PURE COMPLETELY POSITIVE MAPS AS A DUAL OBJECT OF C*-ALGEBRAS

LIANGSEN WU

Department of Mathematics East China Normal University Shanghai 200062 People's Republic of China

Dedicated to prof M. Takesaki's 60th birthday

ABSTRACT

Let A and B be unital C^* -algebras,

 $CP(A, M_n) = \{\phi | \phi \text{ is a pure completely positive map from } A \text{ to } M_n \text{ with } Tr\phi(I) = 1\}$

and α be a natural action induced by SU(n) on $CP(A, M_n)$.

It is proved that

Theorem If $\psi: CP(B, M_n) \cup \{0\} \to CP(A, M_n) \cup \{0\}, (n \ge 3)$, a bijection with $\psi(0) = 0$, is α -invariant, preserves trasition probabilities and ψ and ψ^{-1} are uniformly continuous, then ψ gives rise to a *-isomorphism between A and B.

1980 Mathematics Subject Classification (1985 Revision). 46L04. Key words and phrases. C^{*}-algebra, Pure Completely Positive Map. This work is supported by Chinese Science Foundation.

§1. INTRODUCTION

The starting point of this paper is Shultz's paper[6] in which he proved:

Theorem Let A and B be C^{*}-algebras. Suppose that P(A) and P(B) are pure state spaces of A and B, $\psi: P(B) \cup \{0\} \to P(A) \cup \{0\}$ a bijection with $\psi(0) = 0$. Then ψ is induced by a *-isomorphism of A onto B iff ψ and ψ^{-1} are uniformly continuous and ψ preserves orientation and transition probabilities.

Let A and B be unital C[•]-algebras, n be fixed integer, $n \ge 3$. Set

 $CP(A, M_n) = \{\phi | \phi \text{ is a pure completely positive map from } A \text{ to } M_n \text{ with } Tr\phi(I) = 1\}.$

First of all, in section 3 we consider the non-commutative version of the above theorem, that is, we cosider $CP(A, M_n)$ in the place of P(A). Suppose that α is a natural action induced by SU(n) on $CP(A, M_n)$. Namely we define

$$\alpha_{g}\phi(x) = g\phi(x)g^{-1} \, \forall x \in A, g \in SU(n), \phi \in CP(A, M_{n}).$$

Theorem If $\psi: CP(B, M_n) \cup \{0\} \to CP(A, M_n) \cup \{0\}$, $(n \ge 3)$, a bijection with $\psi(0) = 0$, is α -invariant, preserves transition probabilities and ψ and ψ^{-1} are uniformly continuous, then ψ gives rise to a *-isomorphism between A and B.

The motivation for the above theorem is as follows. Alfsen and Shultz [6] defined the notion orientation of the state spaces of a C^{\bullet} -algebra, and proved that the state space with the orientation can determine the structure of the C^{\bullet} -algebra. Author [1] considered the matrix algebra of a C^{\bullet} -algebra instead of the state space and defined the notion of α -invariance with which the matrix algebra can determine the structure of the C^{\bullet} -algebra. In the theorem we used the α -invariance in the place of the orientation and set $CP(A, M_n)$ as the non-commutative version of the pure state space. The theorem obtained can be regarded as a non-commutative Shultz theorem.

Recently the theory of pure completely bounded and completely positive maps is developing rapidly. This is another motivation of our paper.

In section 4, we provide with a counterexample to show that the condition $n \ge 3$ in Theorem 3.1 is essential.

§2. PRELIMINARY

In [1], we considered the matrix algebra of a C^* -algebra instead of the state space and defines the notion of α -invariance with which the matrix algebra can determine the structure of the C^* -algebra. For later use and completeness, we give a sketch of the proof.

Let A, B be unital C^{\bullet} -algebras

 $\mathcal{K}_A = \{ \varphi \mid \varphi \text{ are completely positive maps from } M_n(C) \to A \text{ with } \|a(\varphi)\| \leq 1 \},$

$$a(\varphi) = \begin{pmatrix} \varphi(e_{11}) & \dots & \varphi(e_{1n}) \\ \vdots & \ddots & \vdots \\ \varphi(e_{n1}) & \dots & \varphi(e_{nn}) \end{pmatrix},$$

where $\{e_{ij}\}$ is the matrix unit of $M_n(C)$.

