$O(p) \times O(q)$-INVARIANT MINIMAL HYPERSURFACES IN HYPERBOLIC SPACE

Makoto Kimura
Department of Mathematics, Faculty of Science, Saitama University

0. Introduction.

One of the most classical examples among minimal surfaces in \mathbb{R}^{3} is a catenoid, and it is the only non-flat rotational minimal surface. Levitt and Rosenberg [4] gave a characterization of the catenoid (i.e, minimal rotational hypersurface) in a hyperbolic space as follows: Let M be a connected minimal hypersurface immersed in H^{n} and regular at ∞ (cf. §1). Suppose the asymptotic boundary of M is the union of disjoint round hyperspheres S_{1} and S_{2}. Then M is a catenoid.

The orthogonal group $O(n)$ acts on $H^{n}(\cong$ the interior of the unit ball in $\left.\mathbb{R}^{n}\right)$ as a matrix multiplication, so the subgroup $O(p) \times O(q)(p+q=n)$ also acts on H^{n}. In this paper, we consider a hypersurface in H^{n} which is invariant under the action of $O(p) \times O(q)(p, q \geq 2)$ (say $O(p) \times O(q)$-invariant hypersurface). A hypersurface M in H^{n} is $O(p) \times O(q)$-invariant if and only if there is a codimension 1 foliation of M such that each leaf is congruent to the product of round spheres $S^{p-1}\left(d_{1}\right) \times S^{q-1}\left(d_{2}\right) \subset S^{n-1}(d) \subset H^{n}$. Note that the catenoid is $O(1) \times O(n-1)$-invariant hypersurface $\left(O(1) \cong \mathbb{Z}_{2}\right)$. In $\S 2$, we will construct complete minimal embeddings of M diffeomorphic to $S^{p-1} \times \mathbb{R}$ into H^{n} such that M is $O(p) \times O(q)$-invariant and its asymptotic boundary $=S^{p-1}\left(c_{1}\right) \times S^{q-1}\left(c_{2}\right)$ (modulo conformal transformation of $S^{n-1}=$ the asymptotic boundary of H^{n}). The method of construction is due to Ferus and Karcher [3]. In §3, we will give a characterization of $O(p) \times O(q)$-invariant complete minimal hypersurfaces in H^{n} in terms of the asymptotic boundary.

The author would like to thank the referee for valuable suggestions and comments.

1. Notations and preliminaries.

In this paper, we denote by $H^{n}(-c)$ a hyperbolic space with constant curvature $-c, H^{n}=H^{n}(-1)$ and by $S^{n}(c)$ a round sphere of constant curvature $c>0$. According to [4], we refer to plane, distance, line, etc. as the hyperbolic object in H^{n}. First we work with Poincaré model of H^{n} (the interior of the unit ball in \mathbb{R}^{n}). The asymptotic boundary of H^{n} is identified with the boundary of the unit ball and denoted by $S(\infty)$. Given $A \subset H^{n}$, we denote by
$\partial_{\infty} A$ the set of accumulation points of A in $S(\infty)$ and call it the asymptotic boundary of A.

We shall use the latitude-longitude system as the coordinate of H^{n}. Fix a hyperplane P_{0} in H^{n}. Choose coordinates in P_{0} and let γ be the geodesic orthogonal to P_{0} at a origin $o \in P_{0}$. Let γ_{t} be the 1-parameter group of isometries of H^{n} which along γ is translation by a distance t and such that the curves $t \rightarrow \gamma_{t}(x)$ are orthogonal to P_{0} for each $x \in P_{0}$ (a positive sense along γ is chosen once and for all). Then each point of H^{n} has coordinates (x, t) where $x \in P_{0}$ and $\gamma_{t}(x)=(x, t)$.

Denote by P_{t} the plane $\gamma_{t}\left(P_{0}\right)$. We refer to P_{t} as a holizontal plane and the curve $t \rightarrow \gamma_{t}(x)$ as the vertical curve through x. Notice that for each s the reflection of H^{n} through the plane P_{s} is given by the formula $(x, t) \rightarrow(x, 2 s-t)$.

Let $S_{t}=\partial_{\infty} P_{t}$. Then the coordinate system (x, t) extends to a coordinate system on $S(\infty)$ where each point (except the two limits points of γ) has a unique coordinate (x, t), $x \in S_{0}, t \in \mathbb{R}$. By a Möbius transformation we can send γ to the north pole-south pole geodesic and P_{0} to the equatorial plane. Then the coordinates on $S(\infty)$ are the usual latitude-longitude coordinates.

