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In this $\mu\mu r$ ,
$v\dot{n}$many an extensian of full Steiner tree (FST). We disenss same af QFST,

andrnt a $gK$ for obaining a $QFS\Gamma$ ar Ryin$g$ its eximu. With

$BIkm$ we can obtatn a $mi\dot{r}mQFS\Gamma$ that is jast thc $Sm$ $t\iota r$

(SIM7) if it tms the qnnifun topology. We also use this to $r^{\sim}$ muc-
tian methods for $m$ of the well-known $\Re f\Gamma a$

1. Introduction

A Steiner minimal tree (SMT) on a given set X of points called the regular points in

the Euclidean plane is the shortest tree $inter\infty nnecting$ the points of X. Any intersections of

edges which are not in X are called Steiner $\mu ints$ ($s$-points). It is well known5 that each $S-$

-point is of degree three and any.two edges in an SMT intersect at an angle with at least

120’. An interconnecting tree satisfying the above two conditions is called a Steiner tree

(ST). The problem of finding out an SMT on a set X has been showen to be NP-hard5.
However, for certain kinds of sets of regular points, say the point sets of the Ladders, the

Zig-zag lines and the Bar waves, the related SMT problems have been well-resolved. It has

been known5 that an ST for $n$ given points can have at most n-2 s-points. An ST is called a
full Steiner tree $(ae\Gamma)$ if it has n-2 s-points. It has been also known that an ST can be

considered as the union of a certain number of full Steiner tree componentss. Since it is

much easier to construct FST than to $\infty nstruct$ ST,so one way to construct $Sbf\Gamma$ is to con-
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struct its full Steiner tree $\omega mponents$ . This fact illustrates the significance of studying FST.

In this paper, our discussion is based on the notion of Quasi-fuU Steiner tree.

Definition 1. $ S\iota p\mu$)$\infty X$ is a given set of reyukir points in $Eudi\ovalbox{\tt\small REJECT}\phi e,a_{\backslash }\theta\dot{\alpha}ler$ tree on $X$

is caldal a $ Quas\triangleright$fttll $\theta\dot{\alpha p}\ovalbox{\tt\small REJECT}$ tree (QFST) if any angles $forr7ld$ by us t2ro din $\ovalbox{\tt\small REJECT} s$ are of
$120^{}.$ A QFS7‘ on $X$ is $b\dot{ne}f\phi\& otd$ in QFST(X).

Obviously,the notion of QFST is an extension of that of FST. In rhis paper we first

discuss some properties concerning $QFS\Gamma$ , and present later a generating algorithm for ob-

taining a QFST or denying its existence. If a QFST is obtained, by applying this algorithm

repeatedly, we improve each interim QFSTs until a minimum QFST is obtained, and this

$\ovalbox{\tt\small REJECT}$1 QFST is an SMT itself. Thus, our unified way of constructing SMT with quasi-

full topology makes the construction of certain well-known SMTs become very simple.

2.

We intrduoe some notations as follows.

$[u,v]$ (or uv): line segment between points $u$ and $v$.
$d[u,v]_{:}$ Euclidean distance between $u$ and $v$.
(uv): vertex, which is not $u$ and $v$ , of a certain equilateral triangle that $\infty nsains$ the

edge $[u,v]$ , and satisfies that $u,$ $v$ and (uv) are counter-clockwise oriented.

$p(u,v)_{:}$ path from $u$ to $v$.
$L(u,v)$ : broken line from $u$ to $v$.
(I, I): partition of a certain set composed of some of the line segments.

$x(u)_{:}$ abscissa of point $u$ .
$y(u)_{:}$ ordinate of point $u$ .
$uv\rightarrow$ I $0( I 0)_{:}$ translation of $[u,v]$ from I $0$ ( I $0$ ) to I $0$ ( I $0$ ).

$d[T]_{:}$ length of tree T.

