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BOUNDED LINEAR OPERATORS WITH FINITE
CHARACTERISTIC IN A HILBERT SPACE

by Sadoon Ibrahim Othman

ABSTRACT. Here is considered some of the properties of the bounded linear
operators T on a Hilbert space H, such that for some integer k > 1, || Tz ||*< M

|| Tz ||, for M > 0and all zeH, || = ||= 1. This category of operators includes among
others, the hyponormal operators (and hence normal, quasinormal and subnormal

operators) and the M-paranormal operators of the unilateral weighted shift type.
1. INTRODUCTION

This article deals with the bounded linear operators T on a Hilbert space H,
satisfying the condition || T*z ||¥*< M || Tz || for some M > 0 and all zeH,
Il z||= 1, where k is an integer > 1; such operators are termed operators with finite

characteristic.

The motivation for the study of such operators is as follows: An operator T on
H satisfying the inequality || 7'z ||*< M || Tz ||, zeH, ||z |=1, M > 0 ( if
M =1, T is called hyponormal) has many nice properties. One of the situations
where T fails to satisfy this inequality is when there exists a sequence {z,}, || z,, ||= 1
such that | T"z, ||— O while || Tz, || also tends to O but at a faster rate. However,
many such operators, though not satisfying this inequality, preserve the essential
properties of a hyponormal operator; hence the interest in introducing the operators

with finite characteristic.

Clearly, all hyponormal operators (and hence many other well-known operators
like normal, quasinormal and subnormal) have finite characteristic. Among other
such operators, we find the M-hyponormal operators (due to J.G. Stampfli) and the

M-paranormal operators (due to V.I. Istritescu) of unilateral weighted shift.
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In this article, we show that the operators with finite characteristic possess most

of the well-known propertieé of hyponormal operators.
2. OPERATORS WITH FINITE CHARACTERISTIC

Let H be a Hilbert space and B(H) be the space of all bounded linear operators
T:H—- H.

Definition 1. For an operator TeB(H), define the k-th characteristic of T as
u . "k
x(T) = SUpP|jz||=1 ﬁ‘T:" .

Remarks:
1) For a linear operator TeB(H), with || T {|< 1, Xxt+1(T) < x&(T) for k > 1.

2) For any number a # 0, the operator T,eB(H) defined as T,(u) = au has its k-th

characteristic x,(T,) =| o [F71.

3) If T* is surjective, then x;(T') is finite. In this case, there exists ¢ > 0 such that
| Tz ||> ¢ for all || z ||= 1 (Rudin [4], p. 97) and hence x(T) < ?supj =1
| Tz [*< 21 T |-

Proposition 2. For any TeB(H), xx(T) >|| T ||*!.
Proof. For any € > 0, there exists zoeH, || zo ||=1, such that || T*z, ||>|| T || —e.
Hence, x,(T) > uﬁ;—:‘;ﬂ: > UE”uﬁ)i; € being arbitrary, the proposition is proved.

Corollary: If T is a hyponormal operator, xx(T) =|| T ||*?.

Eﬁcample: We construct an operator T'eB (H ) for which
| T II*'< x(T) < oo.

Take H = l; and define for u = (uy,us,---)ely, Tu = (0, vy, 2uz,us,--+). Then
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T*u = (ug,2us,uy,---), and for || z ||= 1, || T*z ||’= 1+ 32z} — 2} and || Tz ||*=
1+ 3z2.

Since | T*z ||[< 2 and || Tz ||> 1 for || z ||= 1, we have
Tz |*
2> xu(T) = sup L2
0= SR T
> 1T e
| Tes ||
= 2"

where es = (0,0,1,0,---)

Hence x(T) = 2*.
However, || T ||= 2, since || Tz ||< 2 for || z ||=1 and || Te; ||= 2.

Proposition 3. With the convention that if ® is an empty set, then inf & = oo,
we have for any TeB(H)

xk(T) = inf{MeR* || T*z |*< M || Tz | forall | z|=1}.

Proof. Let S be the subset {MeR* || T*z |*< M || Tz ||, || z ||=1}
Let xx(T) = a and inf S = 8.
Since « is oo if'and only if B is co, we assume that a and § are finite.

Now, by the definition of xx(T'), aeS and hence 8 < a. On the other hand, for
any € >0, ||T*z||*< (B+¢€) | Tz | forall| z|=1; hence a < f +¢.

Hence the proposition follows.

Corollary: Let T¢eB(H) and U be a unitary operator eB(H) i.e. U'U = UU"* = I.
If S =U*TU, then xi(S) = xx(T).

For, || Uz |=1if and only if | z ||= L; || S*z ||=|| T*Uz || and || Sz ||=|| TUz |.