Suppose that SU(n) is the set of all $n \times n$ unimodular unitary matrices and α is the automorphism group on $M_n(C)$ defined by

$$\alpha_g(x) = gxg^{-1}, \qquad x \in M_n(C), g \in SU(n).$$

Using $(\alpha_g \varphi)(x) = \varphi(\alpha_g^{-1}(x))$, $\varphi \in \mathcal{K}_A, x \in M_n(C)$, α induces an action on \mathcal{K}_A . **Theorem 1** [1] Let A, B be C^* -algebras. For $n \geq 3$, if Φ is an α -invariant affine isomorphism from \mathcal{K}_A to \mathcal{K}_B , $\Phi(0) = 0$, $(\alpha$ -invariance means that $\alpha \Phi = \Phi \alpha$), then A and B are *-isomorphic.

Proof.

1)By Choi-Effros theory,

$$\mathcal{K}_{A} = \{ a \in (M_{n} \otimes A)^{+} : ||a|| \leq 1 \}$$

2)We can extend Φ as an α -invariant positively preserving isometry from $M_n \otimes A$ onto $M_n \otimes B$.

3) If $x \in A$, then $uxu^* = x$ for every $u \in SU(n)$. From α -invariance

$$\Phi(x) = u\Phi(x)u^{\bullet}, x \in A, u \in SU(n)$$

such that $\Phi(A) = B$.

4) From Kadison Isometry theory [8] p335, let z be the central projection of B such that $x \in M_n \otimes A \to \Phi(x)z$ is multiplicative and $x \to \Phi(x)z^{\perp}$ is anti-multiplicative. By use of α - invariance, we can prove $z^{\perp} = 0$. \Box

§3. MAIN THEOREM

In this section we consider pure completely positive maps in the place of pure states and obtain a theorem as follows.

First of all we give some notations. Let COP(A, B) be all completely positive maps from C^* -algebra A to C^* -algebra B.

Definition 3.1 A completely positive map ϕ from C^* -algebra A to C^* -algebra B is said to be pure if for every $\psi \in COP(A, B), \ \psi \leq \phi$ implies $\psi = \lambda \phi$ for some $\lambda \geq 0$.

Let A and B be unital C^{*}-algebras, n a fixed integer $(n \ge 3)$.

 $CP(A, M_n) = \{\phi | \phi \text{ is a pure completely positive map from } A \text{ to } M_n \text{ with } Tr\phi(I) = 1\}.$

If SU(n) is the unimodular unitary group, we can define an action on $CP(A, M_n)$ by SU(n) as follows.

$$\alpha_{q}\phi(x) = g\phi(x)g^{-1} \quad \forall x \in A, g \in SU(n), \phi \in CP(A, M_{n}).$$

Definition 3.2 If x and y are unit vectors in a Hilbert space, the transition probability between the vector states ω_x and ω_y ($\omega_x(\cdot) = (\cdot x|x)$) on B(H) is defined to be ($\omega_x|\omega_y$) = $|(x|y)|^2$.

If $\pi: A \to B(H)$ is an irreducible representation of C^* -algebra A, then the transition probability between the pure states $\omega_x \cdot \pi$ and $\omega_y \cdot \pi$ is again defined to be $|(x|y)|^2$.

If σ and τ are arbitrary pure states on A, let u_{σ} and u_{τ} be their support projections in A^{**} , we then define $(\sigma|\tau) = \langle u_{\sigma}, \tau \rangle = \langle u_{\tau}, \sigma \rangle$. Let $L(A, M_n)$ be the vector space of linear functions from A to M_n and $L(A, M_n)^{\oplus}$ the cone of all completely positive maps from A to M_n . From the theory of completely positive map, there is an order isomorphism between $L(A, M_n)$ and $(M_n(A))^{\bullet}$ (with respect to $L(A, M_n)^{\oplus}$). The restriction of this order isomorphism to $CP(A, M_n)$ can be viewed as a map from $CP(A, M_n)$ to $P(A \otimes M_n)$ (the pure state space of $A \otimes M_n$), which is denoted by γ . The topology on $P(A \otimes M_n)$ is hereditied to $CP(A, M_n)$.

