BOUNDED LINEAR OPERATORS WITH FINITE CHARACTERISTIC IN A HILBERT SPACE

by Sadoon Ibrahim Othman

ABSTRACT. Here is considered some of the properties of the bounded linear operators T on a Hilbert space H, such that for some integer $k \geq 1$, $||T^*x||^k \leq M$ ||Tx||, for M > 0 and all $x \in H$, ||x|| = 1. This category of operators includes among others, the hyponormal operators (and hence normal, quasinormal and subnormal operators) and the M-paranormal operators of the unilateral weighted shift type.

1. INTRODUCTION

This article deals with the bounded linear operators T on a Hilbert space H, satisfying the condition $||T^*x||^k \le M ||Tx||$ for some M > 0 and all $x \in H$, ||x|| = 1, where k is an integer ≥ 1 ; such operators are termed operators with finite characteristic.

The motivation for the study of such operators is as follows: An operator T on H satisfying the inequality $\parallel T^*x \parallel^k \leq M \parallel Tx \parallel$, $x \in H$, $\parallel x \parallel = 1$, M > 0 (if M = 1, T is called hyponormal) has many nice properties. One of the situations where T fails to satisfy this inequality is when there exists a sequence $\{x_n\}$, $\parallel x_n \parallel = 1$ such that $\parallel T^*x_n \parallel \to 0$ while $\parallel Tx_n \parallel$ also tends to 0 but at a faster rate. However, many such operators, though not satisfying this inequality, preserve the essential properties of a hyponormal operator; hence the interest in introducing the operators with finite characteristic.

Clearly, all hyponormal operators (and hence many other well-known operators like normal, quasinormal and subnormal) have finite characteristic. Among other such operators, we find the M-hyponormal operators (due to J.G. Stampfli) and the M-paranormal operators (due to V.I. Istrătescu) of unilateral weighted shift.

In this article, we show that the operators with finite characteristic possess most of the well-known properties of hyponormal operators.

2. OPERATORS WITH FINITE CHARACTERISTIC

Let H be a Hilbert space and B(H) be the space of all bounded linear operators $T: H \to H$.

Definition 1. For an operator $T \in B(H)$, define the k-th characteristic of T as $\chi_k(T) = \sup_{\|x\|=1} \frac{\|T^*x\|^k}{\|Tx\|}$.

Remarks:

- 1) For a linear operator $T \in B(H)$, with $||T|| \le 1$, $\chi_{k+1}(T) \le \chi_k(T)$ for $k \ge 1$.
- 2) For any number $\alpha \neq 0$, the operator $T_{\alpha} \in B(H)$ defined as $T_{\alpha}(u) = \alpha u$ has its k-th characteristic $\chi_k(T_{\alpha}) = |\alpha|^{k-1}$.
- 3) If T^* is surjective, then $\chi_k(T)$ is finite. In this case, there exists c > 0 such that $||Tx|| \ge c$ for all ||x|| = 1 (Rudin [4], p. 97) and hence $\chi_k(T) \le \frac{1}{c} \sup_{||x|| = 1} ||T^*x||^k \le \frac{1}{c} ||T||^k$.

Proposition 2. For any $T \in B(H)$, $\chi_k(T) \ge ||T||^{k-1}$.

Proof. For any $\epsilon > 0$, there exists $x_0 \epsilon H$, $||x_0|| = 1$, such that $||T^*x_0|| \ge ||T|| - \epsilon$.

Hence, $\chi_k(T) \geq \frac{\|T^*x_0\|^k}{\|Tx_0\|} \geq \frac{(\|T\|-\epsilon)^k}{\|T\|}$; ϵ being arbitrary, the proposition is proved.

Corollary: If T is a hyponormal operator, $\chi_k(T) = ||T||^{k-1}$.

Example: We construct an operator $T \in B(H)$ for which $||T||^{k-1} < \chi_k(T) < \infty$.

Take $H=l_2$ and define for $u=(u_1,u_2,\cdots)\epsilon l_2$, $Tu=(0,u_1,2u_2,u_3,\cdots)$. Then

 $T^*u = (u_2, 2u_3, u_4, \cdots)$, and for ||x|| = 1, $||T^*x||^2 = 1 + 3x_3^2 - x_1^2$ and $||Tx||^2 = 1 + 3x_2^2$.

