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KTS-spaces and natural reductivity

M. C. Gonz\’alez-D\’avila *

Abstract

Simply connected KTS-spaces are naturally reductive homogeneous. The main pur-
pose of this paper is to characterize the KTS-spaces in the class of naturally reductive
spaces.

1. Introduction

-symmetric spaces have been introduced in Sasakian geometry by Takahashi [19] as
generalizations of Sasakian space forms and also as analogs of Hermitian symmetric spaces.
-symmetric spaces have been extensively studied by various authors (see for example, [1],

[2], [3], [9], [13], [14], [25] and references therein). In particular, Blair and Vanhecke [1] proved

that complete simply connected -symmetric $8paces$ are necessarily naturally reductive ho-
mogeneous spaces. In [2] one studied the characterization of $\varphi$-symmetric spaces inside the

class of naturally reductive spaces and the following result is proved:

Let $M$ be a complete, connected, simply connected Sasakian manifold. Then $M$ is a

globally $\varphi$ -symmetric space if and only if $M$ is a naturally reductive homogeneous space with

invariant Sasakian structure.

Further, in [4], [5], [6], [7] the notion of a Killing-transversally symmetric space (briefly

$KTS-space)$ is introduced as a generalization of Sasakian -symmetric spaces. This class is

defined by using isometric reflections with respect to the flow lines generated by a unit Killing
vector field (isometric flow) and these spaces form a subclass of the $clas8$ of transversally
symmetric Riemannian foliations studied in [21], [22]. Although the class of KTS-spaces is

much broader than that of the -symmetric spaces (see examples in [5], [7]) their geometries

are reasonably similar and this fact leads to a list of analogous characteristic properties.

For example, it is proved in [7] that a simply connected KTS-space is a naturally reductive
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homogeneous space. The main purpose of this paper is to characterize the KTS-spaces in

the class of naturally reductive spaces generalizing, in particular, the result stated above for

$\varphi$-symmetric spaces.

The paper is organized as folows. In Section 2 we collect some basic material. In Section

3 we study the homogeneity of a KTS-space and we give a first characterization of KTS-
spaces in the class of naturaUy reductive spaces. Other characterizations in terms of the

canonical connection of the second kind are given in Section 4. The proofs are kept as short

as possible. More details and extended proofs may be found in [8].

The author wishes to express her sincere thanks to Prof. L. Vanhecke and Prof. J. C.
Gonz\’alez-D\’avila for their kind guidance and for many valuable suggestions.

2. Preliminaries

Let $(M,g)$ be an $n$-dimensional smooth connected Riemannian manifold with $n\geq 2$ . $\nabla$

denotes the Levi Civita connection of $(M,g)$ and $R$ the corresponding Riemannian curvature

tensor given by

$R_{UV}=\nabla_{[U,V]}-[\nabla_{U},\nabla_{V}]$ , $U,V\in \mathfrak{X}(M)$

where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on $M$ .
Let $\xi$ denote a unit Killing vector field on $(M,g)$ and $S_{\xi}$ the flow generated by it. Such a

flow is necessarily Riemannian and it is called an isometric flow (see [20, p. 136]). Note that

the flow lines are $geodesic8$ and that a geodesic which is orthogonal to $\xi$ at one of its points

is orthogonal to it at all of its points. A geodesic with this property is called a transversal

geodesic with respect to the flow $s_{\xi}$ .
Because the local submersions associated to a Riemannian foliation are Riemannian, the

O’Neil tensors $A$ and $T$ may be used. We refer to [18] for more details (see also [20]). In our

case $T=0$ since the leaves are totally geodesic. For the integrability tensor $A$ we have

(2.1) $ A_{U}\xi=\nabla_{U}\xi$ , $A_{\xi}U=0$

for all tangent vector fields $U$. Further, we put

(2.2) $ HU=-AU\xi$

and define the $(0,2)$-tensor $h$ by

(2.3) $h(U,V)=g(HU,V)$ .
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Then, since $\xi$ is a Killing vector field, we have

$h(U, V)+h(V, U)=0$ .

Let $\eta$ be the one-form on $M$ defined by $\eta(U)=g(U, \xi),$ $U\in \mathfrak{X}(M)$ . For all horizontal

vector fields $X,$ $Y$, that is, vector fields orthogonal to $\zeta$ , it is easy to prove that

(2.4) $ A_{X}Y=h(X, Y)\xi=\frac{1}{2}\eta([X, Y])\xi$

and this gives

(2.5) $ h=-d\eta$ .