Definition 3.3 If $\phi, \psi \in CP(A, M_n)$, the transition probability between ϕ and ψ is defined to be $(\gamma(\phi), \gamma(\psi))$.

Theorem 3.1 Suppose that Ψ is a bijection

$$\Psi: CP(B, M_n) \cup \{0\} \to CP(A, M_n) \cup \{0\}$$

$$\Psi(0)=0.\ (n\geq 3)$$

If Ψ is α -invariant, preserves transition probabilities, and Ψ and Ψ^{-1} are uniformly continuous, then Ψ gives rise to a *-isomorphism between A and B.

Proof. By the above remark, there exists a map γ between $CP(A, M_n)$ and $P(M_n(A))$ (the pure state space of $M_n(A)$). Ψ can be viewed as a bijection from $P(M_n(B)) \cup \{0\}$ to $P(M_n(A)) \cup \{0\}$.

The atomic part of $M_n(A)^{**}$ is a direct sum of type I factors $c_i M_n(A)^{**} \equiv B(H_i)$ for each $i(c_i$ is the central support of some pure state of $M_n \otimes A$ in $M_n \otimes A^{**}$). The pure states in $c_i^{-1}(1)$ are a maximal set of mutually equivalent pure states, and all such maximal sets occur in this way. It follows that Ψ carries the pure normal states of $c_i M_n(A)^{**}$ onto those of some type I factor $d_i M_n(B)^{**}$, a direct summand of $M_n(B)^{**}$.

By Wigner's theorem [6,p.499], there exists a unique affine isomorphism between normal state spaces of $c_i M_n(A)^{**}$ and $d_i M_n(B)^{**}$, and is induced by a *-isomorphism or *-anti-isomorphism $\Phi_i: c_i M_n(A)^{**} \to d_i M_n(B)^{**}$, which induces $\Psi_i: d_i^{-1}(1) \to c_i^{-1}(1)$. Since Ψ_i is α -invariant, Φ_i is α -invariant. It follows that Φ_i is a *-isomorphism. Now the direct sum $\Phi = \oplus \Phi_i$ will map the atomic part of $M_n(A)^{**}$ *-isomorphically onto that of $M_n(B)^{**}$, and induces Ψ . If A is a C*-algebra, we denote by A_u the set of elements

-143-

 $a \in z_A A^{**}$ (z_A is the central projection in A^{**} such that $z_A A^{**}$ is the atomic part of A^{**}) such that a, a^*a, aa^* are uniformly continuous on $P(A) \cup \{0\}$. We say that A is weakly perfect if $A_u = z_A A$.

Let $z_{M_n(A)}$ denote the central projection in $M_n(A)^{\bullet\bullet}$ such that $z_{M_n(A)}M_n(A)^{\bullet\bullet}$ is the atomic part of $M_n(A)^{\bullet\bullet}$.

By [6, Theorem 1, p. 507], every C^* -algebra is weakly perfect so that $M_n(A)$ is weakly perfect. Since Ψ and Ψ^{-1} are uniformly continuous, Ψ induces an isometry from $z_{M_n(A)}M_n(A)$ to $z_{M_n(B)}M_n(B)$. Since $P(M_n(A))$ annihilates $(I - z_{M_n(A)})M_n(A)$, Ψ induces an isometry from $M_n(A)$ to $M_n(B)$, which is α -invariant. By Theorem 1 we can conclude that $A \cong B$. \Box

If we consider $M_{n^{\infty}}$ in the place of M_n (where $M_{n^{\infty}}$ is a UHF-algebra of type n^{∞}), we can get a generalization of above theorem. We give some notations. Let A be a unital C^* -algebra.

