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CLASSES OF OPERATORS DETERMINED BY
THE HEINZ-KATO-FURUTA INEQUALITY

AND THE H\"OLDER-MCCARTHY INEQUALITY

MASATOSHI FUJII*, SAICHI IZUMINO** AND RITSUO NAKAMOTO***

ABSTRACT. The dass $H(p)$ of operators determined by the Heinz.Kato-Furuta inequality is
characterized as the p-hyponormal operators introduced by Aluthge, in the preceding note [6].
From the viewpoint of this, we discuss relations among several classes of operators around
p-hyponormal and paranormal operators, in which the Holder-McCarthy inequality works as
well as the Heinz.Kato-Furuta inequality. In addition, we consider some conditions that the
Aluthge transform $T\rightarrow|T|^{1/2}U|T|^{1/2}$ preserves the norm, where $T=U|T|$ is the polar
decomposition of $T$ .

1. Introduction. First of all, we state the folowing extension of the Heinz-Kato
inequality due to Furuta [9] :
The $Heinz-Kato$-Furuta inequality. Let $A$ an$dB$ be positive operators on a Hilbert
space H. If $T$ sastisfies

(1) $T^{*}T\leq A^{2}$ an $dTT^{*}\leq B^{2}$ ,

then the in $equ$ality

(2) $|(T|T|^{p+q-1}x,y)|\leq||A^{p}x||||B^{q}y||$

holds for all $x,$ $y\in H$ an $d0\leq p,$ $q\leq 1$ with $p+q\geq 1,$ $ wf\iota$ere $|T|$ is the square root of $T^{*}T$ .
An operator $T$ is said to be hyponormal if $T^{*}T\geq TT^{*}$ . For a given operator $T$, if we

take $A=B=|T|$ , then the assumption (1) is just the hyponormality of $T$ . Based on this
and the work of Watanabe [16], we introduced in [6] the class $H(p)$ of operators satisfying

(3) $|(U|T|^{2p}x, y)|\leq|||T|^{p}x|||||T|^{p}y||$

for $x,$ $y\in H$ , where $T=U|T|$ is the polar decomposition of $T$ . And we showed that the class
$H(p)$ determined by the Heinz-Kato-Furuta inequality is characterized by the p-hyponormal
operators in the sense of Aluthge, i.e., $(TT^{*})^{p}\leq(T^{*}T)^{p}$ for $0<p<1$ .

Now Ando [2] proved Berberian’s conjecture that every hyponormal operator is nor-
maloid, i.e., $||T||=r(T)$ , the spectral radius of $T$ . It induced an intermediate class between
the hyponormal operators and the normaloid operators; an operator $T$ is caled paranormal
if

Il $T^{2}x||||x||\geq||Tx||^{2}$
for al vectors $x$ , see [3,7,11,13]. Related to p-hyponormal operators, Ando pointed out in
[3; Theorem 2] that every p-hyponormal operator is paranormal, though Aluthge [1] showed
that every p-hyponoraml operator is normaloid under an additional assumption.

On the other hand, McCarthy [15 ; Lemma 2.1] proposed the following inequalities as
an operator variant of the Holder inequality.
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The Holder-McCarthy inequality. Let $A$ be a positive operator on a Hilbert space $H$ .
Then for all $x\in H$

(4) $(Ax, x)^{r}\leq||x||^{2\langle r-1)}(A^{r}x, x)$ if $1\leq r$.
(5) $(Ax, x)^{\prime}\geq||x||^{2\langle r-1)}(A^{r}x, x)$ if $0\leq r\leq 1$ .

Let us take $r=2$ and $A=T^{\cdot}T$. Then (4) implies
$||Tx||^{2}\leq||x||||T^{\cdot}Tx||$ .

Therefore, if $T$ is hyponormal, then we have

11 $Tx||^{2}\leq||x||||T^{\cdot}Tx||\leq||x||||T^{2}x||$ ,

that is, $T$ is paranormal. Recalling that the class $H(p)$ is defined by the inequaJity which
folows from the Heinz-Kato-Furuta inequality under the hyponormality, the paranormality
of operators is, in this sense, determined by the Holder-McCarthy inequality.

