CLASSES OF OPERATORS DETERMINED BY THE HEINZ-KATO-FURUTA INEQUALITY AND THE HÖLDER-MCCARTHY INEQUALITY

Masatoshi Fujil *, Saichi Izumino ** and Ritsuo Nakamoto ***

Abstract

The class $H(p)$ of operators determined by the Heinz-Kato-Furuta inequality is characterized as the p-hyponormal operators introduced by Aluthge, in the preceding note [6]. From the viewpoint of this, we discuss relations among several classes of operators around p-hyponormal and paranormal operators, in which the Hölder-McCarthy inequality works as well as the Heinz-Kato-Furuta inequality. In addition, we consider some conditions that the Aluthge transform $T \rightarrow|T|^{1 / 2} U|T|^{1 / 2}$ preserves the norm, where $T=U|T|$ is the polar decomposition of T.

1. Introduction. First of all, we state the following extension of the Heinz-Kato inequality due to Furuta [9]:
The Heinz-Kato-Furuta inequality. Let A and B be positive operators on a Hilbert space H. If T sastisfies

$$
\begin{equation*}
T^{*} T \leq A^{2} \text { and } T T^{*} \leq B^{2} \tag{1}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\left|\left(T|T|^{p+q-1} x, y\right)\right| \leq\left\|A^{p} x \mid\right\|\left\|B^{q} y\right\| \tag{2}
\end{equation*}
$$

holds for all $x, y \in H$ and $0 \leq p, q \leq 1$ with $p+q \geq 1$, where $|T|$ is the square root of $T^{*} T$.
An operator T is said to be hyponormal if $T^{*} T \geq T T^{*}$. For a given operator T, if we take $A=B=|T|$, then the assumption (1) is just the hyponormality of T. Based on this and the work of Watanabe [16], we introduced in [6] the class $H(p)$ of operators satisfying

$$
\begin{equation*}
\left|\left(U|T|^{2 p} x, y\right)\right| \leq\left.\left|\left||T|^{p} x\right|\| \|\right| T\right|^{p} y \| \tag{3}
\end{equation*}
$$

for $x, y \in H$, where $T=U|T|$ is the polar decomposition of T. And we showed that the class $H(p)$ determined by the Heinz-Kato-Furuta inequality is characterized by the p-hyponormal operators in the sense of Aluthge, i.e., $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$ for $0<p<1$.

Now Ando [2] proved Berberian's conjecture that every hyponormal operator is normaloid, i.e., $\|T\|=r(T)$, the spectral radius of T. It induced an intermediate class between the hyponormal operators and the normaloid operators; an operator T is called paranormal if

$$
\left\|T^{2} x\right\|\|x\| \geq\|T x\|^{2}
$$

for all vectors x, see $[3,7,11,13]$. Related to p-hyponormal operators, Ando pointed out in [3; Theorem 2] that every p-hyponormal operator is paranormal, though Aluthge [1] showed that every p-hyponoraml operator is normaloid under an additional assumption.

On the other hand, McCarthy [15 ; Lemma 2.1] proposed the following inequalities as an operator variant of the Hölder inequality.

The Hölder-McCarthy inequality. Let A be a positive operator on a Hilbert space H. Then for all $x \in H$

$$
\begin{gather*}
(A x, x)^{r} \leq\|x\|^{2(r-1)}\left(A^{r} x, x\right) \text { if } 1 \leq r \tag{4}\\
(A x, x)^{r} \geq\|x\|^{2(r-1)}\left(A^{r} x, x\right) \text { if } 0 \leq r \leq 1 \tag{5}
\end{gather*}
$$

Let us take $r=2$ and $A=T^{*} T$. Then (4) implies

$$
\|T x\|^{2} \leq\|x\|\left\|T^{*} T x\right\|
$$

Therefore, if T is hyponormal, then we have

$$
\|T x\|^{2} \leq\|x\|\left\|T^{*} T x\right\| \leq\|x\|\left\|T^{2} x\right\|
$$

that is, T is paranormal. Recalling that the class $H(p)$ is defined by the inequality which follows from the Heinz-Kato-Furuta inequality under the hyponormality, the paranormality of operators is, in this sense, determined by the Hölder-McCarthy inequality.