 $CP(A, M_{n^{\infty}}) = \{\phi | \phi \text{ is a completely positive map from } A \text{ to } M_{n^{\infty}} \text{ with } Tr\phi(I) = 1\}$

 $(Tr \text{ is the trace in } M_{n^{\infty}})$

$$M_{n^{\infty}} = \overline{\bigcup_{k=1}^{\infty} \varphi_k(M_{n^k})},$$

where $\{\varphi_k\}$ are embeddings from M_{n^k} to $M_{n^{\infty}}$.

$$SSU(\infty) = \bigcup_{k=1}^{\infty} \varphi_k(SU(n^k)).$$

By use of $SSU(\infty)$, we can define a natural action on $CP(A, M_{n^{\infty}})$ as follows,

$$\alpha_g \phi(x) = g \phi(x) g^{-1} \, \forall x \in A, g \in SSU(\infty), \phi \in CP(A, M_{n^{\infty}}),$$

which denoted by α .

When we consider $M_{n^{\infty}}$ in the place of M_n , we can obtain an order isomorphism between $L(A, M_{n^{\infty}})$ and $(M_{n^{\infty}} \otimes A)^{\bullet}$ (with respect to $L(A, M_{n^{\infty}})^{\oplus}$)[2]. The restriction of this order isomorphism to $CP(A, M_{n^{\infty}})$ can be viewed as a map from $CP(A, M_{n^{\infty}})$ to $P(A \otimes M_{n^{\infty}})$ (the pure state space of of $A \otimes M_{n^{\infty}}$). In the same way we can define the transition probabilities between the elements in $CP(A, M_{n^{\infty}})$. Then we can get the following theorem.

Theorem 3.2 Suppose that Ψ is a bijection

$$\Psi: CP(B, M_{n^{\infty}}) \cup \{0\} \to CP(A, M_{n^{\infty}}) \cup \{0\}$$
$$\Psi(0) = 0.$$

If Ψ is α -invariant, preserves transition probabilities and Ψ and Ψ^{-1} are uniformly continuous, then Ψ induces a *-isomorphism between A and B.

Proof. Ψ can be viewed as a bijection from $P(B \otimes M_{n^{\infty}}) \cup \{0\}$ to $P(A \otimes M_{n^{\infty}}) \cup \{0\}$ with $\Psi(0) = 0$. Following the proof in Theorem 3.1, we can get an α -invariant isometry between $A \otimes M_{n^{\infty}}$ and $B \otimes M_{n^{\infty}}$.

Fixing an integer $n^k \geq 3$, there is an isomorphism κ from $M_{n^{\infty}}$ to $M_{n^k} \otimes M_{n^{\infty}}$. we have a diagram as follows:

$$\begin{array}{cccc} M_{n^{\infty}} \otimes A & \xrightarrow{\Psi} & M_{n^{\infty}} \otimes B \\ \kappa \otimes I \downarrow & & \downarrow \kappa \otimes I \\ M_{n^{\lambda}} \otimes M_{n^{\infty}} \otimes A & \xrightarrow{\Psi'} & M_{n^{\lambda}} \otimes M_{n^{\infty}} \otimes B \end{array}$$

in which

$$\Psi' = (\kappa \otimes I) \circ \Psi \circ (\kappa^{-1} \otimes I)$$

Since $SU(n^k) \otimes SU(\infty) \subset SU(\infty)$, so Ψ' is an α' -invariant map, where α' is a natural action induced by $SU(n^k) \otimes SU(\infty)$, that is

$$\alpha_{u_1\otimes u_2}:x\mapsto (u_1\otimes u_2)(x)(u_1^{\bullet}\otimes u_2^{\bullet}),$$

 $u_1 \in SU(n^k), u_2 \in SU(\infty), x \in M_{n^k} \otimes M_{n^{\infty}} \otimes A.$

Next thing we should prove is $\Psi'(M_{n^k} \otimes A) \subseteq M_{n^k} \otimes B$. We set $\alpha' = \alpha'_1 \otimes \alpha'_2$ in which α'_1 is an action induced by $SU(n^k)$, α'_2 is the one induced by $SU(\infty)$. α'_2 -invariance implies that

$$(I_{n^{k}} \otimes u)\Psi'(x)(I_{n^{k}} \otimes u^{*}) = \Psi'(x).$$

 $u \in SU(\infty), x \in M_{n^k} \otimes A$ (I_{n^k} is the identity in $M_{n^k}(\mathbb{C})$) such that $\Psi'(x) \in M_{n^k} \otimes B$.