Since $||T^*x|| \le 2$ and $||Tx|| \ge 1$ for ||x|| = 1, we have

$$2^{k} \ge \chi_{k}(T) = \sup_{\|x\|=1} \frac{\|T^{*}x\|^{k}}{\|Tx\|}$$

$$\ge \frac{\|T^{*}e_{3}\|^{k}}{\|Te_{3}\|} \text{ where } e_{3} = (0, 0, 1, 0, \cdots)$$

$$= 2^{k}$$

Hence $\chi_k(T) = 2^k$.

However, ||T||=2, since $||Tx||\leq 2$ for ||x||=1 and $||Te_2||=2$.

Proposition 3. With the convention that if Φ is an empty set, then $\inf \Phi = \infty$, we have for any $T \in B(H)$

$$\chi_k(T) = \inf\{M \in \mathbb{R}^+ : \parallel T^*x \parallel^k \leq M \parallel Tx \parallel \text{ for all } \parallel x \parallel = 1\}.$$

Proof. Let S be the subset $\{M \in \mathbb{R}^+ : ||T^*x||^k \le M ||Tx||, ||x|| = 1\}$

Let $\chi_k(T) = \alpha$ and inf $S = \beta$.

Since α is ∞ if and only if β is ∞ , we assume that α and β are finite.

Now, by the definition of $\chi_k(T)$, $\alpha \epsilon S$ and hence $\beta \leq \alpha$. On the other hand, for any $\epsilon > 0$, $\|T^*x\|^k \leq (\beta + \epsilon) \|Tx\|$ for all $\|x\| = 1$; hence $\alpha \leq \beta + \epsilon$.

Hence the proposition follows.

Corollary: Let $T \in B(H)$ and U be a unitary operator $\in B(H)$ i.e. $U^*U = UU^* = I$. If $S = U^*TU$, then $\chi_k(S) = \chi_k(T)$.

For, ||Ux||=1 if and only if ||x||=1; $||S^*x||=||T^*Ux||$ and ||Sx||=||TUx||. Consequently,

$$\chi_k(T) = \inf\{M : ||T^*x||^k \le M ||Tx||, ||x|| = 1\}$$

$$= \inf\{M : || T^*Ux ||^k \le M || TUx ||, || Ux || = 1\}$$

$$= \inf\{M : || S^*x ||^k \le M || Sx ||, || x || = 1\}$$

$$= \chi_k(S)$$

Notation: Let us denote by $F_k(H)$ the set of all bounded linear operators $T \in B(H)$ for which $\chi_k(T)$ is finite.

Remarks:

- 1) $F_s(H) \subset F_t(H)$ if $s \leq t$. This follows form the fact that since $||T^*x||^t \leq ||T||^{t-s}$ $||T^*x||^s$, $\chi_t(T) \leq ||T||^{t-s} \chi_s(T)$. However, if $T \in F_t(H)$ is surjective, then $T \in F_s(H)$. In this case there exists $\lambda > 0$ such that $||T^*x|| \geq \lambda$ for all ||x|| = 1 and consequently $\chi_s(T) \leq \lambda^{s-t} \chi_t(T)$.
- 2) $F_s(H) \neq F_t(H)$ if $s \neq t$. To show this, we construct in the following example a unilateral weighted shift operator $T \in F_2(H) \setminus F_1(H)$; the general case when s < t can be dealt with in a similar fashion.

Recall that if H is a Hilbert space with an orthonormal basis $\{e_0, e_1, e_2, \cdots\}$ and if $\alpha_n e \mathcal{T}$, $n = 0, 1, 2, \cdots$ with sup $|\alpha_n| < \beta$, the linear operator T defined on H by $Te_n = \alpha_n e_{n+1}$ is called a unilateral weighted shift with weight sequence $\{\alpha_n\}$ (J. Conway [1], p. 154). We can assume $\alpha_n \neq 0$ for every n.

Proposition 4 Let T be a weighted shift operator with $\{\alpha_n\}$ as the weight sequence. Then $T \in F_2(H)$ if and only if $\beta = \sup_n \frac{|\alpha_{n-1}|^2}{|\alpha_n|}$ is finite; in this case, $\chi_2(T) = \beta$.