In this note, from viewpoint of this, we consider some relations among several classes of operators around the hyponormal and paranormal operators. In particular, we introduce the p-paranormality and generalize Ando's result that every p-hyponormal operator is paranormal. Moreover, we discuss the Aluthge transform $T \rightarrow \tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$, where $T=U|T|$ is the polar decomposition. As a matter of fact, we give some conditions equivalent to $\|T\|=\|\tilde{T}\|$. Consequently we have a simple proof of a weaker version of Ando's result.
2. The Hölder-McCarthy inequality. The Hölder-McCarthy inequality (4) implies that

$$
\begin{equation*}
\|T x\|^{2 r} \leq\left(\left(T^{* *} T\right)^{r} x, x\right)\|x\|^{2(r-1)} \tag{6}
\end{equation*}
$$

for arbitrary operator T and $r \geq 1$. On the other hand, an operator T is k-paranormal for a positive integer k if

$$
\begin{equation*}
\|T x\|^{k} \leq\left\|T^{k} x\right\|\|x\|^{k-1} \tag{7}
\end{equation*}
$$

for all $x \in H$, see $[7,11]$. To compare with (6) and (7) reminds us of perinormal operators introduced by Furuta and Haketa [10]. They called an operator T perinormal if

$$
\begin{equation*}
\left(T^{*} T\right)^{n} \leq T^{* n} T^{n} \tag{8}
\end{equation*}
$$

for all positive integers n. For a fixed positive integer k, we here call an operator $T k$ perinormal if T satisfies (8) for $n=k$. As in the case of p-hyponormality for $0<p \leq 1$, an operator T is k-hyponormal if $\left(T^{*} T\right)^{k} \geq\left(T T^{*}\right)^{k}$ for a positive integer k, see [5].
Theorem 1. Let T be an operator and k a positive integer. If T is k-perinormal, then T is k-paranormal, and if T is k-hyponormal, then T is m-perinormal for $m=2,3, \cdots, k+1$.
Proof. The first half is a simple consequence of (6). The second one is proved by induction. For $k=1$, since T is hyponormal, we have

$$
T^{* 2} T^{2}-\left(T^{*} T\right)^{2}=T^{*}\left(T^{*} T-T T^{*}\right) T \geq 0
$$

Next suppose that the statement is true for k and T is $(k+1)$-hyponormal. Then we have

$$
T^{* k+1} T^{k+1}-\left(T^{*} T\right)^{k+1}=T^{*}\left(T^{* k} T^{k}-\left(T T^{*}\right)^{k}\right) T \geq T^{* *}\left(T^{* k} T^{k}-\left(T^{*} T\right)^{k}\right) T \geq 0
$$

Next we turn our attention to the case $0<r \leq 1$ in the Hölder-McCarthy inequality. Thus we state the following simple lemma [4; Lemma 1], which implicitly plays an important role.

Lemma 2. Let $T=U|T|$ be the polar decomposition of T and $p>0$. Then T is $p-$ hyponormal if and only if $S=U|T|^{p}$ is hyponormal.

Based on this, we here define the p-paranormality of operators as follows: An operator T on H is p-paranormal if T satisfies

$$
\begin{equation*}
\left|\left\|T | ^ { p } U | T | ^ { p } x \left|\left\|\left|x \left\|\geq\left|\left\|\left.T\right|^{p} x\right\|^{2} \text { for } x \in H \text { and } p>0,\right.\right.\right.\right.\right.\right.\right. \tag{9}
\end{equation*}
$$

where $T=U|T|$ is the polar decomposition of T. It is clear that the 1-paranormality is the paranormality and moreover we have the following.

Lemma 3. Let $T=U|T|$ be the polar decomposition of T and $p>0$. Then T is p paranormal if and only if $S=U|T|^{p}$ is paranormal. Consequently every p-hyponormal is p-paranormal.

A generalization of Ando's result is given as follows:
Theorem 4. Every p-paranormal operator is paranormal.
Proof. First of all, we note that the Hölder inequality by McCarthy (5) has the following form ;

$$
\begin{equation*}
\left\|A^{p} y\right\| \leq\|A y\|^{p}\|y\|^{1-p} . \tag{5'}
\end{equation*}
$$

for all $y \in H$. Putting $A=|T|$ and $y=U|T|^{p} x$ in (5), we have

$$
\left.\left|\left||T|^{p} U\right| T\right|^{p} x\|\leq\|| | T|U| T\right|^{p} x\left\|^{p}| ||T|^{p} \dot{x}\right\|^{1-p} .
$$

Since the left hand side of the above inequality is greater than $\left\|\left\|\left.T\right|^{p} x\right\|^{2} /\right\| x \|$ by the p paranormality, it follows that

$$
\begin{equation*}
\left|\left\|\left.T\right|^{p} x\right\|^{1+p} \leq\left\|\left.||T| U| T\right|^{p} x\right\|^{p}\|x\| .\right. \tag{10}
\end{equation*}
$$