In this note, from viewpoint of this, we consider some relations among several classes
of operators around the hyponormal and paranormal operators. In particular, we intrQ

duce the p-paranormality and generalize Ando’s result that every p-hyponormal operator
is paranormal. Moreover, we discuss the Aluthge transform $T\rightarrow\tilde{T}=|T|^{1/2}U|T|^{1/2}$ , where
$T=U|T|$ is the polar decomposition. As a matter of fact, we give some conditions equiv-
alent to $||T||=||\tilde{T}||$ . Consequently we have a simple proof of a weaker version of Ando’s
result.

2. The $H6lder$-McCarthy inequality. The Holder-McCarthy inequality (4) implies
that

(6) $||Tx||^{2r}\leq((T^{\cdot}T)^{r}x, x)||x||^{2\langle r-1)}$

for arbitrary operator $T$ and $r\geq 1$ . On the other hand, an operator $T$ is k-paranormal for
a positive integer $k$ if

(7) $||Tx||^{k}\leq||T^{k}x||||x||^{k-1}$

for al $x\in H$ , see $[7,11]$ . To compare with (6) and (7) reminds us of perinormal operators
introduced by Furuta and Haketa [10]. They called an operator $T$ perinormal if

(8) $(T^{*}T)\leq T^{*n}T^{\hslash}$

for all positive integers $n$ . For a fixed positive integer $k$ , we here cal an operator $T$ k-
perinormal if $T$ satisfies (8) for $n=k$ . As in the case of p-hyponormaJity for $0<p\leq 1$ , an
operator $T$ is k-hyponormal if $(T^{*}T)^{k}\geq(TT)^{k}$ for a positive integer $k$ , see [5].

Theorem 1. Let $T$ be an operator an $dk$ a positive integer. IfT is k-perinormal, then $T$

is k-paranormal, an $d$ if $T$ is k-hyponormal, then $T$ is m-perin $0$rmal for $m=2,3,$ $\cdots$ , $k+1$ .
Proof. The first half is a simple consequence of (6). The second one is proved by induction.
For $k=1$ , since $T$ is hyponormal, we have

$T^{2}T^{2}-(T^{\cdot}T)^{2}=T^{*}(T^{*}T-TT^{\cdot})T\geq 0$ .
Next suppose that the statement is true for $k$ and $T$ is (k+l)-hyponormal. Then we have

$T^{*k+1}T^{k+1}-(T^{*}T)^{k+1}=T^{*}(T^{\cdot}T-(TT^{*})^{k})T\geq T^{\cdot}(T^{k}T^{k}-(T^{*}T)^{k})T\geq 0$ .
Next we turn our attention to the case $0<r\leq 1$ in the H\"older-McCarthy inequality.

Thus we state the folowing simple lemma [4; Lemma 1], which implicitly plays an important
role. -62–



Lemma 2. Let $T=U|T|$ be the polar decomposition of $T$ an$dp>0$ . Then $T$ is p-
hyponormal if an $d$ only if $S=U|T|^{p}$ is hyponormal.

Based on this, we here define the p-paranormaJity of operators as folows : An operator
$T$ on $H$ is p-paranormal if $T$ satisfies

(9) $|||T|^{p}U|T|^{p}x||||x||\geq|||T|^{p}x||^{2}$ for $x\in H$ and $p>0$ ,

where $T=U|T|$ is the polar decomposition of $T$. It is clear that the l-paianormaJity is the
paranormality and moreover we have the folowing.
Lemma 3. Le$tT=U|T|$ be the polar decomposition of $T$ an$dp>0$ . Then $T$ is p-
$p$aranormal if and only if $S=U|T|^{p}$ is paranormal. Consequen tly every p-hyponormaI is
p-paranormal.

A generalization of Ando’s result is given as folows:

Theorem 4. Every p-paranormal operator is paranormal.