We say that $A \subset H^{n}$ is a graph over P_{s} if the vertical projection of A to P_{s} is injective, and A has locally bounded slope if the vertical field $v=(0,1)$ is not tangent to A at any interior point of A.

We say that A is above $B, A \geq B$, if whenever a vertical curve meets both A and B, then every point of A (on this vertical) is above every point of B. These notations extend directly to $S(\infty)$ with respect to the horizontals S_{t} and the vertical curves.

For $A \subset H^{n} \cup S(\infty)$ and $s \in \mathbb{R}$, let $A_{s^{+}}=\{(x . t) \in A ; t \geq s\}$ and similarly let $A_{s^{-}}$be the set of points of A below P_{s}. Let $A_{s^{+}}^{*}=\left\{(x, 2 s-t) ;(x, t) \in A_{s^{+}}\right\}$. Also let $H_{s^{+}}$(resp. $H_{s^{-}}$) be the set of all points above P_{s} (resp. below P_{s}).

Let M be a complete hypersurface of H^{n}. We say that M is regular at ∞ if the asymptotic boundary B of M is a C^{2} codimension one submanifold of $S(\infty)$ and $\bar{M}=M \cup B$ is of class C^{1} on B.

We also use polar coordinates $[0, \infty) \times S^{n-1}(1)$ of H^{n} given by

$$
g=d r^{2}+\sinh ^{2} r \cdot d \omega^{2}
$$

where $d \omega^{2}$ denotes the standard metric of $S^{n-1}(1)$. Then natural correspondence between $[0, \infty) \times S^{n-1}(1)$ and H^{n} is the following:

$$
[0, \infty) \times S^{n-1} \ni(r, \xi) \longrightarrow(\tanh r) \xi \in H^{n} .
$$

When we consider the Poincaré model, the orthogonal group $O(n)$ and its subgroup $O(p) \times O(q)(p+q=n)$ act on H^{n} and $S(\infty)=S^{n-1}$ naturally. The orbit space of the action of $O(p) \times O(q)$ on H^{n} (resp. $S(\infty)$) is identified with the subset of H^{2} given by $\{(r, \varphi) \in[0, \infty) \times[0, \pi / 2]\}$ (resp. the subset of S^{1} given by $\{\varphi \in[0, \pi / 2]\}$.

2. Construction.

In this section, we construct minimal embeddings of M diffeomorphic to $S^{p-1} \times \mathbb{R}^{q}(p+q=n$ and $p, q \geq 2)$ into a hyperbolic space H^{n} such that M is complete, $O(p) \times O(q)$-invariant and its asymptotic boundary $\partial_{\infty} M$ is the product of round spheres $S^{p-1}\left(c_{1}\right) \times S^{q-1}\left(c_{2}\right)$ (modulo conformal transformation of $S(\infty)$). The construction is essentially due to Ferus and Karcher, so see [3] for more detailed description.

Let F be a quadratic polynomial on $\mathbb{R}^{p} \times \mathbb{R}^{q}=\mathbb{R}^{n}$, defined by $F(x, y)=$ $\langle x, x\rangle-\langle y, y\rangle$ where $x \in \mathbb{R}^{p}$ and $y \in \mathbb{R}^{q}$. We restrict F to unit sphere $S^{n-1}(1)$ in \mathbb{R}^{n}. Then the levels $F^{-1}(\{\cos 2 \varphi\}) \cap S^{n-1}(1)(0<\varphi<\pi / 2)$ form an isoparametric family

$$
\begin{equation*}
\cos \varphi \cdot S^{p-1}(1) \times \sin \varphi \cdot S^{q-1}(1) \subset S^{n-1}(1) \tag{2.1}
\end{equation*}
$$

with 2 distinct constant principal curvatures.
We consider all distance spheres $\{r\} \times S^{n-1}$ in H^{n} admit the isoparametric family (2.1). Let $(r(s), \varphi(s)), s \in J$, be a differential curve in H^{2} with $0 \leq$ $r(s), 0 \leq \varphi(s) \leq \pi / 2$, where J is an open interval of \mathbb{R} and s is an arc length parameter (i.e. $r^{\prime}(s)^{2}+\sinh ^{2} r(s) \cdot \varphi^{\prime}(s)^{2} \equiv 1$). Then we obtained a hypersurface M in H^{n} given by the mapping $f: J \times S^{p-1} \times S^{q-1} \rightarrow H^{n}$