Hence, if we replace x by $|T|^{1-p} x$ in (10), then

$$
\|T x\|^{p+1} \leq\left\|\left||T|^{1-p} x\| \| T^{2} x \|^{p}\right.\right.
$$

Applying (5') again, it follows that

$$
\left|\left\|\left.T\right|^{1-p} x\right\| \leq\|T x\|^{1-p}\|x\|^{p} .\right.
$$

Therefore it implies that

$$
\begin{aligned}
\|T x\|^{p+1} & \leq\left\||T|^{1-p} x\right\|\left\|T^{2} x\right\|^{p} \\
& \leq\|T x\|^{1-p}\|x\|^{p}\left\|T^{2} x\right\|^{p},
\end{aligned}
$$

so that

$$
\|T x\|^{2} \leq\|x\|\left\|T^{2} x\right\|
$$

This completes the proof.

Though Lemma 2 is implicitly used in the definition of the p-paranormality, we just apply it to the following result due to Ando appeared in a privately circulated note.

Theorem A. If T is hyponormal and T^{*} is paranormal, then T is normal.
Applying Lemma 2, Theorem \mathbf{A} is generalized as follows :
Theorem 5. If T is p-hyponormal and T^{*} is p-paranormal for some $0<p \leq 1$, then T is normal.

Proof. Let S be as in Lemma 2. Then S is hyponormal and S^{*} is paranormal. Hence Theorem A implies that S is normal. As in the proof of [4 ; Theorem 1], it follows that T is normal.
3. The Aluthge transform. Aluthge introduced the transform

$$
T \rightarrow \tilde{T}=|T|^{1 / 2} U|T|^{1 / 2},
$$

where $T=U|T|$ is the polar decomposition of T. First of all, we point out the following fact :

Lemma 6. An operator T is normaliod if and only if \tilde{T} is normaloid and $\|\tilde{T}\|=\|T\|$.
Proof. We only note the following inequality;

$$
r(T)=r(\tilde{T}) \leq\|\tilde{T}\| \leq\|T\|
$$

where $r(T)$ is the spectral radius of T.
Thus we discuss some conditions on T equivalent to $\|\tilde{T}\|=\|T\|$. For this, we need the following lemma.
Lemma 7. Let A be a positive operator on H with norm 1 and $\left\{x_{n}\right\}$ a sequence of unit vectors in H. Then the following statements are mutually equivalent :
(1) $(1-A) x_{n} \rightarrow 0$.
(2) (1-A $\left.A^{c}\right) x_{n} \rightarrow 0$ for some $c>0$.
(3) $\left(1-A^{c}\right) x_{n} \rightarrow 0$ for any $c>0$.

Proof. It follows from the elementary fact that for any $c>0$

$$
m_{c}(1-A) \leq 1-A^{c} \leq M_{c}(1-A),
$$

where $m_{c}=\min \{1, c\}$ and $M_{c}=\max \{1, c\}$.
Theorem 8. The Aluthge transform preserves the norm of T if and only if there exist $a, b>0$ and a sequence $\left\{x_{n}\right\}$ of unit vectors such that

$$
\left(\|T\|^{2 a}-\left(T^{*} T\right)^{a}\right) x_{n} \rightarrow 0 \text { and }\left(\|T\|^{2 b}-\left(T T^{*}\right)^{b}\right) x_{n} \rightarrow 0 .
$$

Proof. We may assume that $\|T\|=1$. Suppose that $\|\tilde{T}\|=\|T\|=1$. Then we have

$$
\left|\left||T|^{1 / 2}\right| T^{*}\right|^{1 / 2} x_{n}\left\|=\left|\left||T|^{1 / 2} U\right| T\right|^{1 / 2} U^{*} x_{n}\right\| \rightarrow 1
$$

for some sequence $\left\{x_{n}\right\}$ of unit vectors. Since

$$
1 \geq\left|\left|\left|T^{*}\right|^{1 / 2} x_{n}\left\|=\left|\left||T|^{1 / 2}\right|\right|| |\left|T^{*}\right|^{1 / 2} x_{n}\right\| \geq\left|\left||T|^{1 / 2}\right| T^{*}\right|^{1 / 2} x_{n} \| \rightarrow 1\right.\right.
$$

it follows that

$$
\left(\left|T^{*}\right| x_{n}, x_{n}\right)-\left(x_{n}, x_{n}\right) \rightarrow 0
$$

and so

$$
\left\|\left(1-\left|T^{*}\right|\right)^{1 / 2} x_{n}\right\|^{2}=\left(\left(1-\left|T^{*}\right|\right) x_{n}, x_{n}\right) \rightarrow 0
$$