Proof: Suppose $T \in F_2(H)$. Then, for $M > \chi_2(T)$

$$||T^*x||^2 \le M ||Tx||, x \in H, ||x|| = 1$$

Since $T^*e_n = \alpha_{n-1}$ for $n \ge 1$ and $T^*e_0 = 0$, the assumption that $T \in F_2(H)$ would imply $|\alpha_{n-1}|^2 \le M |\alpha_n|$; consequently, $\beta = \sup_n \frac{|\alpha_{n-1}|^2}{|\alpha_n|} \le \chi_2(T)$.

Conversely, suppose β is finite. Then for $\epsilon > 0$, $|\alpha_{n-1}|^2 \le (\beta + \epsilon) |\alpha_n|$.

Further, if
$$x = \sum \beta_n e_n$$
 with $||x||^2 = \sum \beta_n^2 = 1$,
 $||Tx|| = ||\sum \beta_n \alpha_n e_{n+1}|| = (\sum |\beta_n|^2 |\alpha_n|^2)^{\frac{1}{2}}$, and $||T^*x||^2 = \sum |\beta_n|^2 |\alpha_{n-1}|^2$
 $= \sum (|\beta_n|)(|\beta_n||\alpha_{n-1}|^2)$
 $\leq (\sum |\beta_n|^2)^{\frac{1}{2}}(\sum |\beta_n|^2 |\alpha_{n-1}|^4)^{\frac{1}{2}}$
 $\leq 1 \times (\sum |\beta_n|^2 (\beta + \epsilon)^2 |\alpha_n|^2)^{\frac{1}{2}}$
 $= (\beta + \epsilon) ||Tx||$

Hence, $T \in F_2(H)$ and $\chi_2(T) \leq \beta$. This completes the proof of the proposition.

Example of an operator $T \epsilon F_2(H) \setminus F_1(H)$. Consider the unilateral weighted shift operator with the weighted sequence $\alpha_n = 2^{1-2^n}$, $n \geq 0$. Then, $|\alpha_{n-1}|^2 = 2 |\alpha_n|$; hence $T \epsilon F_2(H)$ with $\chi_2(T) = 2$ (a consequence of the above proposition).

But $T \notin F_1(H)$; for, otherwise, $|\alpha_{n-1}| \leq M |\alpha_n|$ for some M which implies that $2^{2^{n-1}} \leq M$ for all n, a contradiction.

Proposition 5: Let $S \in B(H)$. Then $S \in F_1(H)$ if and only if $SS^* \leq \lambda S^*S$ for some $\lambda > 0$.

Proof.

$$|| S^*x ||^2 = \langle SS^*x, x \rangle$$
 $\leq \lambda \langle S^*Sx, x \rangle$
 $= \lambda || Sx ||^2$

Hence, $\chi_1(S) \leq \sqrt{\lambda}$ and $S \epsilon F_1(H)$.

Proposition 6. Let $S \in F_1(H)$. If S^* commutes with any $T \in F_k(H)$, then both ST and $TS \in F_k(H)$; in fact, in this case

$$\max(\chi_k(ST), \chi_k(TS)) \leq \chi_k(T)\chi_k(S) \max(\sqrt{\lambda}, \sqrt{\lambda^k}).$$

Proof. Since $S \in F_1(H)$, $SS^* \leq \lambda S^*S$ for some $\lambda > 0$. Let $x \in H$, ||x|| = 1 and

 $M = \chi_k(T) + \epsilon$, ϵ arbitrary,

1)

This implies that $\chi_k(ST) \leq \sqrt{\lambda}\chi_k(T)\chi_k(S)$

2) Since $S^*T = TS^*$ implies that $T^*S = ST^*$,

This implies that $\chi_k(TS) \leq \sqrt{\lambda^k} \chi_k(T) \chi_k(S)$. Hence the proposition follows.

3. THE CLASS OF OPERATORS $F_k(H)$

Let us denote $F(H) = U_{k=1}^{\infty} F_k(H)$. That $F(H) \neq B(H)$ can be seen from the following example:

For

$$u=(u_1,u_2,\cdots\cdot)\epsilon l_2=H,$$

let

$$Tu = (u_2, u_3, \cdots).$$

Then $T^*u = (0, u_1, u_2, \cdots)$.

