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0. Introduction.
One of the most classical examples among minimal surfaces in $\mathbb{R}^{3}$ is a

catenoid, and it is the only non-flat rotational minimal surface. Levitt and
Rosenberg [4] gave a characterization of the catenoid (i.e, minimal rotational
hypersurface) in a hyperbolic space as folows: Let $M$ be a connected minimal
hypersurface immersed in $H^{n}$ and regular at $\infty$ (cf. \S 1). Suppose the asymp-
totic boundary of $M$ is the union of disjoint round hyperspheres $S_{1}$ and $S_{2}$ .
Then $M$ is a catenoid.

The orthogonal group $O(n)$ acts on $H^{n}(\cong the$ interior of the unit bal in
$\mathbb{R}^{n})$ as a matrix multiplication, so the subgroup $O(p)\times O(q)(p+q=n)$

also acts on $H^{n}$ . In this paper, we consider a hypersurface in $H^{n}$ which is
invariant under the action of $O(p)\times O(q)(p, q\geq 2)$ (say $O(p)\times O(q)- inva\dot{n}ant$

hypersurface). A hypersurface $M$ in $H^{n}$ is $O(p)\times O(q)$-invariant if and only
if there is a codimension 1 foliation of $M$ such that each leaf is congruent to
the product of round spheres $S^{p-1}(d_{1})\times S^{q-1}(d_{2})\subset S^{n-1}(d)\subset H^{n}$ . Note
that the catenoid is $O(1)\times O(n-1)$-invariant hypersurface $(O(1)\cong \mathbb{Z}_{2})$ . In
\S 2, we will construct complete minimal embeddings of $M$ diffeomorphic to
$S^{p-1}\times \mathbb{R}$ into $H^{n}$ such that $M$ is $O(p)\times O(q)$ -invariant and its asymptotic
boundary $=S^{p-1}(c_{1})\times S^{q-1}(c_{2})$ (modulo conformal transformation of $S^{n-1}=$

the asymptotic boundary of $H^{n}$ ). The method of construction is due to Ferus
and Karcher [3]. In \S 3, we will give a characterization of $O(p)\times O(q)$-invariant
complete minimal hypersurfaces in $H^{n}$ in terms of the asymptotic boundary.

The author would like to thank the referee for valuable suggestions and
comments.

1. Notations and preliminaries.
In this paper, we denote by $H^{n}(-c)$ a hyperbolic space with constant cur-

$vature-c,$ $H^{n}=H^{n}(-1)$ and by $S^{n}(c)$ a round sphere of constant curvature
$c>0$ . According to [4], we refer to plane, distance, line, etc. as the hyper-
bolic object in $H^{n}$ . First we work with Poincar\’e model of $H^{n}$ (the interior of
the unit ball in $\mathbb{R}^{n}$ ). The asymptotic boundary of $H^{n}$ is identified with the
boundary of the unit ball and denoted by $S(\infty)$ . Given $A\subset H^{n}$ , we denote by
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$\partial_{\infty}A$ the set of accumulation points of $A$ in $S(\infty)$ and call it the asymptotic
boundary of $A$ .

We shall use the latitude-longitude system as the coordinate of $H^{n}$ . Fix a
hyperplane $P_{0}$ in $H^{n}$ . Choose coordinates in $P_{0}$ and let $\gamma$ be the geodesic
orthogonal to $P_{0}$ at a origin $0\in P_{0}$ . Let $\gamma_{t}$ be the l-parameter group of
isometries of $H^{n}$ which along $\gamma$ is translation by a distance $t$ and such that the
curves $t\rightarrow\gamma_{t}(x)$ are orthogonal to $P_{0}$ for each $x\in P_{0}$ (a positive sense along
$\gamma$ is chosen once and for all). Then each point of $H^{n}$ has coordinates $(x,t)$

where $x\in P_{0}$ and $\gamma_{t}(x)=(x,t)$ .
Denote by $P_{t}$ the plane $\gamma_{t}(P_{0})$ . We refer to $P_{t}$ as a holizontal plane and the

curve $t\rightarrow\gamma_{t}(x)$ as the vertical curve through $x$ . Notice that for each $s$ the
reflection of $H^{n}$ through the plane $P_{s}$ is given by the formula $(x,t)\rightarrow(x, 2s-t)$ .

Let $S_{t}=\partial_{\infty}P_{t}$ . Then the coordinate system $(x,t)$ extends to a coordinate
system on $S(\infty)$ where each point (except the two limits points of $\gamma$) has a
unique coordinate $(x,t),$ $x\in S_{0},$ $t\in R$ . By a M\"obius transformation we can
send $\gamma$ to the north pole-south pole geodesic and $P_{0}$ to the equatorial plane.
Then the coordinates on $S(\infty)$ are the usual latitude-longitude coordinates.