Using the formulas above we get the following identities:

$(\nabla_{\xi}h)(X,Y)$ $=$ $0$ ,

(2.6) $R(X,Y, Z, \xi)$ $=$ $(\nabla_{Z}h)(X,Y)$ ,

(2.7) $R(X,\zeta,Y,\xi)$ $=$ $g(HX, HY)$

for al horizontal vectors $X,$ $Y,$ $Z$.

We define the tensor field $T$ of type $(1, 2)$ (unrelated to the O’Neil tensor given above)

by

(2.8) $ T_{U}V=-d\eta(U, V)\xi+\eta(V)\nabla_{U}\xi-\eta(U)\nabla_{V}\xi$

or equivalently,

(2.9) $T_{U}V=g(HU,V)\xi+\eta(U)HV-\eta(V)HU$

for al $U,$ $V\in \mathfrak{X}(M)$ . Put

(2.10) $\overline{\nabla}=\nabla-T$ .

This connection V wil be called the canonical connection of the isometric flow $\mathfrak{F}_{\xi}$ . It is a

metric connection and the tensor fields $\xi$ and $\eta$ are paralel with respect to this connection.

Moreover, we get $T_{U}U=0$ . This means that V and $\nabla$ have the same geodesics or equivalently,

they are projectively related. For the torsion $\overline{K}$ of $\overline{\nabla}$ we get easily

(2.11) $\overline{K}(U, V)=-2T_{U}V$

for all vector fields $U,$ $V$. In what follows we shall derive some properties for $\overline{\nabla}$ giving in

particular the motivation for the notion “canonical”. First, we state a useful result concerning
a special type of isometric flow.

–117–



Deflnition 2.1. An isometric flow $l_{\xi}$ on a Riemannian manifold $(M,g)$ is said to be a
normal flow if its curvature tensor $R$ satisfies

(2.12) $R(X, Y,X, \xi)=0$

for A horizontal vector fields $X$, Y.

The condition (2.12) means that the horizontal subspace of the flow $S_{\xi}$ at each point
of $M$ is invariant by the curvature transformations $R_{XY},$ $X,Y$ orthogonal to $\xi$ , and it is
equivalent to the condition

(2.13) $(\nabla_{U}H)V=g(HU,HV)\xi+\eta(V)H^{2}U$

for $aU$ vector fields $U,V$ in $M$, by virtue of (2.6) and (2.9).

Proposition 2.1. [5] Let $(M,g)$ be a Riemannian manifold and $s_{\xi}$ an isometric flow
on it. Then the following statements are equivalent:

(i) $\mathfrak{F}_{\xi}$ is normal;

(ii) $\overline{\nabla}H=0$ ;

(iii) $\overline{\nabla}T=0$ .

On a Riemannian manifold with an isometric flow we have, using (2.5) or (2.7) that the

following statements are equivalent:

(i) the sectional curvature $K(X,\xi)$ is positive for each horizontal vector $X$ ;

(ii) the endomorphism $H$ is of maximal rank;

(iii) the one-form $\eta$ on $M$ is a contact form.

Moreover, if one of these conditions is $sati8fied$ , then $n$ is necessarily odd. This leads to

Definition 2.2. An $i8ometric$ flow on $(M,g)$ is said to be a contact flow if $\eta$ is a contact

form.

Using [26, Proposition 6.10] we get
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Proposition 2.2. An n-dimensional Riemannian manifold $(M,g)$ equipped with a nor-

mal contact flow is irreducible and its homogeneous holonomy group coincides with the group

$SO(n)$ of all isometries.

Next, let $(M,g)$ be a Riemannian manifold equipped with an isometric flow $\sigma_{\xi}$ . For each

point $m\in M$ we consider the flow line $\sigma$ through it. A local diffeomorphism $s_{m}$ of $M$ defined

in a neighborhood $\mathcal{U}$ of the point $m\in M$ is said to be a (local) reflection with respect to $\sigma$ if

for every transversal geodesic $\gamma(s)$ , where $\gamma(0)$ lies in the intersection of $\mathcal{U}$ with $\sigma$ , we have

$(s_{m^{o}}\gamma)(s)=\gamma(-s)$

for al $s$ with $\gamma(\pm s)\in \mathcal{U},$ $s$ being the arc length. Note that the isomorphism $S_{m}=(s_{m})_{*}(m)$

of $T_{m}M$ is given by

$S_{m}=(-I+2\eta\otimes\xi)(m)$

and clearly, it is a linear isometry.

