\in I$ in the weak sence. The tranposed system is used to present
a concrete form of the optimality conditions for control optimization
problems.

3. Optimality contion for quadratic cost function
With every control $u\in L^{2}(0,T;U)$ we associate the following cost

function:

$J(u)=/0T||Cx_{u}(t)-z_{d}(t)||_{X}^{2}dt+/0T(Nu(t),u(t))dt$

where the operator $C$ is a bounded from $H$ to another Hilbert space $X$

and $z_{d}\in L^{2}(I;X)$ . Finaly we are given $N$ is a self adjoint and positive
definite:

$N\in B(X)$ , and $(Nu,u)\geq c||u||$ , $c>0$ ,
where $B(X)$ denotes the space of bounded operators on $X$ . Let $x_{u}(t)$

stands for solution of (1.1) and (1.2) associated with the control $ u\in$

$L^{2}(0, T;U)$ . Let $U_{ad}$ be a closed convex subset of $L^{2}(0, T;U)$ .
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THEOREM 3.1. Let the operators $C$ and $N$ satisfy the conditions
mentioned above. then there exists a unique element $u\in U_{ad}$ such
that
(3.1) $J(v)=\inf_{v\in U_{ad}}J(v)$ .

Furthermore, it is holds the following ineq $u$ality:

$\int_{0}^{T}(-\Lambda_{1I}^{-1}B_{0}^{*}y(s)+Nu(s), v(s)-u(s))ds\geq 0$

where $y(t)$ is a solution of (2.3) and (2.4) for initial condition $y(s)=0$

for $s\in[T, T+h]$ substituting $q_{1}^{*}$ by $-C^{*}\Lambda_{X}(Cx_{u}(t)-z_{d})$ . That is,
$y(t)$ satisfies th $e$ following transposed $s\gamma stem$ :
(3.2)

$\frac{dy(t)}{dt}+A_{0}^{*}y(t)+A_{1}^{*}y(t+h)+/-0_{h}a(s)A_{2}y(t-s)ds$

$-C^{*}\Lambda x(Cx_{u}(t)-z_{d})=0$ $a.e$ . $t\in I$ ,
(3.3)

$y(T)=0$ , $y(s)=0$ $a.e$ . $s\in(T, T+h$ ]

in the weak sense. Here, the operator $\Lambda_{U}$ (resp. $\Lambda_{X}$ ) is th $e$ canonical
isomorphism of $U(resp. X)$ onto $U^{*}$ (resp. $X^{*}$ ).

Proof. Let $x(t)=x(t;g, 0)$ . Then it holds that

$J(v)=/0T||Cx_{v}(t)-z_{d}(t)||^{2}dt+\int_{0}^{T}(Nv(t), v(t)\}dt$

$=\int_{0}^{T}||C(x_{v}(t)-x(t))+Cx(t)-z_{d}(t)||^{2}dt+/0T(Nv(t), v(t))dt$

$=\pi(v, v)-2L(v)+/0T||z_{d}(t)-Cx(t)||^{2}dt$

where

$\pi(u, v)=\int_{0}^{T}(C(x_{u}(t)-x(t)), C(x_{v}(t\rangle-x(t)))dt$

$+\int_{0}^{T}(Nu(t), v(t))dt$

$L(v)=\int_{0}^{T}(z_{d}(t)-Cx(t), C(x_{v}(t)-x(t)))dt$ .
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The form $\pi(u, v)$ is a continuous bilinear form in $L^{2}(0, T;U)$ and from
assumption of the positive definite of the operator $N$ we have

$\pi(v, v)\geq c||v||^{2}$ $v\in L^{2}(0, T;U)$ .