Proof. First of al, we $n$ote that the H\"older inequality by McCarthy (5) has the folowing
form;

(5’) $||A^{p}y||\leq||Ay||^{p}||y||^{1- p}$ .
for aJ1 $y\in H$ . Putting $A=|T|$ and $y=U|T|^{p}x$ in (5), we have

$|||T|^{p}U|T|^{p}x||\leq|||T|U|T|^{p}x||^{p}|||T|^{p}\dot{x}||^{1-p}$ .

Since the left hand side of the above inequality is greater than $|||T|^{p}x||^{2}/||x||$ by the $\gamma$

paranormality, it follows that

(10) $|||T|^{p}x||^{1+p}\leq|||T|U|T|^{p}x||^{p}||x||$ .

Hence, if we replace $x$ by $|T|^{1-p}x$ in (10), then

II $Tx||^{p+1}\leq|||T|^{1-p}x||||T^{2}x||^{p}$ .

Applying (5’) again, it folows that

$|||T|^{1-p}x||\leq.||Tx||^{1-p}||x||^{p}$ .

Therefore it implies that

11 $Tx||^{p+1}\leq|||T|^{1-p}x||||T^{2}x||^{p}$
$\leq||Tx||^{1-p}||x||^{p}||T^{2}x||^{p}$ ,

so that
11 $Tx||^{2}\leq||x||||T^{2}x||$ .

This completes the proof.

Though Lemma 2 is implicitly used in the definition of the p-paranormality, we just
apply it to the folowing result due to Ando appeared in a privately circulated note.



Theorem A. If $T$ is $ f\iota$yponormal and $\tau*$ is paran$ormal$, then $T$ is normal.

Applying Lemma 2, Theorem A is generaJized as folow $s$ :

Theorem 5. If $T$ is p-hyponormal an $dT^{\cdot}$ is p-paranormal for some $0<p\leq 1$ , then $T$ is
normal.

Proof. Let $S$ be as in Lemma 2. Then $S$ is hyponormal and $S^{*}$ is paranormal. Hence
Theorem A implies that $S$ is normal. As in the proof of [4 ; Theorem 1], it folows that $T$

is normal.

3. The Aluthge transform. Aluthge introduced the transform

$T\rightarrow\tilde{T}=|T|^{1/2}U|T|^{1/2}$ ,

where $T=U\downarrow T|$ is the polar decomposition of $T$. First of al, we point out the folowing
fact:

Lemma 6. An operator $T$ is $n$ormaliod if an $d$ only if $\tilde{T}$ is normaloid and $||\tilde{T}||=||T||$ .
Proof. We only note the folowing inequali$ty$ ;

$r(T)=r(\tilde{T})\leq||\tilde{T}||\leq||T||$ ,

where $r(T)$ is the spectral radius of $T$.
Thus we discuss some conditions on $T$ equivalent to $||\tilde{T}|i=||T||$ . For this, we need the

folowing lemma.

Lemma 7. Let $A$ be a positive operator on $H$ with $n$ orm 1 and $\{x_{n}\}$ a seq $u$ence of unit
vectors in H. Then the following $st$atements are $mu$ tually $equi$valent:

(1) $(1-A)x_{n}\rightarrow 0$ .
(2) $(1-A^{c})x_{n}\rightarrow 0$ for some $c>0$ .
(3) $(1-A^{c})x$. $\rightarrow 0$ for any $c>0$ .

Proof. It folows from the elementary fact that for any $c>0$

$m_{c}(1-A)\leq 1-A^{c}\leq M_{c}(1-A)$ ,

where $m_{c}=\min\{1, c\}$ and $M_{c}=\max\{1, c\}$ .
Theorem 8. The Aluthge tran $s$form preserves the norm of $T$ if an $d$ only if there exist
$a,$ $b>0$ and a seq uence $\{x_{n}\}$ of unit vectors $such$ that

$(||T||^{2a}-(T^{*}T)^{a})x,$ $\rightarrow 0$ and $(||T||^{2b}-(TT^{*})^{b})x,$ $\rightarrow 0$ .