Deflnition 2.3. A locally Killing-transversally symmetric space (briefly a loeally KTS-

space) is a Riemannian manifold $(M,g)$ equipped with an isometric flow $ff_{\xi}$ such that the

local reflection $s_{m}$ with respect to the flow line through it is a (local) isometry for all $m\in M$ .

In [5], we have characterized these spaces in terms of the curvature tensor of $(M,g)$ and of

the metric connection V given in (2.10) (see also [21]). Namely

Theorem 2.1. Let $S_{\xi}$ be an isometric flow on $(M,g)$ . Then the following statements

are equivalent:

(i) $(M,g,\xi)$ is a locally $KTS-space$ ;

(ii) $\theta_{\xi}$ is normal and $(\nabla_{X}R)(X,Y,X,Y)=0$ for all horizontal $X,Y$ ;

(iii) $\overline{\nabla}R=\overline{\nabla}H=0$ (or equivalently, $\overline{\nabla}\overline{R}=\overline{\nabla}H=0$).

A useful characterization for the class of locally contact KTS-spaces is obtained in [6]:

Theorem 2.2. Let $l_{\xi}$ be a contact flow on $(M,g)$ . Then $(M,g, \xi)$ is a locally $KTS-s\mu ce$

if and only if $ff_{\xi}$ is normal and

$(\nabla XR)(X,HX,X,HX)=0$

for all horezontal $X$ .
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We focus now on the class of localy KTS-spaces with a complete Kiling vector field and

such that the local reflections with respect to the flow lines of this field can be extended to

global isometries.

Deflnition 2.4. Let $(M,g)$ be a Riemannian manifold and $\xi$ a non-vanishing complete

Kiling vector field on $M$. Then $(M,g, \xi)$ is said to be a (globally) Killing-transversally sym-

metric space (briefly, a $KTS-space$) if and only if for each $m\in M$ there exists a (unique)

global isometry $s_{m}$ : $M\rightarrow M$ with derived map

(2.14) $(s_{m})_{*}(m)=-I\tau_{m}M+2\eta_{m}\otimes\zeta_{m}$

on $T_{m}M$ .

Note that (2.14) implies that $\xi$ is a unit Kiling vector field. The isometry $s_{m}$ is caled the

reflection of $M$ at $m$ with respect to the flow line through $m$ . Since it reverses the transversal

geodesics through $m,$ $s_{m}$ is the unique global extension of the local reflection at $m$ . Moreover,

we have

Theorem 2.3. [4] A complete, simply connected locally $KTS$ -space is a $KTS-space$ .

3. Naturally reductive spaces and KTS-spaces

Let $(M,g,\xi)$ be a KTS-space. In [7] it is proved that the group $A(M)$ of al $\xi$-preserving

isometries of $M$ is a transitive Lie transformation group of $M$ and the $(1,2)$-tensor field $T$

defined in (2.9) determines a naturally reductive homogeneous structure [23]. Hence, we have

Theorem 3.1. [7] If $(M,g, \xi)$ is a simply connected $KTS-space$ , then $(M,g)$ is a natu-

rally reductive homogeneous space.

Now, using the homogeneous structure $T$ one can construct a connected Lie group acting

transitively and effectively on $(M,g,\xi)$ as a group of isometries [23]. In [5] it is proved that,

for a fixed arbitrary point $0$ of $M$, the corresponding curvature and torsion tensor vectors
$\overline{R}_{o},$ $\overline{K}_{o}$ of the canonical connection V of the flow $ff_{\xi}$ determine an infinitesimal model on

$(V=T_{o}M,g_{0})$ . We refer to [11], [15], [16] and [24] for more information and details concerning

infinitesimal models. Folowing Nomizu [17] (see also [11]), one can then reconstruct our
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homogeneous manifold $(M,g, \xi)$ in a standard way. Let $\mathfrak{y}$ be the Lie subalgebra of the Lie

algebra so(V) defined by

$\mathfrak{y}=\{A\in\epsilon o(V)/A\cdot\overline{R}_{o}=A\cdot K_{o}=0\}$ .