Consequently,

xe(T) = inf{M:|| T'z[*<M| Tz, [z|=1}
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= inf{M:| T*Uz ||*< M || TU=z ||, ||Uz|=1}
= inf{(M:|| S’z |*< M || Sz|, | =z|=1}
= xx(S)

Notation: Let us denote by Fi(H) the set of all bounded linear operators T'e B(H)
for which x(T) is finite.

Remarks:

1) F,(H) C Ft(H) if s < t. This follows form the fact that since || Tz [|!<|| T ||*~*
N Tz [|*, xe(T) <|| T ||*°* x,(T). However, if TeF;(H) is surjective, then TeF,(H).
In this case there exists A > 0 such that || 7"z ||> A for all || z ||= 1 and consequently
Xs(T) < X*~*xe(T). |

2) F,(H) # F:(H) if s # t. To show this, we construct in the following example a
unilateral weighted shift operator TeF;(H)\ Fi(H); the general case when s < t can

be dealt with in a similar fashion.

Recall that if H is a Hilbert space with an orthonormal basis {eo, €;, €5, - - -} and
if a,e€, n =0,1,2,--- with sup | o, |< B, the linear operator T defined on H
by Te, = aneny; is.called a unilateral weighted shift with weight sequence {a.} (J.

Conway [1], p. 154). We can assume ay, # 0 for every n.

Proposition 4 Let T be a weighted shift operator with {a, } as the weight sequence.
Then TeF;(H) if and only if 8 = sup,, J—"—ﬁ‘"—‘lﬁ is finite; in this case , x,(T) = 8.

Proof: Suppose TeF,(H). Then, for M > x;(T)

I T°z PSS M || Tz ||, zeH, |z |=1

Since T*e, = a,-; for n >1 and T‘co = 0, the assumption that TeF;(H) would
imply | an_y 2P< M | an |; consequently, 8 = sup,, lanzal® < x:(T).

lenl

Conversely, suppose S is finite. Then for € >0, | an_1 |>’< (B +¢€) | an |-
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Further, if £ = ¥ fBpe, with || z ||*= £ 82 =1,

ITz | = || 3 Bncntnss lI= (| Ba Il en |P)2, and
1Tz |* = 22 1Ba | @1 P

S=(1 B (| B Il etns %)

(1 Ba ) | B Il @nea )3

1% (1 Ba P (B+€)? | o [P)3

B+e | Tz |

Hence, TeF;(H) and x3(T) < . This completes the proof of the proposition.

IA A Il

Example of an operator TeF;(H)\Fy(H). Consider the unilateral weighted shift
operator with the weighted sequence a, = 272", n > 0. Then, | an_1 *=2 | an |;

hence TeFy(H) with x2(T) = 2 (a consequence of the above proposition).

But T'¢ Fy(H); for, otherwise, | ¢n—1 |< M | o, | for some M which implies that

22""!' < M for all n, a contradiction.

Proposition 5: Let SeB(H). Then SeF;(H) if and only if §§* < AS*S for some
A>0.

Proof.

I 8% |I?

<SS*z,z>
< A< S8*'Sz,z >

Al Sz

Hence, x:(S) < v/A and SeF;(H).

Proposition 6. Let SeFj(H). If S* commutes with any TeF;(H), then both ST
and T'SeF(H); in fact, in this case

max(x&(ST), xx(T'S)) < xx(T)xx(S) max(\/)\—, \/F)

Proof. Since SeFj(H), SS* < AS*S for some A > 0. Let zeH, | z |=1 and
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M = x(T) + €, € arbitrary,

1)

I (sT)°=z |I*

I T*(s*=) II*

M| T(Sz) ||| S*z ||** since TeF.(H)

M| 8 (Tz) ||| S*z ||*! since S*T =TS* by hypothesis
MVX| 5(T=) || 5 ||**

MV || 8(Tz) || xx(S) by Proposition 2.

IA I IA

IA

This implies that xx(ST) < VAxe(T)x(S)
2) Since S*T = T'S* implies that T*S = ST*,

I (TS) = |*=|| $*(T*z) |¥ < V| S(T°z) |*
= V| T"(Sz) ||*
< VXM || T(Sz) |||| Sz ||**
< VXM S |FY TSz ||

This implies that xx(T'S) < VA¥x,(T)xk(S). Hence the proposition follows.
3. THE CLASS OF OPERATORS F,(H)

Let us denote F(H) = UR,Fi,(H). That F(H) # B(H) can be seen from the

following example:

For

let

Then T*u = (0, uy,uz, -+~ )-
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This operator TeB(H)\F(H) since || Te; |=0 and || T, ||= 1.

Notation: For a > 0, denote S = SZ(H) = {T : xx(T) £ a}. Remark that if
c

a < B, then S¢ # Sf. For clearly, Sg C Sf. To verify the strict inclusion, consider

the bounded linear operator T,(u) = ru where a < r*~! < 8. Then xi(T,) = r*7* so

that T,eSP\Sg.
Proposition 7: TeSg if and only if for any M > «, any real A and any ueH,

M lu 7 =20/ T*u ||* + M || Tu |2 0.

