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CLASSES OF OPERATORS DETERMINED BY
THE HEINZ-KATO-FURUTA INEQUALITY
AND THE HOLDER-MCCARTHY INEQUALITY

MaAsATOsHI Fuiil *, SAICHI IZUMINO ** AND RITSUO NAKAMOTO ***

ABSTRACT. The class H(p) of operators determined by the Heinz-Kato-Furuta inequality is
characterized as the p-hyponormal operators introduced by Aluthge, in the preceding note [6].
From the viewpoint of this, we discuss relations among several classes of operators around
p-hyponormal and paranormal operators, in which the Holder-McCarthy inequality works as
well as the Heinz-Kato-Furuta inequality. In addition, we consider some conditions that the
Aluthge transform T — |T|'/3U|T|!/? preserves the norm, where T = U|T| is the polar
decomposition of T'.

1. Introduction. First of all, we state the following extension of the Heinz-Kato
inequality due to Furuta [9] :

The Heinz-Kato-Furuta inequality. Let A and B be positive operators on a Hilbert
space H. If T sastisfies

(1) T*T < A? and TT* < B?,

then the inequality

(2) I(T\TP+~ 2, )| < ||AP=|[||B?y|

holds for all z,y € H and 0 < p,q <1 with p+ ¢ > 1, where |T| is the square root of T*T.

An operator T is said to be hyponormal if T*T > TT*. For a given operator T, if we
take A = B = |T|, then the assumption (1) is just the hyponormality of . Based on this
and the work of Watanabe [16], we introduced in [6] the class H(p) of operators satisfying

3) (UIT Pz, 9)| < TE=IITP ]l

for z,y € H, where T = U|T| is the polar decomposition of T. And we showed that the class
H(p) determined by the Heinz-Kato-Furuta inequality is characterized by the p-hyponormal
operators in the sense of Aluthge, i.e., (TT*)? < (T*T)? for 0 < p < 1.

Now Ando [2] proved Berberian’s conjecture that every hyponormal operator is nor-
maloid, i.e., ||T'|| = r(T'), the spectral radius of 7. It induced an intermediate class between
the hyponormal operators and the normaloid operators ; an operator T is called paranormal
if

T%slllell > (T
for all vectors z, see [3,7,11,13]. Related to p-hyponormal operators, Ando pointed out in
[3; Theorem 2] that every p-hyponormal operator is paranormal, though Aluthge [1] showed
that every p-hyponoraml operator is normaloid under an additional assumption.

On the other hand, McCarthy [15 ; Lemma 2.1] proposed the following inequalities as
an operator variant of the Holder inequality.
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The Holder-McCarthy inequality. Let A be a positive operator on a Hilbert space H.
Then for allz € H

(4) (Az,z) < [lel?~(A"z,2) if 1 < 1.

(5) (Az,2) 2 ||=|]PC~V(ATz,z) if0< 7 < 1.

Let us take r = 2 and A = T*T. Then (4) implies
Tzl < ||l=l|T*T=]].
Therefore, if T is hyponormal, then we have
Tz|? < ll=||T* Tz|| < ||=lIIT>=|l,

that is, T is paranormal. Recalling that the class H(p) is defined by the inequality which
follows from the Heinz-Kato-Furuta inequality under the hyponormality, the paranormality
of operators is, in this sense, determined by the Holder-McCarthy inequality.

In this note, from viewpoint of this, we consider some relations among several classes
of operators around the hyponormal and paranormal operators. In particular, we intro-
duce the p-paranormality and generalize Ando’s result that every p-hyponormal operator
is paranormal. Moreover, we discuss the Aluthge transform T — T = |T|*/2U|T|'/2, where
T = U|T)| is the polar decomposition. As a matter of fact, we give some conditions equiv-
alent to ||T|| = ||T" Consequently we have a simple proof of a weaker version of Ando’s
result.

2. The Holder-McCarthy inequality. The Holder-McCarthy inequality (4) implies
that
(6) ITz|* < (T*T) =, 2)|jz|?"
for arbitrary operator T and r > 1. On the other hand, an operator T is k-paranormal for
a positive integer k if
@ ITall* < 1Tl |
for all z € H, see [7,11]. To compare with (6) and (7) reminds us of perinormal operators
introduced by Furuta and Haketa [10]. They called an operator T perinormal if

(8) (T*T)* < T**T*

for all positive integers n. For a fixed positive integer k, we here call an operator T k-
perinormal if T satisfies (8) for n = k. As in the case of p-hyponormality for 0 < p < 1, an
operator T is k-hyponormalif (T*T)* > (TT*)* for a positive integer k, see [5)].