Here $A$ acts as a derivation on the tensor algebra of $V$. Further, let $\mathfrak{g}$ be the direct sum of $V$

and $\mathfrak{y}$ and put

$\left\{\begin{array}{ll}[X, Y] & = \overline{R}_{oXY}-\overline{K}_{o}(X,Y),\\[A,X] & = A(X),\\[A,B] & = A\circ B-B\iota A\end{array}\right.$

for al $X,$ $Y\in V$ and $A,$ $B\in \mathfrak{h}$ . Then $\mathfrak{g}$ becomes a Lie algebra. Now, let $G$ be the unique

connected and simply connected Lie group whose Lie algebra is $\mathfrak{g}$ and let $H$ be the connected

Lie subgroup of $G$ corresponding to $\mathfrak{h}$ , then $M=G/H$ . Let $f\subset \mathfrak{h}$ be the Lie subalgebra

generated by al projections $[X, Y]_{1\mathfrak{y}},$ $X,Y\in V$. Then $t$ can also be considered as the algebra

generated by al curvature transformations $\overline{R}_{o}XY$ on the tangent space $T_{o}M$ . The Lie sub-

algebra $\hat{\mathfrak{g}}\subset \mathfrak{g},\hat{\mathfrak{g}}=V\oplus f$ , is called the transvection algebra and the corresponding connected

Lie subgroup $\hat{G}\subset G$ is the transvection group of the reductive homogeneous space $G/H$ , or
better, of the affine reductive space $(M,\overline{\nabla})$ (see [11]). We then have a new representation
$(M,g)=\hat{G}/K$ by a new reductive homogeneous space with $\overline{\nabla}$ as the canonical connection
of the second kind. Here, $K$ is isomorphic to the restricted holonomy group of $(M,\overline{\nabla})$ at
the origin. According to [11, Proposition I.38], a\"u $\overline{\nabla}$-paralel tensor fields on $M$ are also
$\hat{G}$-invariant. Hence, as $\overline{\nabla}g=\overline{\nabla}\xi=0,\hat{G}\subseteq A(M)$ .

In terms of the Lie algebras, an arbitrary homogeneous Riemannian manifold $(M,g)$ is said

to be naturally reductive if there exists a reductive representation of the form $(M,g)=G/H$ ,
$\mathfrak{g}=m\oplus \mathfrak{h}$ , satisfying the identity (see [10])

(3.1) $<[X,Y]_{m},Z>+<[X, Z]_{m},Y>=0$

for any $X,$ $Y,$ $Z\in m$ where $<,$ $>$ denotes the induced metric on $\mathfrak{n}\iota$ In terms of the canonical
connection $\tilde{\nabla}$ associated to the reductive decomposition, we can also write (3.1) in the form

(3.2) $g_{0}(\tilde{K}_{o}(X, Y),$ $Z$) $+g_{0}(\tilde{K}_{o}(X, Z),Y)=0$ ,

where $X,$ $Y,$ $Z$ are arbitrary vectors on $T_{o}M$ and $\tilde{K}$ denotes the torsion tensor of $\tilde{\nabla}$ .
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Any reductive decomposition $\mathfrak{g}=m\oplus \mathfrak{h}$ satisfying (3.1) (or any canonical connection
$\tilde{\nabla}$ satisfying (3.2)) wil be said to be adapted. Let us notice that the same homogeneous

Riemannian manifold $(M,g)$ may have more than one naturaly reductive representation,

and thus more than one adapted canonical connection $\tilde{\nabla}$ .
This is the outline of the proof of the folowing more detailed $ver8ion$ of Theorem 3.1.

Theorem 3.2. Let $(M,g,\zeta)$ be a simply connected $KTS$ -space and let $\overline{\nabla}$ be the cano-
nical connection of the isometrtc flow $ l\xi$ . Then there is a representation of $M$ in the form
$M=G/H$ such that

(i) $G$ is the transvection group of the affine reductive space $(M,\overline{\nabla}),$ $G\subseteq A(M)$ ;

(ii) there is an $Ad(H)$ -invariant decomposition $\mathfrak{g}=m\oplus \mathfrak{h}$ of the Lie algebra of $G$ adapted

to the naturally reductive homogeneous space $(G/H,g)$ for which V is the canonical

connection of the second kind.