We say that $A\subset H^{\mathfrak{n}}$ is a graph over $P_{s}$ if the vertical projection of $A$ to
$P_{s}$ is injective, and $A$ has locally bounded slope if the vertical field $v=(O, 1)$ is
not tangent to $A$ at any interior point of $A$ .

We say that $A$ is above $B,$ $A\geq B$ , if whenever a vertical curve meets both
$A$ and $B$ , then every point of $A$ (on this vertical) is above every point of $B$ .
These notations extend directly to $S(\infty)$ with respect to the horizontals $S_{t}$

and the vertical curves.
For $A\subset H^{n}\cup S(\infty)$ and $s\in \mathbb{R}$ , let $A_{s+}=\{(x.t)\in A;t\geq s\}$ and similarly

let $A_{s^{-}}$ be the set of points of $A$ below $P_{s}$ . Let $A:_{+}=\{(x,2s-t);(x,t)\in A_{s+}\}$ .
Also let $H_{s}+(resp. H_{s^{-}})$ be the set of al points above $P_{s}$ (resp. below $P_{s}$ ).

Let $M$ be a complete hypersurface of $H^{n}$ . We say that $M$ is regular at $\infty$

if the asymptotic boundary $B$ of $M$ is a $C^{2}$ codimension one submanifold of
$S(\infty)$ and $\overline{M}=M\cup B$ is of class $C^{1}$ on $B$ .

We also use polar coordinates $[0, \infty$ ) $\times S^{n-1}(1)$ of $H^{n}$ given by

$g=dr^{2}+\sinh^{2}r\cdot d\omega^{2}$

where $d\omega^{2}$ denotes the standard metric of $S^{n-1}(1)$ . Then natural correspon-
dence between $[0, \infty$ ) $\times S^{n-1}(1)$ and $H^{n}$ is the following:

$[0, \infty)\times S^{n-1}\ni(r,\xi)\rightarrow(\tanh r)\xi\in H^{n}$ .

When we consider the Poincar\’e model, the orthogonal group $O(n)$ and its
subgroup $O(p)\times O(q)(p+q=n)$ act on $H^{n}$ and $S(\infty)=S^{n-1}$ naturally. The
orbit space of the action of $O(p)\times O(q)$ on $H^{n}$ (resp. $S(\infty)$ ) is identffied with
the subset of $H^{2}$ given by $\{(r, \varphi)\in[0, \infty)\times[0,\pi/2]\}$ (resp. the subset of $S^{1}$

given by $\{\varphi\in[0, \pi/2]\}$ .
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2. Construction.
In this section, we construct minimal embeddings of $M$ diffeomorphic to

$S^{p-1}\times \mathbb{R}^{q}$ ($p+q=n$ and $p,$ $q\geq 2$ ) into a hyperbolic space $H^{n}$ such that $M$

is complete, $O(p)\times O(q)$-invariant and its asymptotic boundary $\partial_{\infty}M$ is the
product of round spheres $S^{p-1}(c_{1})\times S^{q-1}(c_{2})$ (modulo conformal transforma-
tion of $S(\infty))$ . The construction is essentially due to Ferus and Karcher, so
see [3] for more detailed description.

Let $F$ be a quadratic polynomial on $\mathbb{R}^{p}\times \mathbb{R}^{q}=\mathbb{R}^{n}$ , defined by $F(x, y)=$

( $ x,x\rangle$ $-\langle y, y\rangle$ where $x\in \mathbb{R}^{p}$ and $y\in \mathbb{R}^{q}$ . We restrict $F$ to unit sphere $S^{n-1}(1)$

in $\mathbb{R}^{n}$ . Then the levels $F^{-1}(\{\cos 2\varphi\})\cap S^{n-1}(1)(0<\varphi<\pi/2)$ form an
isoparametric family

(2.1) $\cos\varphi\cdot S^{p-1}(1)\times\sin\varphi\cdot S^{q-1}(1)\subset S^{n-1}(1)$

with 2 distinct constant principal curvatures.
We consider all distance spheres $\{r\}\times S^{n-1}$ in $H^{n}$ admit the isoparametric

family (2.1). Let $(r(s), \varphi(s)),$ $s\in J$ , be a differential curve in $H^{2}$ with $ 0\leq$