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a
unique $\uparrow\iota\in L^{2}(0, T;U)$ such that (3.1). If $c\iota$ is an optimal control (cf.
Theorem 1.3. Chapter 1 in [6]), then

(3.4) $J^{\prime}(u)(v-u)\geq 0$ $u\in U_{ad}$ ,

where $J^{\prime}(u)v$ means thr Fr\’echet derivative of $J$ at $u$ , applied to $C^{f}$ . It
is easily seen that

$x_{u}(t)(v-u)’=(v-u, x_{u}(t\rangle)’$

$=x_{v}(t)-x_{u}(t)$ .

Therefore, (3.4) is equivalent to

$/0T(Cx_{u}(t)-z_{d}(t), C(x_{v}(t)-x_{u}(t)))dt+/0T(Nu, v-u)dt=$

$/0T(C^{*}\Lambda_{X}(Cx_{u}(t)-z_{d}(t),x_{v}(t)-x_{u}(t))dt+\int_{0}^{T}(Nu, v-u)dt$

$\geq 0$

Note that $C^{*}\in B(X^{*}, H^{*})$ and for $\phi$ and $\psi$ in $H$ we have $(C^{*}\Lambda_{X}C\psi, \phi)$

$=(C\psi,C\phi)$ where duallity pairing is also denoted by $(\cdot, \cdot)$ . From Fu-
bini’s theorem and

$x_{u}(t)-x_{v}(t)=/0tW(t-s)B_{0}(v(s)-u(s))ds$
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we have

$/0T\int_{0}^{t}((\Lambda_{\mathfrak{c}I}^{1}B_{0}^{*}W^{*}(t-s)C^{*}\Lambda_{X}(Cx_{u}(t)-z_{d}(t))+Nu(s)$ ,

$v(s)-u(s)))dsdt$

$=\int_{0}^{T}(/sT((\Lambda_{U}^{-1}B_{0}^{*}W^{*}(t-s)C^{*}\Lambda x(Cx_{u}(t)-Zd(t)))dt+Nu(s)$ ,

$v(s)-u(s)))ds$

$=\int_{0}^{T}(-\Lambda_{U}^{-1}B_{0}^{*}y(s)+Nu(s), v(s)-u(s)))ds$

$\geq 0$

where $y(s)$ is given by (3.2) and (3.3), that is, $y(s)$ is following form:

$y(s)=-l^{T}W^{*}(t-s)C^{*}\Lambda_{X}(Cx_{u}(t)-z_{d}(t))dt$ .

REMARK. Identifying the antidual $U$ with $U$ (and also in case $X$ )
we need not use the canonical isomorphism $\Lambda_{U}$ . But in case where
$U\subset V^{*}$ this leads to difficulties since $H$ has already been identified
with its dual.

COROLLARY 3.1 (MAXIMAL PRINCIPLE). Let $U_{ad}$ be bounded and
$N=0$ . ff $u$ be an optimal solution for $J$ then

$\max_{v\in U_{ad}}(v, \Lambda_{U}^{-1}B_{0}^{*}y(s))=(u, \Lambda_{U}^{-1}B_{0}^{*}(s)y(s))$

where $y(s)$ is given by in Theorem 3.1.

Proof. We note that if $U_{ad}$ is bounded then the set of elements
$u\in U_{ad}$ such that (3.1) is a nonempty, closed and convex set in $U_{ad}$ .
Let $t$ be a Lebesque point of $u,$ $v\in U_{ad}$ and $t<t+\epsilon<T$ . Further,
put

$v_{\epsilon}(s)=\left\{\begin{array}{ll}v, & if t<s<t+\epsilon\\ u(s), & otherwise.\end{array}\right.$
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Then Substituting $v_{\epsilon}$ for $v$ in (3.4) and deviding thr resulting inequality
by $\epsilon$ , we obtain

$\frac{1}{\epsilon}\int^{\ell+\epsilon}(-\Lambda_{U}^{-1}B_{0}^{*}y(s), v(s)-u(s))ds\geq 0$ .

Thus by letting $\epsilon\rightarrow 0$ , the proof is complete.