From definition 1 and the fundamental properties of ST, we have

Lemma 1. A ST \mbox{\boldmath $\iota$}niJ\mbox{\boldmath $\iota$} at $m$ four reyular $poa\iota ts$ is a QFST if arul only if $d\epsilon ST$ is oonsist

of at most uroe glup of $\mu lulu\Phi s$ anti eucli $\alpha\psi euu\varpi$ any $\ell uvd\dot{p}\infty u\ovalbox{\tt\small REJECT} m$ $to$ &f-
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ferent groups is of 120’.

Definition 2. In an $\alpha,$ a $\mu\ovalbox{\tt\small REJECT} p(u,v)$ ( $k\theta\iota u$ and $v$ are regubr $\mu\dot{a}lts$ ) is referred as $a$ sim-
$\phi p\theta\iota$ if $tJoere$ are at mast $tuDS^{-\mu nt}\dot{a}ltSS$ in $p(u,v)$ and when tiiere are aradly $ tu\mathfrak{v}t/\iota\alpha\iota$ uaey loaxte on

Voe different es of $[u,v]$ . TJe $[u,v]$ is $3lld$ a base of $p(u,v)$ .
Definition 3 A QFST is calZed sepsrable if one of $tJ\iota roe$ groups of parallel $\ovalbox{\tt\small REJECT} s$ is $hkn$ off

( $\infty$ to Lerrana 1) thaen $\alpha\phi i\ovalbox{\tt\small REJECT} d$ ni$n\psi\mu dls$ oyuld exist. $A$ ae\mu ra& QFST mz $X$ is $d\alpha lad$ in
SQFSt(X).

Let the set of all bases of an SQFST(X) be $M,$ $|M|=m$ , and (I, I) a partition of

all bases in $M$ which makes some of the bases members of I and others members of I. The

broken line $L(c,d)$ of (I, I) is formed by first translating, one after another,all the
bases of I (I) to the lower (upper) side of a fixd point, which we call the basic point,

and then connaeting them up. $[c,d]$ is called the chord of (I, I) and (ed) is $c\dot{a}1led$ the

characteristic point of (I, I) (or $L(c,d)$ ). If we consider each base of $L(c,d)$ as a vec-
tor, then $[c,d]$ can be taken as the sum of these vectors. Now, we have

Lemma 2. $Ikr^{2\dot{\alpha t}}\dot{i\alpha}l$ of aae clord of $a$ (I, I) on $M$ is $ddern\dot{m}ld$ only by uae of the tmsic
$\mu\dot{\sigma}u$ of (I , I), and \ell lri is $\dot{u}\&\mu\& lt$ of $glearrmaem\alpha lt$ order of tlle bases in I (or I). $ntr-$

tiurmore, uae cltord $b\iota\phi\ell s$ of $aa\mu ruions$ on $M$ are of a $\infty ndant$ and $ad$ tite cltords are $\mu^{}alu$.
Since the directions of the chords are uniform, we can take the uniform direction as an

ordinate axis, now, if the leftmost regular point is considered as an original point, then we
have with us a $\infty rdinate$ system’. A regular point with minimum (maxmum) akcissa is
called the beginning (terminal) point. A base that contains the beginning (terminal) point

is called the kginning (terminal) base. Usually the beginning point is taken as the basic
point and the $u$ and $v$ of the base $[u,v]$ is supposed to satisfy $y(u)\geq y(v)$ .

Lemma 3. If $\mathfrak{X}F\alpha^{\prime}(X)$ exists, tleen tlre $ l\alpha l\emptyset/\ell$ of $d_{l}eSQFST(X)$ tiut $\infty rres\mu Ids$ to

(I, I) is egual $Wdr$ distance betum $tJled_{l}ara\alpha eridic\mu\dot{\sigma}d$ of (I, I) and $tTle\ell_{4_{\vee}}\eta\dot{m}nd\dot{m}$.
$Pr\infty f$ : We prove this lemma by making induction on the number $m$ of the bases in the

given partition (I , I).