This operator $T \in B(H) \setminus F(H)$ since $||Te_1|| = 0$ and $||T^*e_1|| = 1$.

Notation: For $\alpha > 0$, denote $S_k^{\alpha} = S_k^{\alpha}(H) = \{T : \chi_k(T) \leq \alpha\}$. Remark that if $\alpha < \beta$, then $S_k^{\alpha} \neq S_k^{\beta}$. For clearly, $S_k^{\alpha} \subset S_k^{\beta}$. To verify the strict inclusion, consider the bounded linear operator $T_r(u) = ru$ where $\alpha < r^{k-1} < \beta$. Then $\chi_k(T_r) = r^{k-1}$ so that $T_r \in S_k^{\beta} \setminus S_k^{\alpha}$.

Proposition 7: $T \in S_k^{\alpha}$ if and only if for any $M > \alpha$, any real λ and any $u \in H$,

$$\lambda^{2} \parallel u \parallel^{k-1} -2\lambda \sqrt{\parallel T^{*}u \parallel^{k}} + M \parallel Tu \parallel \geq 0.$$

Proof: Let $T \in S_k^{\alpha}$ i.e. $||T^*u||^k - M ||Tu|| ||u||^{k-1} \le 0$ for $M > \alpha$. This means that the quadratic expression in $\lambda : \lambda^2 ||u||^{k-1} - 2\lambda \sqrt{||T^*u||^k} + M ||Tu|| \ge 0$, by considering its discriminant.

Conversely, if the given condition is satisfied, take $\lambda = \frac{\sqrt{\|T^*u\|^k}}{\|u\|^{k-1}}$ $(u \neq 0)$, which leads to the inequality $\|T^*u\|^k \leq M \|Tu\| \|u\|^{k-1}$ for all $u \in H$. Hence $T \in S_k^{\alpha}(H)$.

Proposition 8. S_k^{α} is a closed subset of B(H) with norm topology. Consequently, $F_k(H)$ is a F_{σ} - set in B(H) with norm topology.

Proof. Let $T \in \overline{S}_k^{\alpha}(H)$, the closure of S_k^{α} in the norm topology of B(H).

Let $T_n \epsilon S_k^{\alpha}$ be a sequence such that $||T_n - T|| \to 0$.

Then $||T_n^* - T^*|| = ||T_n - T|| \rightarrow 0$ and for any $u \in H$,

$$\parallel T_n^* u - T^* u \parallel \leq \parallel T_n^* - T^* \parallel \parallel u \parallel \rightarrow 0.$$

Hence, $|||T_n^*u|| - ||T^*u|| \le ||T_n^*u - T^*u|| \to 0$. Also $||T_nu|| \to ||Tu||$.

Since $T_n \epsilon S_k^{\alpha}$, we have for any $M > \alpha$

$$\parallel T_n^*x \parallel^k \leq M \parallel T_nx \parallel$$

Hence, taking limits, $||T^*x||^k \le M ||Tx||$, i.e. $T \in S_k^{\alpha}(H)$.

Consequently, S_k^{α} is closed and $F_k = U_{n=1}^{\infty} S_k^n$. Hence the proposition.

Corollary: Let T_n be a sequence converging to T in the norm topology of B(H). Suppose, for some $k \geq 1$, $\lim_{n\to\infty} \sup \chi_k(T_n)$ is finite. Then $T \in F_k(H)$.

If $\chi_k(T_n) \leq \alpha$ for all n, then $T_n \epsilon S_k^{\alpha}$ which is a closed subset of B(H). Hence $T \epsilon S_k^{\alpha} \subset F_k(H)$.

Recall that $T \in B(H)$ is said to be a <u>partial isometry</u> (section 98, Halmos [2]) if $T: N(T)^{\perp} \to R(T)$ is such that ||Tx|| = ||x|| for every $x \in N(T)^{\perp}$. A bounded linear operator T is a partial isometry if and only if $T = TT^*T$.

Recall also that $T \in B(H)$ is said to be <u>quasinormal</u> if T commutes with T^*T (Section 108, Halmos [2]). Since every quasinormal operator is hyponormal (Section 160, Halmos [2]). Following Proposition 5, every quasinormal operator has finite characteristic. In the converse direction, we have

Proposition 9: Let $T \in F(H) = U_{k=1}^{\infty} F_k(H)$ be a partial isometry. Then T is quasinormal.