$r(s),$ $0\leq\varphi(s)\leq\pi/2$ , where $J$ is an open interval of $\mathbb{R}$ and $s$ is an arc
length parameter (i.e. $r^{\prime}(s)^{2}+\sinh^{2}r(s)\cdot\varphi^{\prime}(s)^{2}\equiv 1$ ). Then we obtained a
hypersurface $M$ in $H^{n}$ given by the mapping $f$ : $J\times S^{p-1}\times S^{q-1}\rightarrow H^{n}$

(2.2) $f(s,u, v)=(\tanh\frac{1}{2}r(s)\cdot\cos\varphi(s)\cdot u,\tanh\frac{1}{2}r(s)\cdot\sin\varphi(s)\cdot v)$ ,

for $s\in J,$ $u\in S^{p-1},$ $v\in S^{q-1}$ . We note that $M$ is $O(p)\times O(q)$-invariant.
Topological type of $M$ is the following: $M$ is immersed except that it may have
conical singularities over the focal manifold $\varphi=0,$ $\varphi=\pi/2$ . It is immersed, if
$\varphi(J)\subset(O, \pi/2)$ , or if

(2.3) $r(s_{0}-s)\equiv r(s_{0}+s),$ $\varphi(s_{0}-s)\equiv-\varphi(s_{0}+s)$ for $0\leq s\ll 1$

whenever $r(s_{0})>0,$ $r^{\prime}(s_{0})=0$ and $\varphi(s_{0})=0$ for $s_{0}\in J$.

It is embedded, if moreover the curve $(r, \varphi)$ is injective. $M$ is diffeomorphic
to $S^{p-1}\times \mathbb{R}^{q}$ (resp. $\mathbb{R}^{p}\times S^{q-1}$ ), if just one end of the curve reaches $\varphi=0$

(resp $\varphi=\pi/2$ ) with $r^{\prime}=0$ . $M$ is diffeomorphic to $S^{p-1}\times S^{q-1}\times \mathbb{R}$ , if
$\varphi(J)\subset(0, \pi/2)$ .

Note that when (2.3) is satisfied, the regularity of the hypersurface $M$ yields
that $M$ admits a reparametrization: $(u,y)\in S^{p-1}\times B^{q}(\delta)\mapsto(k(|y|^{2})\cdot u, y)$ at
a sufficiently small neighborhood $S^{p-1}\times B^{q}(\delta)$ of the point $f(s_{0}, u, v)$ , where
$B^{q}(\delta)$ denotes an open disk of radius $\delta$ in $\mathbb{R}^{q}$ and $|y|$ is a norm of $y$ . Outline
of the proof is as folows: Let $l(s)$ $:=\tanh\frac{1}{2}r(s_{0}+s)\cdot\sin\varphi(s_{0}+s)$ , and
$k(s)$ $:=\tanh\frac{1}{2}r(s_{0}+s)\cdot\cos\varphi(s_{0}+s)$ . Then $l(s)$ is odd, $k(s)$ is even and
$l^{\prime}(0)=\tanh\frac{1}{2}r(s_{0})/\{\pm\sinh r(s_{0})\}\neq 0$ . Hence $\exists\epsilon>0,$ $\exists\delta>0$ such that
$l:(-\epsilon, \epsilon)\rightarrow(-\delta, \delta)$ is a diffeomorphism. Let $s=h(\sigma)$ be the inverse function
of $\sigma=l(s)$ . Then the function $k(h(\sigma))$ is even. By Whitney’ theorem [4], there
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exists a $ c\infty$-function $\rho$ such that $k(h(\sigma))=\rho(\sigma^{2})$ , for $|\sigma|<\delta.$ From this, the
above statement holds (cf. [2, pp.269-270]).

By curvature computations, any solution of the folowing 3-dimensional first-
order differential equation produces an $O(p)\times O(q)$-invaniant minimal hyper-
surface in $H^{n}$ :

$ r^{\prime}=\sin\alpha$

(2.4) $\varphi^{\prime}=\cos\alpha/\sinh r$

$\alpha^{\prime}=(n-1)\cos\alpha/\sinh r+h(\varphi)\sin\alpha/\sinh r$

where $h(\varphi)=(p-1)$ tt $\varphi-(q-1)\cot\varphi$ .
As in \S 4 of [3], we can find solutions of the differential equation (2.4), for

which $r^{\prime}\rightarrow 0$ as $\varphi\rightarrow 0$ or $\pi/2$ . By studying qualitative description of the
solution curves of