$$
\begin{equation*}
f(s, u, v)=\left(\tanh \frac{1}{2} r(s) \cdot \cos \varphi(s) \cdot u, \tanh \frac{1}{2} r(s) \cdot \sin \varphi(s) \cdot v\right) \tag{2.2}
\end{equation*}
$$

for $s \in J, u \in S^{p-1}, v \in S^{q-1}$. We note that M is $O(p) \times O(q)$-invariant. Topological type of M is the following: M is immersed except that it may have conical singularities over the focal manifold $\varphi=0, \varphi=\pi / 2$. It is immersed, if $\varphi(J) \subset(0, \pi / 2)$, or if

$$
\begin{equation*}
r\left(s_{0}-s\right) \equiv r\left(s_{0}+s\right), \varphi\left(s_{0}-s\right) \equiv-\varphi\left(s_{0}+s\right) \text { for } 0 \leq s \ll 1 \tag{2.3}
\end{equation*}
$$

whenever $r\left(s_{0}\right)>0, r^{\prime}\left(s_{0}\right)=0$ and $\varphi\left(s_{0}\right)=0$ for $s_{0} \in J$.
It is embedded, if moreover the curve (r, φ) is injective. M is diffeomorphic to $S^{p-1} \times \mathbb{R}^{q}$ (resp. $\mathbb{R}^{p} \times S^{q-1}$), if just one end of the curve reaches $\varphi=0$ (resp $\varphi=\pi / 2$) with $r^{\prime}=0 . M$ is diffeomorphic to $S^{p-1} \times S^{q-1} \times \mathbb{R}$, if $\varphi(J) \subset(0, \pi / 2)$.

Note that when (2.3) is satisfied, the regularity of the hypersurface M yields that M admits a reparametrization: $(u, y) \in S^{p-1} \times B^{q}(\delta) \mapsto\left(k\left(|y|^{2}\right) \cdot u, y\right)$ at a sufficiently small neighborhood $S^{p-1} \times B^{q}(\delta)$ of the point $f\left(s_{0}, u, v\right)$, where $B^{q}(\delta)$ denotes an open disk of radius δ in \mathbb{R}^{q} and $|y|$ is a norm of y. Outline of the proof is as follows: Let $l(s):=\tanh \frac{1}{2} r\left(s_{0}+s\right) \cdot \sin \varphi\left(s_{0}+s\right)$, and $k(s):=\tanh \frac{1}{2} r\left(s_{0}+s\right) \cdot \cos \varphi\left(s_{0}+s\right)$. Then $l(s)$ is odd, $k(s)$ is even and $l^{\prime}(0)=\tanh \frac{1}{2} r\left(s_{0}\right) /\left\{ \pm \sinh r\left(s_{0}\right)\right\} \neq 0$. Hence ${ }^{\exists} \epsilon>0,{ }^{\exists} \delta>0$ such that $l:(-\epsilon, \epsilon) \rightarrow(-\delta, \delta)$ is a diffeomorphism. Let $s=h(\sigma)$ be the inverse function of $\sigma=l(s)$. Then the function $k(h(\sigma))$ is even. By Whitney' theorem [4], there
exists a C^{∞}-function ρ such that $k(h(\sigma))=\rho\left(\sigma^{2}\right)$, for $|\sigma|<\delta$. From this, the above statement holds (cf. [2, pp.269-270]).

By curvature computations, any solution of the following 3 -dimensional firstorder differential equation produces an $O(p) \times O(q)$-invariant minimal hypersurface in H^{n} :

$$
\begin{align*}
r^{\prime} & =\sin \alpha \\
\varphi^{\prime} & =\cos \alpha / \sinh r \tag{2.4}\\
\alpha^{\prime} & =(n-1) \cos \alpha / \sinh r+h(\varphi) \sin \alpha / \sinh r
\end{align*}
$$

where $h(\varphi)=(p-1) \tan \varphi-(q-1) \cot \varphi$.
As in $\S 4$ of [3], we can find solutions of the differential equation (2.4), for which $r^{\prime} \rightarrow 0$ as $\varphi \rightarrow 0$ or $\pi / 2$. By studying qualitative description of the solution curves of

$$
\left\{\begin{align*}
\dot{r} & =\sin \alpha \sinh r \sin 2 \varphi \tag{2.5}\\
\dot{\varphi} & =\cos \alpha \sin 2 \varphi \\
\dot{\alpha} & =(n-1) \cos \alpha \sin 2 \varphi+2 \sin \alpha\left((p-1) \sin ^{2} \varphi-(q-1) \cos ^{2} \varphi\right),
\end{align*}\right.
$$