Hence we have

$$
\begin{aligned}
\left\|\left(1-T T^{*}\right) x_{n}\right\| & =\left\|\left(1+\left|T^{*}\right|^{1 / 2}\right)\left(1-\left|T^{*}\right|^{1 / 2}\right) x_{n}\right\| \\
& \leq\left\|1+\left|T^{*}\right|^{1 / 2} \mid\right\|\left\|\left(1-\left|T^{*}\right|^{1 / 2}\right) x_{n}\right\| \rightarrow 0
\end{aligned}
$$

On the other hand, since
we have $\left|\left||T|^{1 / 2} x_{n} \| \rightarrow 1\right.\right.$ and so

$$
\left((1-|T|) x_{n}, x_{n}\right)=1-\left|\left||T|^{1 / 2} x_{n} \|^{2} \rightarrow 0 .\right.\right.
$$

Hence it implies that $\left(1-T^{*} T\right) x_{n} \rightarrow 0$, as seen in the above.
Next we prove the converse. Since $\|T\|=1$ is assumed, it follows from Lemma 7 that

$$
\left(1-\left(T^{*} T\right)^{1 / 4}\right) x_{n} \rightarrow 0 \text { and }\left(1-\left(T T^{*}\right)^{1 / 4}\right) x_{n} \rightarrow 0 .
$$

That is,

$$
\left(1-|T|^{1 / 2}\right) x_{n} \rightarrow 0 \text { and }\left(1-\left|T^{*}\right|^{1 / 2}\right) x_{n} \rightarrow 0
$$

Hence we have

$$
\left\||T|^{1 / 2}\left|T^{*}\right|^{1 / 2} x_{n}\right\| \geq\left|\left|| T | ^ { 1 / 2 } x _ { n } \left\|-\left|\left||T|^{1 / 2}\left(\left|T^{*}\right|^{1 / 2} x_{n}-x_{n}\right) \| \rightarrow 1\right.\right.\right.\right.\right.
$$

which implies that $\|\tilde{T}\| \geq 1$ and so $\|\tilde{T}\|=1$.
We have the following corollary, as in the proof of Theorem 8.
Corollary 9. Suppose that $\|T\|=1$. Then the following statements are equivalent :
(1) $\|\tilde{T}\|=\|T\|(=1)$.
(2) There exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left|\left||T|^{1 / 2}\right| T^{*}\right|^{1 / 2} x_{n} \| \rightarrow 1$.
(3) There exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that

$$
\left(1-T^{*} T\right) x_{n} \rightarrow 0 \text { and }\left(1-T T^{*}\right) x_{n} \rightarrow 0 .
$$

Corollary 10. Suppose that $\|T\|=1$. If either $|T|^{\alpha} \geq\left|T^{*}\right|^{\beta}$ or $|T|^{\alpha} \leq\left|T^{*}\right|^{\beta}$ for some $\alpha, \beta>0$, then $\|\tilde{T}\|=\|T\|$.
Proof. We may assume that $\left(T^{*} T\right)^{a} \leq\left(T T^{*}\right)^{b}$ for some $a, b>0$. Since $\|T\|=1$, there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left\|\left(T^{*} T\right)^{a / 2} x_{n}\right\| \rightarrow 1$. Therefore we have

$$
0 \leq\left(x_{n}, x_{n}\right)-\left(\left(T T^{*}\right)^{b} x_{n}, x_{n}\right) \leq\left(x_{n}, x_{n}\right)-\left(\left(T^{*} T\right)^{a} x_{n}, x_{n}\right) \rightarrow 0
$$

It follows that

$$
\left(1-\left(T^{*} T\right)^{a}\right) x_{n} \rightarrow 0 \text { and }\left(1-\left(T T^{*}\right)^{b}\right) x_{n} \rightarrow 0,
$$

which implies that $\|\tilde{T}\|=\|T\|$ by Theorem 8.
Though Corollary 10 implies that $\|\tilde{T}\|=\|T\|$ for a p-hyponormal operator T, we pose another proof of it by the use of Hansen's inequality that

$$
\begin{equation*}
\left(X^{*} A X\right)^{p} \geq X^{*} A^{p} X \tag{11}
\end{equation*}
$$

for $0<p \leq 1, A \geq 0$ and contractions X, [12] and also [14]. Actually, we assume that $\|T\|=1$. Since $U^{*}|T|^{2 p} U \geq|T|^{2 p}$ by the p-hyponormality of T, we have

$$
\begin{aligned}
\left(\tilde{T}^{*} \tilde{T}\right)^{2 p} & =\left(|T|^{1 / 2} U^{*}|T| U|T|^{1 / 2}\right)^{2 p} \\
& \geq|T|^{1 / 2} U^{*}|T|^{2 p} U|T|^{1 / 2} \text { by (11) } \\
& \geq|T|^{1 / 2}|T|^{2 p}|T|^{1 / 2} \\
& =|T|^{2 p+1}
\end{aligned}
$$