Theorem 1. Let T be an operator and k a positive integer. If T is k-perinormal, then T
is k-paranormal, and if T is k-hyponormal, then T is m-perinormal for m = 2,3,--- ,k+ 1.

Proof. The first half is a simple consequence of (6). The second one is proved by induction.
For k = 1, since T is hyponormal, we have

T*2T? — (T*T)?> =T*(T*T - TT*)T > 0. _
Next suppose that the statement is true for k and T is (k+1)-hyponormal. Then we have
T¢k+1Tk+1 - (TtT)k-l-l - Tt(T#ka _ (TTt)k )T > T‘(Ttka _ (TtT)k)T > 0.
Next we turn our attention to the case 0 < r < 1 in the Holder-McCarthy inequality.

Thus we state the following simple lemma [4 ; Lemma 1], which implicitly plays an important
role.
— 62 —



Lemma 2. Let T = U|T| be the polar decomposition of T and p > 0. Then T is p-
hyponormal if and only if $ = U|T|P is hyponormal.

Based on this, we here define the p-paranormality of operators as follows : An operator
T on H is p-paranormal if T satisfies

(9) NTPUITP ||zl > lITIP=||* for « € H and p > 0,

where T = U|T| is the polar decomposition of T. It is clear that the 1-paranormality is the
paranormality and moreover we have the following.

Lemma 3. Let T = U|T| be the polar decomposition of T and p > 0. Then T is p-
paranormal if and only if S = U|T|?P is paranormal. Consequently every p-hyponormal is
p-paranormal.

A generalization of Ando's result is given as follows :

Theorem 4. Every p-paranormal operator is paranormal.

Proof. First of all, we note that the Hdlder inequality by McCarthy (5) has the following
form ;

(5") 4Pyl < lAwlPIl¥l*~*.
for all y € H. Putting A = |T| and y = U|T|?z in (5), we have
NTIPUITIPz|| < ITIUITIP=|PIITIP2])* 2.

Since the left hand side of the above inequality is greater than |[|T|?z|[?/||z|| by the p-
paranormality, it follows that

(10) NTP=|™*? < ITIUIT P z||?||2]]-
Hence, if we replace z by |T|'~Pz in (10), then
TP+ < I~ T2 fP.
Applying (5') again, it follows that
T ~Pz|| < ||T|f*~2||=]f?.
Therefore it implies that

ITz|P** < |||T1 P ||| TP
< 1Tz =*|=|P)| T2 )17,
so that
IT=|I? < |l=lllT2=].
This completes the proof.

Though Lemma 2 is implicitly used in the definition of the p-paranormality, we just
apply it to the following result due to Ando appeared in a privately circulated note.



Theorem A. IfT is hyponormal and T* is paranormal, then T is normal.
Applying Lemma 2, Theorem A is generalized as follows :

Theorem 5. If T is p-hyponormal and T* is p-paranormal for some 0 < p <1, then T is
normal.

Proof. Let S be as in Lemma 2. Then S is hyponormal and S* is paranormal. Hence
Theorem A implies that S is normal. As in the proof of [4 ; Theorem 1], it follows that T
is normal.

3. The Aluthge transform. Aluthge introduced the transform
T —» T = |T|"?U|T)'/?,

where T' = U|T| is the polar decomposition of T. First of all, we point out the foHoWing
fact :
Lemma 6. An operator T is normaliod if and only if T is normaloid and ||T|| = ||T.

Proof. We only note the following inequality;
r(T) = +(T) < TNl < |17,

where r(T) is the spectral radius of T.

Thus we discuss some conditions on T equivalent to ||T|| = ||T]|. For this, we need the
following lemma. :

Lemma 7. Let A be a positive operator on H with norm 1 and {z,} a sequence of unit
vectors in H. Then the following statements are mutually equivalent :

(1)) (1- Az, —0.

(2) (1 - A°)z, — 0 for some c > 0.

(3) (1 - A%z, — 0 for any c > 0.

Proof. It follows from the elementary fact that for any ¢ > 0
me(l — A) <1 - A° < M.(1 - A),

where m, = min{1, c} and M, = max{1, c}.