Proof. We may assume that $||T||=1$ . Suppose that $||\tilde{T}||=||T||=1$ . Then we have

$|||T|^{1/2}|T^{\cdot}|^{1/2}x_{\hslash}||=|||T|^{1/2}U|T|^{1/2}U^{*}x_{n}||\rightarrow 1$

for some sequence $\{x,\}$ of unit vectors. Since

$1\geq|||T^{*}|^{1/2}x_{n}||=|||T|^{1/2}|||||T^{*}|^{1/2}x_{*}||\geq|||T|^{1/2}|T^{*}|^{1/2}x_{\hslash}||\rightarrow 1$ ,



it folows that
$(|T^{*}|x_{n}, x_{n})-(x_{n}, x_{n})\rightarrow 0$

and so
$||(1-|T^{*}|)^{1/2}x_{n}||^{2}=((1-|T^{*}|)x_{n}, x_{n})\rightarrow 0$

Hence we $h$ ave

$||(1-TT^{*})x_{n}||=||(1+|T^{*}|^{1/2})(1-|T^{*}|^{1/2})x,||$

$\leq||1+|T^{*}|^{1/2}||||(1-|T^{\cdot}|^{1/2})x_{n}||\rightarrow 0$ .

On the other hand, since

$|||T|^{1/2}x_{n}||=|||T|^{1/2}|T^{*}|^{1/2}x_{n}+|T|^{1/2}(1-|T^{*}|^{1/2})x.||$

$\geq|||T|^{1/2}|T^{*}|^{1/2}x_{n}||-||(1-|T^{*}|^{1/2})x_{n}||\rightarrow 1$ ,

we have $|||T|^{1/2}x_{n}||\rightarrow 1$ and so

$((1-|T|)x_{n}, x_{n})=1-|||T|^{1/2}x_{n}||^{2}\rightarrow 0$ .

Hence it implies that $(1-T^{*}T)x_{n}\rightarrow 0$ , as seen in the above.
Next we prove the converse. Since $||T||=1$ is assumed, it follows from Lemma 7 that

$(1-(T^{*}T)^{1/4})x_{n}\rightarrow 0$ and $(1-(TT^{*})^{1/4}.)x_{n}\rightarrow 0$ .

That is,
$(1-|T|^{1/2})x_{n}\rightarrow 0$ and $(1-|T^{*}|^{1/2})x_{n}\rightarrow 0$ .

Hence we $h$ ave

$|||T|^{1/2}|T^{\cdot}|^{1/2}x_{n}||\geq|||T|^{1/2}x_{n}||-|||T|^{1/2}(|T^{*}|^{1/2}x_{n}-x_{n})||\rightarrow 1$ ,

which implies that $||\tilde{T}||\geq 1$ and so $||\tilde{T}||=1$ .

We have the following corolary, as in the proof of Theorem 8.

Corollary 9. Suppose that $||T||=1$ . Then the following statements are equivalen $t$ :
(1) $||\tilde{T}||=||T||(=1)$ .
(2) There exists $a$ sequence $\{x_{n}\}$ of unit vectors such th at $|||T|^{1/2}|T$“ $|^{1/2}x_{n}||\rightarrow 1$ .
(3) There exists a sequence $\{x_{n}\}$ of unit vectors such th at

$(1-T^{*}T)x_{n}\rightarrow 0$ and $(1-TT^{*})x_{n}\rightarrow 0$ .

Corollary 10. Suppose that $||T||=1$ . If either $|T|^{\alpha}\geq|T^{*}|^{\beta}$ or $|T|^{\alpha}\leq$ I $T^{*}|^{\beta}$ for some
$\alpha,$ $\beta>0$ , then $||\tilde{T}||=||T||$ .
Proof. We may assume that $(T^{*}T)^{a}\leq(TT^{*})^{b}$ for some $a,$ $b>0$ . Since $||T||=1$ , there
exists a sequence $\{x_{n}\}$ of unit vectors such that $||(T^{*}T)^{a/2}x_{n}||\rightarrow 1$ . Therefore we have

$0\leq(x_{n}, x_{n})-((TT^{*})^{b}x_{n}, x_{n})\leq(x_{n}, x_{n})-((T^{*}T)^{a}x_{n}, x_{n})\rightarrow 0$ .