instead of (2.4), and of the cylindrical levels of

$$
L(\varphi, \alpha)=\sin ^{q-1} \varphi \cdot \cos ^{p-1} \varphi \cdot \sin \alpha
$$

we obtain complete minimal hypersurfaces M which are embeddings of $S^{p-1} \times$ \mathbb{R}^{q} (or $\mathbb{R}^{p} \times S^{q-1}$) into H^{n} (cf. $\S 5$ and $\S 6$ of [3]). Note that if a solution of (2.5) satisfies $r\left(t_{0}\right)>0, r^{\prime}\left(t_{0}\right)=0$ and $\varphi\left(t_{0}\right)=0$ at a point t_{0}, then we can see that the solution also satisfies $r\left(t_{0}-t\right) \equiv r\left(t_{0}+t\right), \varphi\left(t_{0}-t\right) \equiv-\varphi\left(t_{0}+t\right)$ and $\alpha\left(t_{0}-t\right) \equiv-\alpha\left(t_{0}+t\right)+\pi$ for $0 \leq s \ll 1$ by the uniqueness of the solution of ODE. Since $r(s)$ increases monotonically to $+\infty$ as $s \rightarrow \infty[3, \mathrm{p} .258], \varphi^{\prime}(s) \rightarrow 0$ as $s \rightarrow \infty$. So $\varphi(s)$ converges to some constant c with $0<c<\pi / 2[3, \S 5$, (g)] and the curve $(r(s), \varphi(s))$ meets the orbit space of $S(\infty)$ at one point $c \in(0, \pi / 2)$. Consequently the asymptotic boundary of M is the product of round spheres $S^{p-1}\left(c_{1}\right) \times S^{q-1}\left(c_{2}\right)$ (modulo conformal transformation of $S(\infty)$).
Remark. Similarly we can construct complete minimal immersions of M diffeomorphic to $S^{p-1} \times S^{q-1} \times \mathbb{R}$ into H^{n} such that M is $O(p) \times O(q)$-invariant. Note that $O(p) \times O(q)$-invariant complete minimal hypersurface in H^{n} is either (a) embedded $S^{p-1} \times \mathbb{R}^{q}$, or (b) (immersed) $S^{p-1} \times S^{q-1} \times \mathbb{R}$. In fact, by [3, $\S 5$, (a)] we can see that the solution curves of (2.5) satisfy $\sharp\{s \in J ; \varphi(s)=0$ or $\pi / 2\}=1$ (case (a)) or 0 (case (b)), when M obtained by (2.2) and (2.4) is complete.

3. Characterization.

In this section we prove the following

Theorem 3.1. Let M be a connected complete immersed minimal hypersurface in H^{n} such that M is regular at ∞ and its asymptotic boundary $\partial_{\infty} M$ is the product of round spheres $S^{p-1}\left(c_{1}\right) \times S^{q-1}\left(c_{2}\right)$ where $p+q=n$ and $p, q \geq 2$ (modulo conformal transformation of $S(\infty)$). Then M is $O(p) \times O(q)$-invariant.

For the proof, we use the following result of Levitt and Rosenberg.
Proposition 3.2. [4] Let $B \subset S(\infty)$ be a C^{2} codimension one immersed boundary, not necessarily connected. Assume B_{0}^{+}is a graph of locally bounded slope and $B_{0}^{*+} \geq B_{0}^{-}$. Let M be a minimal hypersurface immersed in H^{n} with $\partial_{\infty} M=B$ and regular at ∞. Then M_{0}^{+}is a graph of locally bounded slope and $M_{0}^{*+} \geq M_{0}^{-}$.
Proof of Theorem 3.1. We can assume that $\partial_{\infty} M=S^{p-1}\left(c_{1}\right) \times S^{q-1}\left(c_{2}\right) \subset$ $\mathbb{R}^{p} \times \mathbb{R}^{q}$. Let P be a hyperplane of H^{n} defined by $\left(\mathbb{R}^{p-1} \times \mathbb{R}^{q}\right) \cap H^{n}$, where \mathbb{R}^{p-1} is a hyperplane through the origin of $S^{p-1}\left(c_{1}\right)$ in \mathbb{R}^{p}. Then $B=S^{p-1}\left(c_{1}\right) \times$ $S^{q-1}\left(c_{2}\right)$ satisfies the hypothesis of Proposition 3.2 from above and below P so M is invariant by reflection through P. By replacing \mathbb{R}^{p} and \mathbb{R}^{q}, we can see that M is $O(p) \times O(q)$-invariant.