For $m=2,$ $x=\{a_{1},b_{1},a_{2},b_{2}\}$ , and $M=\{[a_{1} ,b_{1}], [a_{2},b_{2}]\}$ , this lemma can be readi-
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ly derived from the theorem 6 and its corollary in [2].

Suppose that the conclusion is true for $m=k$ ,and we prove in the following this is also

true for $m=k+1$

First, we know that if SQFST(X) $=T_{1}\cup T_{2}$ , and $T_{1}\cap T_{2}=s_{S}$ , then

$d[SQFS\Gamma(X)]=d[T_{1}]+d[T_{2}]$ (1)

We then get on to prove $d[T]]=d[(ca_{1}) ,s_{3}]$ (see to Fig. 1. )

Extend $[s_{2},a_{2}]$ to $a_{z^{\prime}}$ so that $d[a_{2},a_{2}^{\prime}]=d[b_{2},s_{3}]$ . Translate $[a_{2},b_{2}]$ to $[b]$ , $c$] and

form $[b]’ e]\parallel[s_{2},s_{3}]$ so that $d[b_{1},e]=d[s_{2},s_{3}]$ . Extend $[a_{1},s_{1}]$ to $q$ so that $d[s_{1},q]=$

$d[s_{2},s_{3}]$. Now , we have

i) $[c,e]\parallel[b_{1} ,s_{1}]$ (since $\Delta a_{2^{\prime}}s_{2}s_{3}\equiv\Delta ceb_{1}$ ).

ii) $[s_{1},s_{2}]\parallel[q, s,],$ $[e, q]\parallel[b_{1},s_{1}]$ and $\angle a_{1}qs_{3}=\angle a_{1}s_{1}s_{2}=120^{o}$ (since both the

quadralaterals $s_{1}qs_{3}s_{2}$ and $b_{1}eqs_{1}$ are parallelograms).

ili) Points $c,e$ and $q$ are \infty llineation points (since $[c,e]\parallel[e,q]$ ).

iv) Points $a_{1},$ $(ca_{1}),$ $c$ and $q$ are concyclic points (since $\angle a_{1}qc=120^{o},$ $\angle a_{1}(ca_{1})c=$

$60^{o})$ .
v) Points $(ca_{1}),$ $q$ , S3 and $s_{4}$ are collineation points (since $\angle alq(ca_{1})=60^{o},$ $\angle a_{1}qs_{3}$

$=120^{0}$ and $[q,s_{S}]\parallel[s_{S},s_{4}]$ ).

From the $\infty nstru\propto ion$ method by Melzak2 , we have

$d[(ca_{1}),s_{3}]=d[c,q]+d[a_{1},q]+d[q,s_{l}]=d[QFST(a_{1},c,s_{3})]$ (2)

Since

$d[T_{1}]=d[b_{1},s_{1}]+d[s_{2},a_{2}]+d[b_{2},s,]+d[a_{1},s_{1}]+d[s_{2},s_{3}]+d[s]’ s_{2}]$

$=d[e,q]+(d[s_{2},a_{2}]+d[a_{2},a_{2^{\prime}}])+(d[a_{1},s_{1}]+d[s_{1},q])+d[q,s_{3}]$

$=d[e,q]+d[s_{2},a_{2^{\prime}}]+d[a_{1},q]+d[q,s_{3}]$

$=(d[e,q]+d[c,e])+d[a_{1},q]+d[q,s,]$

$=d[c,q]+d[a_{1},q]+d[q,s’]$

$=d[QFS\Gamma(a_{1},c,s_{3})]$ (3)
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then we have $d[T]]=d[(ca_{1}),s_{3}]$ .
Lastly, let $M^{\prime}=M\backslash \{[a_{1}, bl]\cup[a_{2},b_{2}]\}\cup\{[a_{1}, c]\},$ $X^{\prime}=X\backslash \{b_{1},a_{2}, b_{2}\}\cup\{c\}$ , where

$x/$ is the set of regular points cooresponding to $M^{\prime}$ . By (1), (2) and (3), we have