Theorem 8. The Aluthge transform preserves the norm of T if and only if there exist
a,b > 0 and a sequence {z,} of unit vectors such that

(ITIP® = (T*T)*)zn — 0 and (IT|* = (TT*)*)za — 0.
Proof. We may assume that ||T|| = 1. Suppose that ||T|| = ||T|| = 1. Then we have
WT12|T* 12 zall = WTI/2UITI U 20 || — 1

for some sequence {z,} of unit vectors. Since

12 IT*12zall = WTI2MIT 220l 2 T2 T 22l — 1,



1t follows that
(IT*|%n, Tn) = (Tn, Tn) = 0

and so

”(1 - IT*l)l/anHZ = ((1 - IT*l)xnvxn) —0
Hence we have

(2 = TT*)za |l = 11 + |T*/2)(1 = |T*]*/?)al
<L+ 1712 = (1T 12)za]l - 0.

On the other hand, since

NT12zall = 1T/ 21T 220 + T2 (1 = T/ ?)za||
> |71 /2IT* M 2zll = (2 = 1T )zall - 1,

we have |||T|'/2z,|| = 1 and so
(1 = ITD2n, za) = 1 = [IIT1* 224 || — 0.

Hence it implies that (1 — T*T)z, — 0, as seen in the above.
Next we prove the converse. Since ||T|| = 1 is assumed, it follows from Lemma 7 that

(1 = (T*T)Y*)z, — 0 and (1 — (TT*)*/*)z, — 0.

That is, :
(1 - Tz, — 0 and (1 — |T*|*/?)z, — 0.

Hence we have
NTP 2T 2za || 2 1T @l = T 2T 220 = 2a)ll = 1,
which implies that ||T)| > 1 and so ||T|| = 1.

We have the following corollary, as in the proof of Theorem 8.

Corollary 9. Suppose that ||T|| = 1. Then the following statements are equivalent :

(1) N7 =ITli(= 1).
(2) There exists a sequence {z,} of unit vectors such that |||T|*/2|T*|"/2z,|| — 1.
(3) There exists a sequence {xy,} of unit vectors such that

" (1-T*T)zy - 0and (1 —TT*)z, — 0.
Corollary 10. Suppose that ||T|| = 1. If either |T|* > |T*|# or |T|* < |T*|? for some

a,B > 0, then ||T|| = ||T||.

Proof. We may assume that (7*7T)* < (TT*)® for some a,b > 0. Since ||[T|| = 1, there
exists a sequence {z,} of unit vectors such that ||(T*T)*/2z,|| — 1. Therefore we have

0 < (Zp,&n) = ((TT*)20,24) < (Tn, Zn) — (T*T)*Tn, z0) — O.



1t follows that
(1 = (T*T)*)xn — 0 and (1 — (TT*)")za — 0,

which implies that ||T|| = ||T|| by Theorem 8.

Though Corollary 10 implies that ||T|| = ||T|| for a p-hyponormal operator T, we pose
another proof of it by the use of Hansen’s inequality that

(11) (X*AXY > X*A*X

for 0 < p <1, A > 0 and contractions X, [12] and also [14]. Actually, we assume that
IIT]| = 1. Since U*|T|?PU > |T|?? by the p-hyponormality of T, we have

(T*T)% = (IT)/2U*|TIU|TIM/?)%
> |T|M2U*|T*PUITIM? by (11)
> [T TP T
= TP+
Hence it follows that ||T*T|| > 1 and so 1 = ||T|| > ||T]| > 1.

4. Concluding remarks. The Aluthge transform makes p-hyponormal operators grow
up in the following sense [1; Theorem 1]:

Theorem B. If T is a p-hyponormal operator for some 0 < p < 1/2, then T is (p+1/2)-
hyponormal.

Aluthge’s proof of Theorem B is a typical application of the Furuta inequality (8] Asa
consequence, if T is p-hyponormal, then T is hyponormal and so normaloid, i.e., r(T) = ||T||.
Hence we have '

r(T) = «(T) = +(T) = ||TIl = ||| = IT|
by Corollary 10, cf. Lemma 6, so that T is normaloid.

Remark 1. Though the Aluthge transform preserves the spectra.l radius obviously, it does
not preserve the operator norm in general: Let

0 0 ‘ 1 0
T = (1 0) and P = (0 0) .
Then T = TP is the polar decomposition of T and so T = PTP = 0.

Remark 2. Finally we consider the class of operators satisfying ||[Tz|| > ||Tz|| for all
z € H. Thus we have

T*T — T*T = |T|"/*U*(|T| - U|T|U*)U|T|"/?
= |T|Y2U*(IT| - |T*|)U|T}/>.
Since TanU|T|/? = TanT, an operator T satisfies ||Tx|| > ||Tz|| for all z € H if and only
' T*(T| - IT*|)T > 0.
This means that T belongs to this class if and only if T is quasi-1/2-hyponormal, provided
that we define the quasi-p-hyponormality of T (for p > 0) by

T*(ITP - |T°P)T 2 0.
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