Next, we give a characterization of KTS-spaces inside the class of naturally reductive

spaces. In the irreducible case, proceeding as in [2, Theorem 7] and using Theorem 2.2, one
gets

Theorem 3.3. Let $S_{\xi}$ be a normal contact flow on a simply connected Riemannian

manifold $(M,g)$ . Then $(M,g, \xi)$ is a $KTS-s\mu ce$ if and only if $M$ is a naturally reductive

homogeneous space with invariant unit vector field $\xi$ .
For the reducible case, we use the de Rham decomposition for KTS-spaces obtained in [7]:

Theorem 3.4. If $(M,g,\xi)$ is a simply connected $KTS-s\mu ce$ , then its de Rham decom-

position can be written as

$M=M_{0}xM_{1}x\ldots xM_{k}xM_{k+1}$

where $M_{0}$ is $a$ Euclidean space, $M_{1},$ $\ldots,M_{k}$ are irreducible symmetric spaces and $M_{k+1}$ is an

irreducible $KTS-s\mu ce$ .

From this result and Theorem 3.3 we obtain directly

Theorem 3.5. Let $ff_{\xi}$ be a normal flow on a simply connected Riemannian manifold
$(M,g)$ . $(M,g, \xi)$ is a reducible $KTS$ -space if and only if $M$ is a direct product

$(M,g)=(M^{\prime},g^{\prime})\times(M^{n},g^{\prime\prime})$
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where $M^{\prime}$ is a naturally reductive homogeneous space, $l_{\xi}$ is a contact invariant flow on it
and $(M^{\prime\prime},g^{\prime\prime})$ is a symmetric space.

4. Canonical connection and KTS-spaces

Let $(M,g)=G/H$ be a naturaly reductive homogeneous space with reductive decompo-
sition of the Lie algebra $\mathfrak{g}$ of $G$ given by $g=m\oplus \mathfrak{y}$ , where $\mathfrak{y}$ is the Lie algebra of $H$ and $m$

its orthogonal complement in $\mathfrak{g}$ . Denote by $\tilde{\nabla}$ the adapted canonical connection of the fixed
reductive homogeneous space and by $\tilde{K}$ the torsion tensor. At the origin $0,\tilde{K}$ verifies

(4.1) $\tilde{K}_{o}(U, V)=-[U,V]_{m}$ , $U,$ $V\in m$

where we use the canonical identification $m\cong T_{o}M$ via the natural projection $p_{f}$ : $G\rightarrow G/H$.
Suppose that $(M,g)=G/H$ admits a $G$-invariant unit vector field $\zeta$ . From (3.1), $\xi$ is a

unit Killing vector field and moreover, parallel with respect to the connection $\tilde{\nabla}$ . Consider
the $G$-invariant tensor field $T^{\prime}$ of type $(1, 2)$ given at the origin by

(4.2) $T_{\circ U}^{l}V=-\frac{1}{2}\tilde{K}_{o}(U, V)$ , $U,$ $V\in T_{o}M$ .

Then, $T^{\prime}+\tilde{\nabla}$ is the Levi Civita connection $\nabla$ and so, since $\tilde{\nabla}g=\tilde{\nabla}\tilde{R}=\tilde{\nabla}\tilde{K}=0,$ $T^{\prime}$

determines a naturaJly reductive structure on $(M,g)$ (see [23]). Moreover, because $\tilde{\nabla}\xi=0$ ,

(4.3) $H_{o}U=-\nabla_{U}\xi=-\tau_{oU^{\xi_{0}=\frac{1}{2}\tilde{K}_{o}(U,\xi_{0})}}^{\prime}$

and

$\tilde{\nabla}H=0$ .

From this we get that

(4.4) $(\nabla_{U}H)V=T_{U}^{\prime}HV-H(T_{U}^{\prime}V)$

and using (2.6) and (4.2), for $X,$ $Y$ orthogonal to $\xi_{0}$ , we have

$R_{o}(X,Y,X,\xi_{0})=g_{0}((\nabla_{X^{H)X,Y)=-\frac{1}{2}g_{0}(\tilde{K}_{o}(X,H_{o}X),Y)}}$ .