$d[QFST(X^{\prime})]=d[QFST(a_{1},c,s_{3})]+d[T_{2}]$

$=d[T_{1}]+d[T_{2}]=d[SQFST(X)]$

Since $|M^{\prime}|=k$ , then by the hypothesis of the induction, we know that the conclusion is

true for $m=k+1$

Figure 1. $0$

3. The Generating Algorithm

3. 1. The Generating Algorit$bm$ for QFST on a Given Partition

Suppose that (I $0$ ’ I $0$ ) is the given partition on M. With $r$espect to the coordinate

system given afore, we arrange the $m$ bases of $M$ orderly from left to right. Let $K(i)(i=$

$1,2,$ $\ldots,m$ ) denote the broken line that is formed from the first $i$ bases of $M$ with respect to

(I $0$ ’ I $0$ ).

Algorithm 1.

Step 1: Let $L(c,d)=K(m)$ . Draw a straight line $R$ by connecting the characteristic

point (od) of (I $0$ ’I $0$ ) and the terminal point $(x_{0}, y_{0})$ . Draw two orientation straight
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lines $R_{1}$ and $R_{2}$ such that the angle between $R$ and $R_{1}(R_{2})$ is of $60^{o}(120^{o})$ .
Step 2: Let the beginning base be $[u, v]$ . Through the characteristic point of $K(1)$

draw a straight line $L(1)\parallel R$ . Through $u$ draw $[u.s^{l}]\parallel R_{2}$ so that $[u,s^{\prime}]\cap L(1)=s^{\prime}$ .
Connecting $s^{\prime}$ with $v$ , a simple path $p(u,v)=[u,s^{l}]\cup[s^{\prime}v]$ is obtained. If $u\equiv v$ , then

$u\equiv d\equiv v$.
Step $3_{:}$ Suppose that $1<:<m$ and the ith base is $[u,v]$. Through the characteristic

point of $K(i)$ draw a straight line $L(i)\parallel R$.
If $[u,v]\in$ I $0$ :

Through $u$ draw $[u,s]\parallel R$, so that $[u,s]\cap L(i-1)=s$. Ibrough $v$ draw $[v,s^{l}]\parallel R_{1}$

so that $[v,s^{\prime}]\cap L(\ddagger)=s^{\prime}$. Connecting the current $s$ with the previous $s^{\prime}$ , an edge $[S^{\prime}s]$ ,

which we call separating edge in the following, is obtained. Connecting the current $s$ with

the current $s^{\prime}$ , a simple path $p(u,v)=[u,s]\cup[s,s^{\prime}]\cup[s^{\prime}v]$ is obtained.

If $[u,v]\in$ I $0$ :

Through $u$ draw $[u,s^{l}]\parallel R_{2}$ so that $[u,s^{\prime}]\cap L(I)=s^{\prime}$ . Through $v$ draw $[v,s]\parallel R_{2}$

so that $[v,s]\cap L(i-1)=s$. Connecting the current $s$ with the previous $y$ a separating edge

$[s^{\prime}s]$ is obtained. Connecting the current $s$ with the current $s$‘, a simple path $p(u,v)=$

$[u,s^{\prime}]\cup[s^{\prime} s]\cup[s,v]$ is obtained.

Repeat this step until $\ddagger=m-1$ .
Step 4: Let $[u,v]$ be the terminal base. Through $u$ draw $[u,s]\parallel R_{1}$ so that $[u,s]$

$\cap L(m-1)=s$. Connecting $v$ with $s$ , a simple path $p(u,v)=[u,s]U[s,v]$ is obtaind.
Connecting the current $s$ with the previous $s^{l}$, a separating edge $[s^{j}s]$ is obtained. If $u\equiv v$ ,

then $u\equiv s\equiv v$. Stop.

Now, the union of all the simple paths and separating edges produced by this algorithm

is the very QFST that we want to generate, and this one is specifically denoted in QFST

(I $0$ ’ I O) in the following.