THEOREM 3.2 (BANG-BANG PRINCIPLE). Let [$\gamma_{ad}$ be bounded and
$N=0$ . Let $B_{0}^{*}$ and $C$ be one to one mappings. If there is not the
control $u$ such that $Cx_{u}(t)=z_{d}(t)a.e$, then the optimal control $u(t)$

$is$ a bang-bang control, $i.e,$ $u(t)$ satisfies $u(t)\in\partial U_{ad}$ for almost all $t$

where $\partial U_{ad}$ denotes the boundary of $U_{ad}$ .

Proof. On account of Corollary 3.1 it is enough to show that
$\Lambda_{U}^{-1}B_{0}^{*}(t)y(t)\neq 0$ for almost all $t$ . If $B_{0}^{*}(t)y(t)=0$ , then since

$y(s)=-/s\tau_{W^{*}(t-s)C^{*}\Lambda_{X}(Cx_{u}(t)-z_{d}(t))dt}$

it follows that
$Cx_{u}(t)-z_{d}(t)=0$ $a.e.$ .

It is a contraction.

4. Optimality condition for regular cost function

In this section, the optimal control problem is to find a control $u$

which minimizes the cost function

$J(u)=(Gx(T), x(T))_{H}+\int_{0}^{T}((D(t)x(t),x(t))_{H}+(Q(t)u(t), U(t))_{U})dt$

where $x(\cdot)$ is a solution of (1.1) and (1.2), $G\in B(H)$ is self adjoint and
nonnegative, and $D\in \mathcal{B}_{\infty}(O, T;H, H)$ which is a set of all essentially
bounded operators on $(0, T)$ and $Q\in \mathcal{B}_{\infty}(0,T;U, U)$ are self adjoint
and ninne$g$ative, with $Q(t)\geq m$ for some $m>0$ , for almost al $t$ .
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THEOREM 4.1. Let [$\Gamma_{ad}$ be $\prime^{\backslash }\prime 1osed$ convex in $L^{2}(0, T;U)$ . Then there
exists a unique element $u\in U_{ad}$ such that

(4.1) $J(u)=\inf_{v\in U_{ad}}J(v)$ .

Moreover, it is holds the following inequality:

$\int_{0}^{T}(B_{0}^{*}y(s)+Qu(s), v(s)-u(s))ds\geq 0$

where.$V(t)$ is a solution of (2.3) and (2.4) for initial condition that
$y(T)=Gx_{u}(T)$ and $y(s)=0$ for $s\in(T, T+h$ ] substituting $q_{1}^{*}(t)$ by
$D(t)x_{u}(t)$ . That is, $y(t)$ satisfies the following $t$ransposed $s\gamma stem$ :

(4.2)

$\frac{dy(t)}{dt}+A_{0}^{*}y(t)+A_{1}^{*}y(t+h)+/-h0a(s)A_{2}y(t-s)ds$

$+D(t\rangle(x_{v}(t)-x_{u}(t))=0$ $a.e$. $t\in I$ ,

(4.3)
$y(T)=Gx_{u}(T)$ , $y(s)=0$ $a.e$ . $s\in(T, T+h$ ]

in the weak sense.

Proof. Under the hypotheses on $G,$ $D$ , and $Q$ , there exists a unique
$n$ which minimizes $J$ . Then $J^{\prime}(n)(v-n)\geq 0$ . Since

$J^{\prime}(u)(v-u)=2(Gx_{u}(T), x_{v}(T)-x_{u}(T))$

$+2\int_{0}^{T}(D(t)x_{u}(t), x_{v}(t)-x_{u}(t))$

$+2(Q(t)u(t), v(t)-u(t))dt$ ,

(4.1) is equivalent to that

$\int_{0}^{T}(B_{0}^{*}W^{*}(T-s)(Gx_{u}(T), v(s)-v(s))ds+$

$\int_{0}^{T}(B_{0}^{*}\int_{s}^{T}W^{*}(t-s\rangle D(t)x_{u}(t)dt+Qu(s), v(s)-u(s))ds$

$\geq 0$ .
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Hence

$y(s)=W^{*}(T-s)Gx_{u}(T)+\int_{s}^{T}W^{*}(t-s)D(t)x_{u}(t)dt$

is solves (4.2) and (4.3).