It folows that
$(1-(T^{*}T)^{a})x,$ $\rightarrow 0$ and $(1-(TT^{\cdot})^{b})x_{u}\rightarrow 0$ ,

which implies that $||\tilde{T}||=||T||$ by Theorem 8.

Though Corolary 10 implies that $||\tilde{T}||=||T||$ for a p-hyponormal operator $T$, we pose
another proof of it by the use of Hansen’s inequality that

(11) $(X^{\cdot}AX)^{p}\geq X^{\cdot}A^{p}X$

for $0<p\leq 1,$ $A\geq 0$ and contractions $X,$ $[12]$ and &0 [14]. Actualy, we assume that
$||T||=1$ . Since $U^{\cdot}|T|^{2p}U\geq|T|^{2p}$ by the p-hyponormali$ty$ of $T$, we have

$(\tilde{T}\cdot\tilde{T})^{2p}=(|T|^{1/2}U^{\cdot}|T|U|T|^{1/2})^{2p}$

$\geq|T|^{1/2}U^{\cdot}|T|^{2p}U|T|^{1/2}$ by (11)
$\geq|T|^{1/2}|T|^{2p}|T|^{1/2}$

$=|T|^{2p+1}$ .
Hence it follows that $||\tilde{T}^{l}\tilde{T}||\geq 1$ and so $1=||T||\geq||\tilde{T}||\geq 1$ .

4. Concluding remark8. The Aluthge transform makes p-hyponormal operators grow
up in the following sense [1; Theorem 1]:

Theorem B. If $T$ is a p-hyponormal operator for some $0<p\leq 1/2$ , then $\tilde{T}$ is $(p+1/2)-$

hyponormal.

Aluthge’s proof of Theorem $B$ is a typical application of the Furuta inequality [8]. As a
consequence, if $T$ is p-hyponormal, then $ T\approx$ is hyponormal and so normaloid, i.e., $ r(T)=\approx||T||\approx$ .
Hence we have

$r(T)=r(\tilde{T})=r(T)\approx=||T||\approx=||\tilde{T}||=||T||$

by Corolary 10, cf. Lemma 6, so that $T$ is normaloid.

Remark 1. Though the Aluthge transform preserves the spectral radius obviously, it does
not preserve the operator norm in general: Let

$T=\left(\begin{array}{ll}0 & 0\\1 & 0\end{array}\right)$ and $P=\left(\begin{array}{ll}l & 0\\0 & 0\end{array}\right)$ .

Then $T=TP$ is the polar decomposition of $T$ and so $\tilde{T}=PTP=0$ .

Remark 2. Finaly we consider the class of operators satisfying $||\tilde{T}x||\geq||Tx||$ for all
$x\in H$ . Thus we have

$\tilde{T}^{*}\tilde{T}-T^{*}T=|T|^{1/2}U^{*}(|T|-U|T|U^{*})U|T|^{1/2}$

$=|T|^{1/2}U^{*}(|T|-|T^{*}|)U|T|^{1/2}$ .
Since $\overline{ran}U|T|^{1/2}=\overline{r}\rightarrow 1$ an operator $T$ satisfies $||\tilde{T}x||\geq||Tx||$ for al $x\in H$ if and only
if

$T^{*}(|T|-|T^{\cdot}|)T\geq 0$ .
This means that $T$ belongs to this class if and only if $T$ is quasi-1/2-hyponormal, provided
that we define the quasi-p-hyponormality of $T$ (for $p>0$ ) by

$T^{*}(|T|^{p}-|T^{*}|^{p})T\geq 0$ .
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