Corolary. $I7e$ SQFffl( I $0$ ’ I $0$ ) zlsts if and $\alpha\phi$ if iitl $ id\iota$ base $\dot{n}t\sigma M$ urid\mbox{\boldmath $\iota$} $u\int\ell L(i)$
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$\varpi dL(i-1)$ , for $i=2,3,$ $\cdots$ , m-l, and $V\iota wmni_{Jl}g$ $(\emptyset\cdot mawl)$ $h\iota \mathfrak{B}$ vltermts $unt/lL(1)$

$(L(m-1))$ .
The partition (I $0$ ’ I o) in the above corollary is called a feasible partition.

Definition 4. A QFST $(I, I)$ is $\omega ud$ optimal if its tree lengli is dae $sl_{l}orled$ among

$dl$ QFSTs on X. An $0\mu imal$ QPST (X) is&ad in QFST (X), and tite \mu ruin $(I, I)$ is

called an ofiinwl $\mu ru\dot{u}m$ .

3. 2. The $Ge\mathfrak{n}erating$ Algorithm for Optimal Partition

Let $P(X)$ be the set of all partitions on $M$ , $(x,y)$ the characteristic point of (I $0$ ’

I $0$ ), and $y(c)<y(d)forL(c,d)$ . We have

$x=-\sqrt{3}/2(\sum_{uv\epsilon u_{1}}\Delta y[uv]+\sum_{uv\epsilon\backslash }\Delta y[uv])$ (4)

$y=1/2(\sum_{rv\in I1_{*}}\Delta y[uv]-\sum_{\vee\epsilon 1}\Delta y[uv])$ (5)

where $\Delta x[uv]=x(u)-x(v),$ $\Delta y[uv]=y(u)-y(v)$ .
Under transformation $uv\rightarrow I0$ ( I $0$ ),the partition (I $0$ ’ I $0$ ) $b\propto omes(I, I)$ and $\Delta x$

and $\Delta y$ turn out as

$\Delta x=\sum_{uv\rightarrow u}\Delta x[uv]-\underline{\sum_{1_{1}}}\Delta x[uv]$ (6)

$\Delta y=\sum_{u-u_{0}}\Delta y[uv]-\sum_{\vee 1_{1}}\Delta y[uv]$ (7)

Define the test number $\lambda(1, I)$ of (I, I) by (8)

$\lambda(I, I)=2(x-x_{0})\Delta x+2(y-y_{0})\Delta y+\Delta x^{2}+\Delta y^{2}$ (8)

Algorithm 2.

Step $0_{:}$ $(I 0’ I 0)_{:}=(M, \emptyset)$

Step 1:
$\lambda$ ( I ’ , I $‘$ ) $:=\min$ $\{$ $\}.(I, I)|$ ( $I$ , I ) $\neq$ ( I $0$ ’ I $0$ ) , (I, $I$ ) $\in P(X)$ }

(9)

Step 2: If (I $0$ ’Io) is feasible, test $\lambda$ ( I ’ , I ’ ) $\geq 0$ ?

if}.( I ’ , I $’$ ) $\geq 0$ , trun to step 3,
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else $(I 0’ I 0)_{:}=(lf , 1 ’)$ , and turn to step 1;

else take $P(X)_{:}=P(X)\backslash $ { $(I0$ ’ I $0)$ }, test $P(X)=\emptyset$ ?

if $P(X)=\emptyset$ , tum to step 4,

else $(I 0’ I 0)_{:}=$ ( $I$ ’ , I ’), and tum to step 1.

Step $3_{:}$ Generate QFST( I $0$ ’ I $0$ ) with algorithm l.Then output

QFST ‘ (X) $=QFST$ ( I $0$ ’I $0$ ),

and $d$ [$QFST$ ‘ (X)] $=\sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}}$ , stop. (10)

Step 4: the SMT(X) is not a QFST, stop.