It seems to worthwhile to consider the following problem: Under the same situation as Theorem 3.1, if the asymptotic boundary $\partial_{\infty} M$ is an isoparametric hypersurface in $S(\infty)$ with 3,4 or 6 distinct principal curvatures, then does M admits codimension 1 foliation such that each leaf is an isoparametric hypersurface of some round hypersphere of H^{n} ?

With respect to the asymptotic boundary of minimal varieties in H^{n}, Anderson [1] showed the following theorem: If B^{p-1} is a closed submanifold of $S(\infty)$, then there exists a complete absolutely area-minimizing locally integral p-current Σ in H^{n} and B is the asymptotic boundary of Σ. More over, if $p \leq 6$, then Σ is smooth.

So if $p>6$, then Σ may have a singularity. Theorem 3.1 implies that if $B=S^{p-1}\left(1 / \cos ^{2} \theta\right) \times S^{q-1}\left(1 / \sin ^{2} \theta\right)$, then Σ with $\partial_{\infty} M=B$ is smooth if and only if there is a solution of (2.4) such that $\varphi(s) \rightarrow \theta$ as $s \rightarrow \infty$ provided that Σ is regular at infinity. So if the above problem is true, then the regularity of minimal varieties Σ in H^{n} with $\partial_{\infty} M="$ isoparametric hypersurface" can be seen by studying the behavior of solutions of the corresponding ODE (cf. §2) at infinity.

Finally we see that $O(p) \times O(q)$-invariant hypersurface is a generalization of tubes of constant radius over totally geodesic $H^{p}(2 \leq p \leq n-2)$ in H^{n}. Let u be a non-negative smooth function on $\Omega \subset H^{p}$ and suppose that u depends only on the distance from some point in H^{p}. Let $M=\left\{\exp _{x} u(x) \xi_{x} ; x \in\right.$ Ω and ξ_{x} is a unit normal vector at $\left.x\right\}$. Then M is $O(p) \times O(q)$-invariant. Moreover if u is a positive constant, then M is a tube of radius u over H^{p} and M is a Riemannian product of $H^{p}\left(-1 / \cosh ^{2} u\right)$ and $S^{n-p-1}\left(1 / \sinh ^{2} u\right)$.

Theorem 3.1 states that some "converse" of the above fact holds as: Fix a totally geodesic submanifold H^{p} of H^{n}, and choose coordinates in H^{p}. Let γ_{ξ} be the geodesic of H^{n} through the origin $o \in H^{p}$ with the initial vector
$\xi \in U N_{o} H^{p}=\left\{\right.$ unit normal vectors at $o \in H^{p}$ in $\left.H^{n}\right\} \cong S^{n-p-1}$. Denote by $\gamma_{\xi, s}$ the 1-parameter group of isometries of H^{n} which along $\gamma_{\xi}(s)(s \geq 0)$ is a translation by a distance s and such that the curves $t \mapsto \gamma_{\xi, t}(x)$ are orthogonal to H^{p} for each $x \in H^{p}$. Let $M=\left\{\gamma_{\xi, u}(x) ; x \in H^{p}, \xi \in U N_{o} H^{p}\right\}$, where $u=u(x, \xi) \in C^{\infty}\left(H^{p} \times S^{n-p-1}\right)$ and $u \geq 0$. Suppose M is a connected complete minimal hypersurface immersed in H^{n} such that M is regular at ∞ and its asymptotic boundary $\partial_{\infty} M=\left\{\gamma_{\xi, r}(r) ; x \in \partial_{\infty} H^{p}, \xi \in U N_{o} H^{p}\right\}$ for some $r>0$ (hence $\partial_{\infty} M=S^{p-1} \times S^{n-p-1}$). Then $u(x, \xi)=u(x)$ (i.e., M is $O(n-p)$-invariant), and moreover u depends only on the distance from some point of H^{p} (i.e., M is $O(p)$-invariant).

References

1. M. Anderson, Complete minimal varieties in hyperbolic space, Inv. Math. 69 (1982), 477-494.
2. A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin Heidelberg, 1987.
3. D. Ferus and H. Karcher, Non-rotational minimal spheres and minimizing cones, Comm. Math. Helv. 60 (1985), 247-269.
4. G. Levitt and H. Rosenberg, Symmetry of constant mean curvature hypersurfaces in hyperbolic space, Duke Math. J. 52 (1985), 53-59.
5. H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159160.

Shimo-Okubo, Urawa, Saitama, 338, JAPAN