It follows that $\Psi'(M_{n^{k}} \otimes A) \subseteq M_{n^{k}} \otimes B$ and Ψ' is α'_{1} -invariant. We can arrive that A is *-isomorphic to B. \Box

§4. COUNTER-EXAMPLE

In this section, we will present an example to show that the condition $n \ge 3$ is essential for theorem 3.1.

Theorem 4.1 There are C^* -algebras A and B, and map Ψ from $CP(B, M_2) \cup \{0\}$ to $CP(A, M_2) \cup \{0\}$, with $\Psi(0) = 0$, such that Ψ preserves the transition probabilities, Ψ and Ψ^{-1} are uniformly continuous, Ψ is α -invariant, but Ψ does not give rise to a *-isomorphism between A and B.

Proof. Suppose that A and B are C^{\bullet} -algebras such that A is anti-isomorphic to B,

$$\pi: A \to B.$$

In M_2 , define

$$\sigma\left(\begin{pmatrix}\alpha & \beta\\ \gamma & \delta\end{pmatrix}\right) = \begin{pmatrix}\delta & -\beta\\ -\gamma & \alpha\end{pmatrix}.$$

Then σ is an anti-automorphism of M_2 of order 2 such that $\sigma(u) = u^*$, $u \in SU(2)$. Then $\Psi_* = \sigma \otimes \pi$ induces an α -invariant isomorphism from $M_2(A)_1^+$ to $M_2(B)_1^+$ with $\Psi_*(0) = 0$. If $\Psi_1 = (\Psi_*)^i$ and $\Psi = \Psi_1 |_{CP(B,M_2)\cup\{0\}}$, Ψ is an α -invariant isometry so that Ψ , Ψ^{-1} are uniformly continuous.

Following the proof of Theorem 3.1, for n = 2, $\Phi_i: c_i M_2(A)^{**} \to d_i M_2(B)^{**}$, induced by $\Psi_i: d_i^{-1}(1) \to c_i^{-1}(1)$, will be a *-isomorphism or a *-anti-isomorphism. Note That every *-isomorphism (or *-anti-isomorphism) induces an affine isomorphism of their state space, which then preserves transition probabilities for pure states. So Ψ preserves transition probabilities. But Ψ induces a *-anti-isomorphism between A and B. \Box

References

- 1. Wu, L.S., Completely positive maps and *-isomorphism of C*-algebras, Chin. Ann of Math. no. 9B (1989), 27-31.
- 2. Wu, L. S., Completely positive and bounded maps and *-isomorphism of C*-algebras II., Acta Mathematica Sinica. no. 8 (1992), 406-412.
- 3. Wu, L.S., C*-algebraic isomorphism determined by completely positive maps and completely bounded maps., Proceedings of current topics in operator algebras—A satellite conference in Nara of ICM-90—, World Scientific, 1991, pp. 178–184.
- 4. Wu, L.S., When can the sstable algebra determine the structure of C^{*}-algebra?, Chin Ann of Math. no. 15B (1994), 153-156.
- 5. Xie, Huoan., UHF algebra and *-isomorphism, Chin. Ann of Math. no. 13B (1992), 297-303.
- 6. Itch, T., On the affine isomorphism between the spaces of completely positive maps on C^{*}-algebras commuting with certain group actions., Math.Japanica. no. 30 (1985), 257-274.

7. Shultz, F.W., Pure states as a dual object for C*-algebras, Comm. Math. Phys. no. 82 (1982), 497-509.

8. Takesaki, M., Theory of operator algebra I, Springer Verlag, New York, 1979.

9. Kadison, R.V., Isometry of operator algebra., Ann of Math no. 54 (1951), 325-338.

Received July 28, 1994, Revised October 25, 1994