Proof. Since T is a partial isometry, $T^*T = I$ on $N(T)^{\perp}$. Now if $T \in F_k(H)$, i.e. $||T^*u||^k \leq M ||Tu||^k ||u||^{k-1}$,

$$N(T) \subset N(T^*) = R(T)^{\perp}$$
.

Hence, $R(T) \subset R(T)^{\perp \perp} \subset N(T)^{\perp}$.

Consequently, for any $u \in H$, $Tu \in R(T) \subset N(T)^{\perp}$ which implies that $(T^*T)Tu = Tu$.

But, T being a partial isometry $T = TT^*T$.

Thus $(T^*T)T = T(T^*T)$ i.e. T is quasinormal.

Proposition 10: Let $T \in F(H)$. Suppose T^n is a compact operator for some $n \geq 1$. Then T itself is a compact operator.

Proof: The argument is familiar; if n > 1, we show that the hypothesis implies that T^{n-1} is compact which is sufficient to prove the proposition.

Let $T \in F_k(H)$; then, $||T^*u||^k \le M ||Tu|| ||u||^{k-1}$, for $u \in H$.

Then, $||T^*T^{n-1}u||^k \le M ||T^nu|| ||T^{n-1}u||^{k-1}$.

Since T^n is a compact operator, T^*T^{n-1} is compact. Hence, $(T^{n-1})^*T^{n-1}=(T^*)^{n-2}(T^*T^{n-1})$ is compact, which implies that T^{n-1} is compact.

Hence the proposition.

V.I. Istrătescu [3] has defined an operator $T \in B(H)$ as \underline{M} -paranormal if $||Tx||^2 \le M ||T^2x||$, for all ||x|| = 1. Let us denote by $P_M(H)$ the family of all M-paranormal operators in B(H). Let $P(H) = U_{M>0}P_M(H)$.

Proposition 11: $F_1(H) \subset P(H)$ i.e. every $T \in F_1(H)$ is M-paranormal.

Proof. Since $T \epsilon F_1(H)$, for some M > 0.

$$||T^*x|| \le M ||Tx||$$
, for $||x|| = 1$.

Hence

$$|| Tx ||^2 = \langle T^*Tx, x \rangle$$

$$\leq || T^*(Tx) ||$$

$$\leq M || T^2x ||.$$

Hence T is M-paranormal.

Corollary: If $T \in F(H) = U_{k=1}^{\infty} F_k(H)$ is surjective, then $T \in P(H)$.

Since T is surjective, we have $T \in F_1(H)$ from Remarks of Proposition 3.

Proposition 12. Suppose $T \in P(H)$ is a unilateral weighted shift operator. Then $T \in F_2(H)$.

Proof: Suppose $\{\alpha_n\}$ is the weight sequence corresponding to T. Note that $\{|\alpha_n|\}$ is a bounded sequence by definition.

Then Proposition 4 states that $T \in F_2(H)$ if and only if

$$|\alpha_{n-1}|^2 \le \beta |\alpha_n|$$
 for some $\beta > 0$.

In the same way, $T \epsilon P(H)$ if and only if

$$|\alpha_n| \le M |\alpha_{n+1}|$$
 for some $M > 0$.

Now suppose $T \in P(H)$ is a unilateral weighted shift operator with $\{\alpha_n\}$ as its associated weight sequence. Then we have $|\alpha_n| \leq c$ for all n and $|\alpha_n| \leq M |\alpha_{n+1}|$.

Consequently, $\sup_{n} \frac{|\alpha_{n-1}|^2}{|\alpha_n|} \leq cM$. Hence $T \in F_2(H)$

ACKNOWLEDGMENT

The author thanks the referee for his very useful comments.

REFERENCES

- 1. J.B. Conway: Subnormal operators. Pitman Adv. Publishing Program, London, 1981.
- 2. P.R. Halmos: A Hilbert Space Problem Book. Springer Verlag, Graduate Text 19, 1974.
- 3. V.I. Istrătescu: Some results on M-hyponormal operators. Math. Seminar Notes, 6, 1978, 77-86.
- 4. W. Rudin: Functional Analysis. T.M.H. Edition, New Delhi, 1988.

Department of Mathematics, King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia.

Received Mar. 22,1993