3. 3. Main Result

Theorem. If $d\epsilon SMT(X)$ is of a separable $quasi-fiMb\mu\infty y,yr$ tie QFST ‘ (X) $M\dot{u}\iota d$

$\dot{\epsilon}$ an SMT(X) itudf. If $ue$ QFST” (X) cannd be $W,$ $ua$ tite SMT(X) may not be separa-

$uy$ qutzsi-full.

Proof: By virtue of the minimum property of SMT, we have

$d[SMT(X)]\leq d[QFST(X)]$ . (11)

From (8) and Lemma 3 we have

$\lambda$(I, I ) $=[(x+\Delta x-x_{0})^{2}+(y+\Delta y-y_{0})^{2}]-[(x-x_{0})^{2}+(y-y_{0})^{2}]$

$=d^{2}$ [$QFST$(I, I $)$ ] $-d^{2}$ [$QFST($ I $0$ ’ I $0)$ ] (12)

Where (I $0$ ’ I o) is the original feasible partition and (I, I) is a new partition formed

through interchanging some of the bases in (I $0$ ’ I $0$ ). $\lambda$ ( I ’, I $’$ ) $\geq 0$ implies that

$\lambda$ ( I , I ) $\geq 0$ for any feasible (I, I) , that is to say no matter how one constructs new

feasible partitions from making combinations of the bases, no QFST ( I, 1) with smaller

length can be obtained. Therefore, the QFST( I $0$ ’ I $0$ ) is an optimal separable one which

we denote in the following in QFST (X). Now, we have

$d$[$QFST$ ( I $0$ ’ I $0)$ ] $=d[QFST(X)]\leq d$[$QFST(I$ , I )].

S\’ince $Shf\Gamma(X)$ is a separably quasi-full one, so

$d[QFST(X)]\leq d[SMT(X)]$ . (13)
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By (11) and (13),

$d[SMT(X)]=d[QFST(X)]$ . (14)

Since (I $0$ ’ I $0$ ) is feasible, so QFST “ (X) exists; Therefore SMT(X) $=QFST(X)$ .
If the QFST ‘ (X) cannot be generated by the generating algorithm, then, of course,

the SMT(X) may not be separably quasi-full. $0$

4. Examples

4. 1. SMT on point set of Ladder

Example 1. It is known that the SMT on Ladder was first given out by Chung and

Graham in [1]. For such $S_{-}MT$ , the set of regular points is $L_{n}=\{a_{i},b_{l}|a_{k}=(2k-2,2)$ ,
$b_{k}=(2k-2,0),$ $k=1,2,$ $\ldots,n$ } which is shown in Fig. 2. , where $a_{l},$ $b_{k}(k=1,2, \cdots,n)$

are $c\infty rdinat\infty$ of the regular points.

By applying the results gained in [1], we can prove that the SMT(L.) is separably

quasi-full. We now take $[a_{t},b_{k}]$ as the base and $b_{1}$ as the basic point.

Figure 2.
(1) When $n$ is an odd number, let (I $0$ ’ I $0$ ) be such one that I $0^{=}\{[a_{k},b_{t}]|k=$

$2,4,$ $\ldots$ , n-l} and I $0^{=}\{[a_{k},b_{k}]|k=1,3, \cdots,n\}$ , and let $a_{n}$ be the terminal point of $L$ .
Now, the broken line $L(c,d)$ of( I $0$ ’ I $0$ ) coincides with $\dot{\iota}ts$ chord $[c,d]$ on the ordinate
axis, where $c=$ ( $O$ , l-n), $d=(0,1+n)$ (see to Fig. 3. ). The QFST‘ $(L_{5})$ , as in shown
in Fig. 3. , is constructed by appplying the generating algorithm in 31 Obviously, for this
(I $0$ ’ I $0$), the distance between the characteristic point and $a_{n}$ is the $short\infty t$ , so the QFST
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(I $0$ ’ I $0$ ) is QFST“ (L.) , which is just the one given by Chung and Graham in [1].