This and (4.3) yield

Proposition 4.1. Let $(M,g)=G/H$ be a naturally reductive homogeneous space with
a given $Ad(H)$ -invariant decomposition $\mathfrak{g}=m\oplus \mathfrak{h}$ and $\xi$ a G-invariant unit vector field on

–123–



$it$ . Let $\tilde{\nabla}$ be the adapted canonical connection of $G/H$ and $\tilde{K}$ its torsion tensor. Then $ff_{\zeta}$ is

normal if and only if at the origin

(4.5) $\tilde{K}_{o}(X,H_{o}X)=-2g_{0}(H_{o}X, H_{o}X)\xi_{0}$

for all $X$ on $T_{o}M$ orthogonal to $\xi_{0}$ .

The condition (4.5) on a naturally reductive homogeneous space with an isometric flow $ff_{\xi}$ ,

or equivalently, the normdity condition, is a very strong condition. In fact, we can formulate

the above proposition as folows using the next lemma.

Lemma 4.1. With the same hypotheses as in Proposition 4.1 we have that the following

statements are equivalent:

(i) $\tilde{K}_{o}(U,V)=-\{g_{0}(\tilde{K}_{o}(U,\xi_{0}),V)\xi_{0}-\eta_{0}(V)\tilde{K}_{o}(U,\xi_{0})+\eta_{0}(U)\tilde{K}_{o}(V,\xi_{0})\}\prime U,V\in T_{o}M$ ;

(ii) $g_{0}(\tilde{K}_{o}(X,Y),$ $Z$) $=0$ for $X,$ $Y,$ $Z$ orthogonal to $\xi_{0}$ .

Proof. (ii) folows at once from (i). For $X,Y$ orthogonal to $\xi_{0}$ , (ii) implies that $\tilde{K}_{o}(X,Y)$ is

vertical and, using (3.2), $\tilde{K}_{o}(X,Y)=-g_{0}(\tilde{K}_{o}(X,\xi_{0}),Y)\xi_{0}$ . From (4.3), $\tilde{K}_{o}(U,\xi_{0})$ is horizontal

and it is easy to verify (i) for arbitrary vectors $U,V$. $\blacksquare$

Proposition 4.2. Let $(M,g)=G/H$ be a naturally reductive homogeneous space with

a given $Ad(H)$ -invariant decomposition $\mathfrak{g}=m\oplus \mathfrak{h}$ and $\xi$ a G-invariant unit vector field on
$it$ . The flow $ff_{\xi}$ on $M$ is normal if and only if the torsion tensor field $\tilde{K}$ corresponding to the

adapted canonical connection $\tilde{\nabla}$ of $G/H$ at the origin verifies

(i) $g_{0}(\tilde{K}_{o}(X,Y),$ $Z$) $=0$ ,

(ii) $\tilde{K}_{o}(A,B)\in kerH_{o}$

for $X,$ $Y,$ $A,$ $B,$ $Z$ horizontal on $T_{o}M,$ $X,$ $Y\not\in kerH_{o},$ $A,$ $B\in kerH_{o}$ .
In particular, if $ff_{\xi}$ is a contact flow, $ff_{\xi}$ is normal if and only if $\tilde{\nabla}$ coincides with the

canonical connection V of the flow $l_{\xi}$ .

Proof. It is easy to prove that $R(X,Y,X,\xi)=0$ is equivalent to $R(Z,Y,X,\xi)=0$ for al

horizontal $X,$ $Y,$ $Z$. Using (2.6) and (4.4) we have

$R_{o}(Z,Y,X,\xi_{0})=g_{0}((\nabla_{X}H)Z,Y)=\frac{1}{2}g_{0}(H_{o}(\tilde{K}_{o}(X, Z))-\tilde{K}_{o}(X,H_{o}Z),Y)$
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and from (4.3), the normality condition given by (4.5) is also equivalent to

(4.6) $\tilde{K}_{o}(X, H_{o}Z)=H_{o}(\tilde{K}_{o}(X, Z))-2g_{0}(H_{o}X, H_{o}Z)\xi_{0}$ .