From $now$ on, we consider the case where $U_{ad}=L^{2}(0, T;U)$ . Let
$ x_{u}(t)=x(t;g, 0)+\int_{0}^{\ell}W(t-s\rangle$$B_{0}u(s)ds$ be solution of (1.1) and (1.2).
Define $T\in B(H, L^{2}(0, T;H))$ and $T_{T}\in B(L^{2}(0, T;H),$ $H$ ) by

$(T\phi)(t)=\int_{0}^{t}W(t-s)\phi(s)ds$ ,

$T_{T}\phi=\int_{0}^{T}W(T-s)\phi(s)ds$ .

Then we can write the cost function as

(4.4)
$J(u)=(G(x(T;g, 0)+T_{T}B_{0}u),$ $(x(T;g, 0)+T_{T}B_{0}u))_{H}$

$+(D(x(\cdot;g,0)+TB_{0}u),x(\cdot;g,0)+TB_{0}u)_{L^{2}(0,T;H)}$

$+(Qu, u)_{J^{2}(0,T;U)}$ .

The adjoint oprators $\tau*$ and $T_{T}^{*}$ are given by

$(T^{*}\phi)(t)=\int^{T}W^{*}(s-t)\phi(s\rangle ds$ ,

$(T_{T}^{*}\phi)(t)=W^{*}(T-t\rangle\phi$ .

THEOREM 4.2. Let $U_{ad}=L^{2}(0, T;U)$ . Then there exists a unique
control $u$ such that (4.1) and

$ u(t)=-A^{-1}B_{0}^{*}y(t\rangle$

for almost all $t$ , where $A=Q+B_{0}^{*}T^{*}DTB_{0}+B_{0}^{*}T_{T}^{*}GT_{T}^{*}B_{0}$ and where
$y(t)$ is a solution of (2.3) and (2.4) for initial condition that $y(T)=$

$Gx(T)$ and $y(s)=0$ for $s\in(T, T+h$ ] substituting $q_{1}^{*}(t)$ by $Dx(t)$ .

Proof. The optimal control for $J$ is unique solution of

(4.5) $J^{\prime}(u)v=0$ .
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From (4.4) we have

$J^{J}(u)v=2(G(x(T\rangle g, 0\rangle+T_{T}B_{0}u),$ $T_{T}B_{0}v$ ))
$+2(D(x(\cdot;g, 0)+TB_{0}u),$ $TB_{0}v$ )

$+2(Qu, v)$

$=2((Q+B_{0}^{*}T^{*}DTB_{0}^{*}+BT_{T}^{*}GT_{T}B_{0})u, v)$

$+2(B_{0}^{*}T^{*}Dx(\cdot;g, 0)+B_{0}^{*}T_{T}^{*}Gx(T;g, 0),$ $v$ ).

Hence (4.5) is equivalent to that

$((A+B_{0}^{*}T^{*}Dx(t;g, 0)+B_{0}^{*}T_{T}^{*}Gx(T;g, O))u,$ $v$ ) $=0$

since $A^{-1}\in \mathcal{B}_{\infty}(0,$ $T;H,$ $ U\rangle$ (see Appendix of [3]). Hence from The
definitions of $T$ and $T_{T}$ it follows that

$y(t)=W^{*}(T-t)Gx(T)+\int^{T}W^{*}(s-t)Dx(t)ds$ .

Therefore, the proof is complete.

REMARK. For the cost function $J$ in section 4 we can also obtain
the pointwise maximal principle and bang-bang principle.
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