(2.5) $\left\{\begin{array}{ll}\dot{r} & =\sin\alpha\sinh r\sin 2\varphi,\\\dot{\varphi} & =\cos\alpha\sin 2\varphi,\\\dot{\alpha} & =(n-1)\cos a \sin 2\varphi+2\sin\alpha((p-1)\sin^{2}\varphi-(q-1)\cos^{2}\varphi),\end{array}\right.$

instead of (2.4), and of the cylindrical levels of

$ L(\varphi, \alpha)=\sin^{q-1}\varphi\cdot\cos^{p-1}\varphi\cdot\sin\alpha$ ,

we obtain complete minimal hypersurfaces $M$ which are embeddings of $ S^{p-1}\times$

$\mathbb{R}^{q}$ (or $\mathbb{R}^{p}\times S^{q-1}$ ) into $H^{n}$ (cf. \S 5 and \S 6 of [3]). Note that if a solution of
(2.5) satisfies $r(t_{0})>0,$ $r^{\prime}(t_{0})=0$ and $\varphi(t_{0})=0$ at a point $t_{0}$ , then we can see
that the solution also satisfies $r(t_{0}-t)\equiv r(t_{0}+t),$ $\varphi(t_{0}-t)\equiv-\varphi(t_{0}+t)$ and
$\alpha(t_{0}-t)\equiv-\alpha(t_{0}+t)+\pi$ for $0\leq s\ll 1$ by the uniqueness of the solution of
ODE. Since $r(s)$ increases monotonically $to+\infty$ as $ s\rightarrow\infty$ [ $3$ , p.258], $\varphi^{\prime}(s)\rightarrow 0$

as $ s\rightarrow\infty$ . So $\varphi(s)$ converges to some constant $c$ with $0<c<\pi/2[3$ , \S 5,
$(g)]$ and the curve $(r(s), \varphi(s))$ meets the orbit space of $S(\infty)$ at one point
$c\in(0,\pi/2)$ . Consequently the asymptotic boundary of $M$ is the product
of round spheres $S^{p-1}(c_{1})\times S^{q-1}(c_{2})$ (modulo conformal transformation of
$S(\infty))$ .
Remark. Similarly we can construct complete minimal immersions of $M$ dif-
feomorphic to $S^{p-1}\times S^{q-1}\times R$ into $H^{\mathfrak{n}}$ such that $M$ is $O(p)\times O(q)$-invariant.
Note that $O(p)\times O(q)$-invariant complete minimal hypersurface in $H^{n}$ is either
(a) embedded $S^{p-1}\times R^{q}$ , or (b) (immersed) $S^{p-1}\times S^{q-1}\times R$ . In fact, by [3,
\S 5, $(a)$ ] we can see that the solution curves of (2.5) $satis\theta\#\{s\in J;\varphi(s)=0$

or $\pi/2$ } $=1$ (case $(a)$ ) or $0$ (case $(b)$ ), when $M$ obtained by (2.2) and (2.4) is
complete.

3. Characterization.
In this section we prove the
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Theorem 3.1. Let $M$ be a connected complete immersed minimal hypersur-
face in $H^{n}$ such that $M$ is regular at $\infty$ and its asympto $tic$ boundary $\partial_{\infty}M$ is
the product of round spheres $S^{p-1}(c_{1})\times S^{q-1}(c_{2})$ where $p+q=n$ and $p,$ $q\geq 2$

(mod$ulo$ conformal transformation of $S(\infty)$). Then $M$ is $O(p)\times O(q)$ -invariant.

For the proof, we use the following result of Levitt and Rosenberg.

Proposition 3.2. [4] Let $B\subset S(\infty)$ be a $C^{2}$ codimension one immersed
boundary, not necessarily $con$nected. $Ass$ume $B_{0}^{+}is$ a graph oflocally bounded
slope and $B_{0}^{*+}\geq B_{0}^{-}$ . Let $M$ be a minimal hypersurface immersed in $H^{n}$ with
$\partial_{\infty}M=B$ an $d$ regular at $\infty$ . Then $M_{0}^{+}$ is a graph of locally bound$ed$ slope
and $M_{0}^{*+}\geq M_{0}^{-}$

Proof of Theorem 3.1. We can assume that $\partial_{\infty}M=S^{p-1}(c_{1})\times S^{q-1}(c_{2})\subset$

$R^{p}\times R^{q}$ . Let $P$ be a hyperplane of $H^{n}$ defined by $(R^{p-1}\times \mathbb{R}^{q})\cap H^{n}$ , where $\mathbb{R}^{p-1}$

is a hyperplane through the origin of $S^{p-1}(c_{1})$ in $\mathbb{R}^{p}$ . Then $ B=S^{p-1}(c_{1})\times$