From this formula and (4.3) we get

(4.7) $\tilde{K}_{o}(X, A)=0$ , $\tilde{K}_{o}(A, B)\in kerH_{o}$

for $X,$ $A,$ $B$ horizontal on $T_{o}M,$ $A,B\in kerH_{o},$ $X\not\in kerH_{o}$ .
Now, we consider $\tilde{K}_{o}(X,Y)$ for $X,Y$ orthogonal to $\xi_{0}$ and $X,Y\not\in kerH_{o}$ . Polarizing (4.5)

in $X$, we get

(4.8) $\tilde{K}_{o}(X,H_{o}Z)+\tilde{K}_{o}(Z,H_{o}X)=-4g_{0}(H_{o}X, H_{o}Z)\xi_{0}$ ,

and so,

(4.9) $H_{o}(\tilde{K}_{o}(X, H_{0}Z))=H_{o}(\tilde{K}_{o}(H_{o}X, Z))$ .

Ibom (4.6) we then obtain that

(4.10) $\tilde{K}_{o}(X,H_{o}^{2}Z)=\tilde{K}_{o}(H_{o}^{2}X, Z)$ .

Suppose that the rank of the endomorphism $H$ is $2k\leq n-1$ . Using a well-known result from
linear algebra, the tangent space $T_{o}M$ admits an orthonormal basis $\{X_{1},$ $\ldots,X_{2k},X_{2k+1},$ $\ldots$ ,
$X_{n-1},\xi_{0}\}$ and real non-vanishing numbers $\lambda_{1},$

$\ldots,$
$\lambda_{k}$ such that

$\left\{\begin{array}{ll}H_{o}X_{1} & = \lambda_{1}X_{2} , H_{o}X_{2} = -\lambda_{1}X_{1},\\H_{o}X_{2k-1} & = \lambda_{k}X_{2k} , H_{o}X_{2k} = -\lambda_{k}X_{2k-1},\\H_{o}X_{2k+1} & \ldots=H_{o}X_{n-1}=H_{o}\xi_{0}=0.\end{array}\right.$

From (4.5), $\tilde{K}_{o}(X_{2h-1}, X_{2h})$ is vertical. Using (4.10) we have

$(\lambda_{h}^{2}-\lambda_{I}^{2})\tilde{K}_{o}(X_{2l-1},X_{2h-1})=0$ , $1\leq h\neq l\leq k$ .

If $\lambda_{h}^{2}\neq\lambda_{l}^{2},\tilde{K}_{o}(X_{2l-1}, X_{2h-1})=0$ and similarly, $\tilde{K}_{o}(X_{2l-1}, X_{2h})=\tilde{K}_{o}(X_{2l}, X_{2h})=0$ .
If $\lambda_{h}^{2}=\lambda_{l}^{2},\tilde{K}_{o}(X_{2l-1}, X_{2h-1})$ belongs to the subspace generated by $\{X_{2i-1}, X_{2i}\}$ where
$\lambda_{i}^{2}=\lambda_{h}^{2}$ . From (4.6),

$g_{0}(\tilde{K}_{o}(X_{2l-1},X_{2h-1}),X_{2i-1})=\frac{1}{\lambda_{h}^{2}}g_{0}(\tilde{K}_{o}(X_{2l-1}, H_{o}X_{2h}),$ $H_{o}X_{2i}$ )

$=\frac{1}{\lambda_{h}^{2}}g_{0}(H_{o}(\tilde{K}_{o}(X_{2l-1}, X_{2h})),H_{o}X_{2i})=g_{0}(\tilde{K}_{o}(X_{2l-1}, X_{2h}),X_{2i})$ .
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However, using (4.8) we have

$\left\{\begin{array}{l}\tilde{K}_{o}(X_{2l-1}, X_{2h-1})\\\tilde{K}_{o}(X_{2l-1},X_{2h})\end{array}\right.$

and from these equations

$=$ $\tilde{K}_{o}(X_{2h}, X_{2l})$ ,

$=$ $\tilde{K}_{o}(X_{2l},X_{2h-1})$

$g_{0}(\tilde{K}_{o}(X_{2l-1},X_{2h-1}),X_{2i-1})=g_{0}(\tilde{K}_{o}(X_{2h-1},X_{2i-1}),X_{2l-1})=g_{0}(\tilde{K}_{o}(X_{2};,X_{2h}),X_{2I-1})$

$=-g_{0}(\tilde{K}_{o}(X_{2l-1},X_{2h}),X_{2i})$ .