Proof: Let TeSg ie. || T*u ||¥ —M || Tu ||| v ||*'< 0 for M > a. This means
that the quadratic expression in A : A% || u ||¥"1 =2X/|| T*u ||* + M || Tu ||> O, by

considering its discriminant.

Conversely, if the given condition is satisfied, take A = ”H’If‘fllk (u # 0), which
leads to the inequality || T*u ||*< M || Tu ||| v ||*~! for all ueH. Hence TeSZ(H).

Proposition 8. SZ is a closed subset of B(H) with norm topology. Consequently,
F.(H) is a F,- set in B(H) with norm topology.

Proof. Let TeS,(H), the closure of S in the norm topology of B(H).
Let T,eSg be a sequence such that | T, — T ||— O.
Then || T: — T* ||=|| T, — T ||— 0 and for any ueH,
| Tow — T w ||I<|| Ty = T ||| w || = O.
Hence, || T || — || T*u <) T3u — Tu |- 0. Also || Tyu [| =] Tu .

Since T,eS7, we have for any M > p
| Taz |*< M || Taz ||

AHence, taking limits, || T*z |*< M || Tz ||, i.e. TeSg(H).
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Consequently, S¢ is closed and F, = U2, S!*. Hence the proposition.

Corollary: Let T, be a sequence converging to T in the norm topology of B(H).
Suppose, for some k > 1, lim,_. sup xx(7,) is finite. Then TeF}(H).

If x¢(Th) < a for all n, then T,eS¢ which is a closed subset of B(H). Hence
TeSe C Fi(H).

Recall that TeB(H) is said to be a partial isometry (section 98, Halmos [2]) if
T : N(T)* — R(T) is such that || Tz ||=|| z || for every zeN(T)*. A bounded linear

operator T is a partial isometry if and only if T = TT*T.

Recall also that TeB(H) is said to be quasinormal if T commutes with T*T
(Section 108, Halmos [2]). Since every quasinormal operator is hyponormal (Section
160, Halmos [2] ). Following Proposition 5, every quasinormal operator has finite

characteristic. In the converse direction, we have

Proposition 9: Let TeF(H) = UR,F,(H) be a partial isometry . Then T is

quasinormal.

Proof. Since T is a partial isometry, T°T = I on N(T)‘. Now if TeF;(H), i.e.
| T*u I*< M || Tw ||| » |1+,

N(T) € N(T*) = R(T)".
Hence, R(T) C R(T)** c N(T)*.

Consequently, for any ueH, TueR(T) C N(T)* which implies that (T*T)Tu =
Tu.

But, T being a partial isometry T = TT*T.
Thus (T*T)T = T(T"T) i.e. T is quasinormal.

Proposition 10: Let Te¢F(H). Suppose T" is a compact operator for some n > 1.

Then T itself is a compact operator.
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Proof: The argument is familiar; if n > 1, we show that the hypothesis implies

that 77! is compact which is sufficient to prove the proposition.
Let TeF(H); then, | T*u |[*< M || Tu ||| v ||** , for ueH.
Then, || T*T" 'u ||*< M || T"u |||| T u [|*-1.

Since T" is a compact operator, T*T""! is compact. Hence,
(Tm-1)*T""! = (T*)*%(T*T""!) is compact, which implies that T"~! is compact.

Hence the proposition.

V.1 Istritescu [3] has defined an operator TeB(H) as M-paranormal if || Tz ||*<
M || T?z ||, for all || z ||= 1. Let us denote by Pas(H) the family of all M-paranormal
operators in B(H). Let P(H) = Upn>oPar(H).

Proposition 11: Fy(H) C P(H) i.e. every TeF,(H) is M-paranormal.

Proof. Since TeF;(H), for some M > 0.

[ Tzl|<M|| Tz, for [lz]|=1.

Hence
|| Tz ||2 = <T'Tz,z>
< | T(T) |
< M| Tz .

Hence T is M-paranormal.
Corollary: If TeF(H) = UR,Fi(H) is surjective, then TeP(H).
Since T is surjective, we have T'eFy(H) from Remarks of Propdsition 3.

Proposition 12. Suppose TeP(H) is a unilateral weighted shift operator. Then
TEFz (H) .
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Proof: Suppose {a,} is the weight sequence corresponding to 7. Note that {] an |}

is a bounded sequence by definition.

Then Proposition 4 states that T'eF3(H) if and only if

| tn-1 [*< Bl an| forsome B >0.

In the same way, TeP(H) if and only if
| | an |[< M | apy1| for some M > 0.
Now suppose TeP(H) is a unilateral weighted shift operator with {a,} as its
associated weight sequence. Then we have | a,, [< c for all n and | an [ M | apyy |.

Consequently, sup,, li"'"a—:‘lﬁ < cM. Hence TeF,(H)
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