Figure 3.
(2) When $n$ is an even number, let (I $0$ ’ I $0$ ) be such one that I $0^{=}\{[a_{k},b_{k}]|k=$

$2,4,$ $\cdots$ , $n$ } and I $0^{=}$ { $[a_{k},b_{k}]$ I $k=1,3,$ $\cdots$ , n-l}, and let $b_{n}$ be the terminal point of $L_{n}$ .
The QFST( I $0$ ’ I $0$), as is shown in Fig. 4. $(n=4)$ , is constructed by Algorithm 1.

Figu$re4$ .
For this (I $0$ ’ I $0$ ), the basic point $b_{1}$ becomes the mid-point of $[c,d]$ , and the termi-
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nal point $b_{n}$ locates on the abscissa axis, hence $d[(cd) , b_{n}]$ is the minimum, and we have

QFST (I $0$ ’ I $0$ ) $=QFST$ (L.) $=SMT$ (L.). This result accords with the one given by

Chung and Graham in [1].

4. 2 SMT on point set of $Zig-zag$ line

Example 2. In [3] , Du, Hwang and Weng gave out the SMT on the point set of Zig-

zag line on conditions that $z_{n}=\{al , a_{2}, \cdots ,a_{n}\}$ is Convex-normal. A Zig-zag line is one as
is shown in Fig. 5. $(n=7)$ .

Figure 5.
Du, Hwang and Weng proved3 that $p(a_{k},a_{k+1})$ on the $[a_{\iota},a_{k+1}]$ are simple paths $(k$

$=1,3,$ $\cdots,m$ ; where $m=n-2$ for odd $n$ , or $m=n-1$ for even n). Let $a_{1}$ be the basic point,
$a_{u}$ the terminal point, I $0^{=M}$ and I $0^{=\emptyset}$ . The QFST( I $0$ ’ I $0$), as is shown in Fig. 6.
$(n=7)$ , is.constructed by applying Algorithm 1.

Figure 6.
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By the Convex-normal condition set in [3], we have

$d[a_{k},a_{k+2}]\geq\max\{d[a_{k},a_{k+l}] ,d[a_{\iota+l},a_{l+2}]\}$

where $\angle a_{k}=\alpha$ and $60^{o}\leq\alpha<120^{o}for$ every $k$ . Now,we have $\angle a_{f}a_{1}a_{u}\leq\angle a_{t}a_{1}a_{3}\leq\angle a_{1}ca_{n}$

(see to Fig. 6. , $n=7$). Since (I $0$ ’ I $0$ ) $=(M, \emptyset),$ $d[(oe])$ , $a_{u}$] must be the minimum

(see to Fig. 6. ) so QFST( I $0’ 1_{0}$ ) $=QFST^{*}(Z_{n})=SMT(Z)$ . Th $is$ result is in accord

with the one given in [3].

4. 3. SMT on $poi\mathfrak{n}t$ set of Bar $\ell zva\propto$

Example 3. In [4],Du and Hwang gave out the $SMT(B_{n})$ , where $B_{n}=\{a_{t},$ $b_{k}|k=$

$1$ , 2,. . . , $n$ } (see to Fig. 7. for $n=5$), $d[a_{k},a_{h+)}]\geq\max\{d[a_{1},b_{l}], d[a_{k+1}, b_{1+l}]\}$ for

$k=1,2,\ldots$ , $n-1$ . Du and Hwang proved in [4] that paths on $[a_{k}, b_{k}]$ are all simple

paths. Let I $0^{=}$ { $[a_{k},$ $h]|k$ is even}, I $0^{=}$ { $[a_{\iota},$ $b_{k}]|k$ is odd},and $a_{n}$ the terminal

point of $B_{n}$ .

Figure 7.

Obviously, the characteristic point of (I $0$ ’ I $0$ ) is on the abscissa axis; hence the

QFST(B..) constructed by applying Algorithm 1. is an optimal QFST“ (B.). Therefore,

QFST “ $(B_{n})=SMT(B_{n})$ and this is in accord with the result gained in [4].
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