Then $H_{o}(\tilde{K}_{o}(X,Y))=0$ for $X,Y$ orthogonal to $\xi_{0},$ $X,Y\not\in kerH_{o}$ , and (4.6) and (4.7) yield

the first required result. Moreover, using (4.3), Lemma 4.1 and the fact that the tensor $T$

defined in (2.9) is $G$-invariant, we get at once the result for the contact case. $\blacksquare$

Next, we combine the above result and Theorems 3.3 and 3.5 to characterize the simply

connected KTS-spaces in the class of naturally reductive spaces in terms of the canonical

connection of the second kind. For it, we also need the folowing lemma

Lemma 4.2. [12] Let $(M,g)=G/H$ be a naturally rductive space and $\tilde{\nabla}$ some of its

adapted canonical connections. If either the curvature tensor $\tilde{R}$ , or the torsion tensor $\tilde{K}$

vanishes, then the space $(M,g)$ is locally symmetric.

Theorem 4.1. Let $l_{\zeta}$ be an isometric flow on a simply connected Riemannian manifold
$(M,g)$ . Then $(M,g, \xi)$ is a $KTS-s\mu ce$ if and only if $(M,g)=G/H$ is a naturally reductive

homogeneous space with G-invariant $\xi$ and admitting an adapted canonical connection $\tilde{\nabla}$

whose torsion tensor field $\tilde{K}$ satisfies

(4.11) $g_{0}(\tilde{K}_{o}(X,Y),$ $Z$) $=0$

for all horizontal $X,$ $Y,$ $Z$ on the tangent space $T_{o}M$ at the origin. In this case, $\tilde{\nabla}$ coincides

with the canonical connection V of the flow $ff_{\xi}$ .

Proof. The necessity follows from Theorem 3.2 and (2.11). For the sufficiency, note that, from

Proposition 4.2, the flow $l_{\xi}$ is normal. If $S_{\xi}$ is also contact, the result folows from Theorem

3.3. If $S_{\xi}$ is not contact, $(M,g)$ is a reducible naturally reductive space and proceeding as

in the proof of the de Rham decomposition for KTS-spaces in [7], is easy to see that $M$ is a

direct product $(M,g)=(M^{\prime},g^{l})x(M^{\prime\prime},t^{\prime})$ , where $M$‘ is a naturally reductive homogeneous
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space with invariant $\xi\in \mathfrak{X}(M^{\prime})$ and contact flow $s_{\xi}$ on it and $(M^{\prime\prime},g^{\prime\prime})$ is a naturally reductive

space where the torsion tensor $\tilde{K}$ restricted to $M^{\prime\prime}$ vanishes. The rest follows directly from

Lemma 4.2 and Theorem 3.5. $\blacksquare$

In [23] and [12], it was proved that for any three-and five-dimensional naturaly reductive

space $(M,g)=G/H$ with the adapted canonical connection $\tilde{\nabla}$ one can find an orthonormal

basis of $T_{o}M$ such that its torsion tensor field verifies (4.11). From this, we get (see also [5])

Theorem 4.2. Any irreducible, non-symmetnc, simply connected three-and five-di-
mensional naturally reductive space is a $KTS-spaoe$ .

Using again Proposition 4.2, Theorem 4.1 can also be formulated as follows.

Theorem 4.3. Let $ff_{\xi}$ be an isometnc flow on a complete, simply connected Riemannian

manifold $(M,g)$ . Then $(M,g,\xi)$ is a $KTS-s\mu ce$ if and only if$(M,g)=G/H$ is a naturally re-
ductive homogeneous space, $l_{\xi}$ is a normal invariant flow and it admits an adapted canonical

connection $\tilde{\nabla}$ whose torsion tensor fie $ld\tilde{K}$ at the origin satisfies

$\tilde{K}_{o}(A,B)=0$ , $A,$ $B\in kerH_{o}$ .

In this case, $\tilde{\nabla}$ coincides with the canonical connection $\overline{\nabla}$ of the isometric flow $s_{\xi}$ .

Moreover, this result alows to determine KTS-spaces in the class of naturaJly reductive
spaces by means of restrictions on the rank of $H$ . More precisely, we have

$Co$rollary 4.1. Let $(M,g)$ be a connected simply connected naturally reductive homoge-
neous space equipped with a normal invanant flow $S_{\xi}$ such that rank $ H=2k\geq$ dim $M-3$ .
Then $(M,g,\xi)$ is a $KTS-space$ .
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