Hence it follows that $\left\|\tilde{T^{*}} \tilde{T}\right\| \geq 1$ and so $1=\|T\| \geq\|\tilde{T}\| \geq 1$.
4. Concluding remarks. The Aluthge transform makes p-hyponormal operators grow up in the following sense [1 ; Theorem 1]:
Theorem B. If T is a p-hyponormal operator for some $0<p \leq 1 / 2$, then \tilde{T} is $(p+1 / 2)$ hyponormal.

Aluthge's proof of Theorem B is a typical application of the Furuta inequality [8]. As a consequence, if T is p-hyponormal, then $\tilde{\tilde{T}}$ is hyponormal and so normaloid, i.e., $r(\tilde{\tilde{T}})=\|\tilde{\tilde{T}}\|$. Hence we have

$$
r(T)=r(\tilde{T})=r(\tilde{\tilde{T}})=\|\tilde{\tilde{T}}\|=\|\tilde{T}\|=\|T\|
$$

by Corollary 10 , cf. Lemma 6 , so that T is normaloid.

Remark 1. Though the Aluthge transform preserves the spectral radius obviously, it does not preserve the operator norm in general: Let

$$
T=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then $T=T P$ is the polar decomposition of T and so $\tilde{T}=P T P=0$.
Remark 2. Finally we consider the class of operators satisfying $\|\tilde{T} x\| \geq\|T x\|$ for all $x \in H$. Thus we have

$$
\begin{aligned}
\tilde{T}^{*} \tilde{T}-T^{*} T & =|T|^{1 / 2} U^{*}\left(|T|-U|T| U^{*}\right) U|T|^{1 / 2} \\
& =|T|^{1 / 2} U^{*}\left(|T|-\left|T^{*}\right|\right) U|T|^{1 / 2}
\end{aligned}
$$

Since $\overline{\operatorname{ran}} U|T|^{1 / 2}=\overline{\operatorname{ran} T}$, an operator T satisfies $\|\tilde{T} x\| \geq\|T x\|$ for all $x \in H$ if and only if

$$
T^{*}\left(|T|-\left|T^{*}\right|\right) T \geq 0 .
$$

This means that T belongs to this class if and only if T is quasi- $1 / 2$-hyponormal, provided that we define the quasi-p-hyponormality of T (for $p>0$) by

$$
T^{*}\left(|T|^{p}-\left|T^{*}\right|^{p}\right) T \geq 0
$$

References

1. A.Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990), 307-315.
2. T.Ando, On hyponormal operators, Proc. Amer. Math. Soc. 14 (1963), 290-291.
3. T.Ando, Operators with a norm condition, Acta. Sci. Math. Szeged 33 (1972), 169-178.
4. M.Fujii, C.Himeji and A.Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japon., to appear.
5. M.Fujii and Y.Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad. 51 (1975), 243-246.
6. M.Fujii and H.Watanabe, The Heinz-Kato-Furuta inequarity and hyponormal operators, in preparation.
7. T.Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598.
8. T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
9. T.Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc., to appear.
10. T.Furuta and J.Haketa, Applications of norm inequalities equivalent to Löwner-Heinz theorem, Nihonkai J. Math. 1 (1990), 11-17.
11. T.Furuta, M.Horie and R.Nakamoto, A remark on a class of operators, Proc. Japan Acad. 43 (1967), 607-609.
12. F.Hansen, An operator inequality, Math. Ann. 246 (1980), 325-338.
13. W.Istratescu, T.Saito and T.Yoshino, On a class of operators, Tohoku J. Math. 18 (1966), 410-413.
14. D.Kainuma and M.Nakamura, Around Jensen's inequality, Math. Japon. 25 (1980), 585-588.
15. C.A.McCarthy, c_{ρ}, Israel J. Math. 5 (1967), 249-271.
16. H.Watanabe, Operators characterized by certain Cauchy-Schwarz type inequalities, preprint.

* Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan
** Faculty of Education, Toyama University, Gofuku, Toyama 930, Japan
*** Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan

Received September 27, 1993, Revised November 12, 1993