$S^{q-1}(c_{2})$ satisfies the hypothesis of Proposition 3.2 from above and below $P$

so $M$ is invariant by reflection through $P$ . By replacing $\mathbb{R}^{p}$ and $\mathbb{R}^{q}$ , we can see
that $M$ is $O(p)\times O(q)$-invariant. $\square $

It seems to worthwhile to consider the following problem: Under the same
situation as Theorem 3.1, if the asymptotic boundary $\partial_{\infty}M$ is an isoparametnc
hypersurface in $S(\infty)$ with 3, 4 or 6 distinct pnncipal curvatures, then does $M$

admits codimension 1 foliation such that each leaf is an isoparametric hyper-
surface of some round hypersphere of $H^{nq}$

With respect to the asymptotic boundary of minimal varieties in $H^{n}$ , An-
derson [1] showed the following theorem: If $B^{p-1}$ is a closed submanifold of
$S(\infty)$ , then there exists a complete absolutely area-minimizing locally integral
p-current $\Sigma$ in $H^{n}$ and $B$ is the asymptotic boundary of $\Sigma$ . More over, $ifp\leq 6$ ,
then $\Sigma$ is smooth.

So if $p>6$ , then $\Sigma$ may have a singularity. Theorem 3.1 implies that if
$B=S^{p-1}(1/\cos^{2}\theta)\times S^{q-1}(1/\sin^{2}\theta)$ , then $\Sigma$ with $\partial_{\infty}M=B$ is smooth if and
only if there is a solution of (2.4) such that $\varphi(s)\rightarrow\theta$ as $ s\rightarrow\infty$ provided that
$\Sigma$ is regular at infinity. So if the above problem is true, then the regularity of
minimal varieties $\Sigma$ in $H^{n}$ with $\partial_{\infty}M=$ isoparametric hypersurface” can be
seen by studying the behavior of solutions of the corresponding ODE (cf. \S 2)
at infinity.

Finaly we see that $O(p)\times O(q)$-invariant hypersurface is a generalization of
tubes of constant radius over totally geodesic $H^{p}(2\leq p\leq n-2)$ in $H^{n}$ . Let
$u$ be a non-negative smooth function on $\Omega\subset H^{p}$ and suppose that $u$ depends
only on the distance from some point in $H^{p}$ . Let $M=\{\exp_{x}u(x)\xi_{x}$ ; $ x\in$

$\Omega$ and $\xi_{x}$ is a unit normal vector at $x$ }. Then $M$ is $O(p)\times O(q)$-invariant.
Moreover if $u$ is a positive constant, then $M$ is a tube of radius $u$ over $H^{p}$

and $M$ is a Riemannian product of $H^{p}(-1/\cosh^{2}u)$ and $S^{n-p-1}(1/\sinh^{2}u)$ .
Theorem 3.1 states that some “converse” of the above fact holds as: Fix

a totally geodesic submanifold $H^{p}$ of $H^{n}$ , and choose coordinates in $H^{p}$ . Let
$\gamma_{\xi}$ be the geodesic of $H^{n}$ through
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$\xi\in UN_{o}H^{p}=$ {unit normal vectors at $0\in H^{p}$ in $H^{n}$ } $\cong S^{n-p-1}$ . Denote by
$\gamma_{\zeta,s}$ the l-parameter group of isometries of $H^{n}$ which along $\gamma_{\xi}(s)(s\geq 0)$ is a
translation by a distance $s$ and such that the curves $t\leftrightarrow\gamma_{\xi,\ell}(x)$ are orthogonal
to $H^{p}$ for each $x\in H^{p}$ . Let $M=\{\gamma_{\xi,u}(x);x\in H^{p}, \zeta\in UN_{o}H^{p}\}$ , where
$u=u(x, \xi)\in C^{\infty}(H^{p}\times S^{\mathfrak{n}-p-1})$ and $u\geq 0$ . Suppose $M$ is a connected
complete minimal hypersurface immersed in $H^{n}$ such that $M$ is regular at $\infty$

and its asymptotic boundary $\partial_{\infty}M=\{\gamma_{\xi,r}(r);x\in\partial_{\infty}H^{p}, \zeta\in UN_{o}H^{p}\}$ for
some $r>0$ (hence $\partial_{\infty}M=S^{p-1}\times S^{n-p-1}$ ). Then $u(x, \xi)=u(x)$ (i.e., $M$ is
$O(n-p)$-invariant), and moreover $u$ depends only on the distance from some
point of $H^{p}$ (i.e., $M$ is $O(p)$-invaniant).
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