A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds

Kazuko MATSUMOTO

Introduction. Let M be a C^{∞} Riemannian manifold with a metric g, let S be a submanifold of M and denote by d(x) the distance from $x \in M$ to S induced by the metric g. In the study of various problems of analysis, the function d = d(x) is a useful tool and one must ensure that it is sufficiently differentiable (on some open subset of M) for one's purpose.

In this paper we prove that if S is a C^k regular submanifold of M and $2 \leq k \leq \infty$, then there exists an open subset Δ of M such that $S \subset \Delta$ and the function $h = h(x) = d(x)^2$ is of class C^k on Δ . Here we say that S is a C^k regular submanifold of M if each point x_0 of S has a C^k coordinate neighborhood $(U, \psi), \psi = (\psi_1, \ldots, \psi_n)$, such that $S \cap U = \{p \in U : \psi_{r+1}(p) = \cdots = \psi_n(p) = 0\}$, where $n = \dim M$ and $0 \leq r \leq n-1$. In particular, the set S has no boundary but it needs not be closed or connected.

When S is a hypersurface of the Euclidean space \mathbb{R}^n , it is easy by the implicit function theorem to see that if S is of class C^k , $k \ge 2$, then there exists an open set including S where h is of class C^{k-1} . In this case, Gilbarg-Trudinger ([2], Lemma 1 of Appendix) showed, as the strict result of Serrin ([5], Lemma 1 of Chapter I, §3), that h is further of class C^k on some open set including S. Their proofs depend on the geometric method, but later Krantz-Parks [3] showed it by elementary means (see also Krantz [4], pp. 136-137). Our proof in this paper is the extension of Krantz-Parks' one.

We note here that the statement above is false in the case k = 1. In fact, there is a C^1 curve S in the Euclidean space \mathbb{R}^2 which contains a point without positive reach (see, for example, [3]). It follows from the general result of Federer ([1], Theorem 4.8) that the function $h = d^2$ is then not differentiable near the point of S without positive reach.

— 81 —

1. Let M be a C^{∞} Riemannian manifold of dimension n and let g be a metric on M. For two points x and y of M, we denote by $\delta(x, y)$ the distance between x and y induced by the metric g.

It is well-known that each $x_0 \in M$ has a coordinate neighborhood U where any two points x and y can be joined by a unique minimizing geodesic $\xi = \xi(s)$, $s \in [0, 1]$, in M. If the neighborhood U of x_0 is sufficiently small, the geodesic ξ has the expression $\xi(s) = \exp_x sv$ for some $v = v(x, y) \in T_x(M)$ and the mapping v = v(x, y) is of class C^{∞} on $U \times U$. Then we can write

$$\delta(x, y) = \delta(x, \exp_x v) = \sqrt{g_x(v, v)}$$

for $x, y \in U$.

Regarding the coordinate neighborhood U as an open subset of \mathbb{R}^n , we put $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ for $x, y \in U$. Moreover, we put

$$g_{ij} = g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right), \qquad 1 \leq i, j \leq n,$$

and write

$$v = \sum_{i=1}^{n} v_i \left(\frac{\partial}{\partial x_i}\right)_x.$$

Then the functions $g_{ij} = g_{ij}(x)$ and $v_i = v_i(x, y)$ are of class C^{∞} on U and $U \times U$ respectively, and the matrix (g_{ij}) is positive definite symmetric at each point of U. Further, it follows from the property of the exponential mapping $y = \exp_x v$ that the functions $v_i = v_i(x, y), 1 \le i \le n$, satisfy the conditions

$$v_i(x_0, x_0) = 0, \quad \frac{\partial v_i}{\partial y_j}(x_0, x_0) = \delta_{ij}, \qquad 1 \leq i, j \leq n.$$

Thus we obtain the following:

LEMMA. For each point x_0 of a C^{∞} Riemannian manifold M, there exist a coordinate neighborhood U of x_0 and C^{∞} functions $v_i = v_i(x, y), 1 \le i \le n$, on $U \times U$ such that

(i)
$$\delta(x,y)^2 = \sum_{i,j=1}^n g_{ij}(x) v_i(x,y) v_j(x,y),$$

(ii)
$$v_i(x_0, x_0) = 0, \quad \frac{\partial v_i}{\partial y_j}(x_0, x_0) = \delta_{ij}, \qquad 1 \le i, j \le n.$$

2. For a given submanifold S of M, we define the function d = d(x) by

$$d(x) = \delta(x, S) = \inf \{\delta(x, y) : y \in S\}, \qquad x \in M.$$

We shall now prove the following:

— 82 —

THEOREM. If S is a C^k regular submanifold of a C^{∞} Riemannian manifold M and $2 \leq k \leq \infty$, then there exists an open subset Δ of M such that $S \subset \Delta$ and the restriction to Δ of the function $h = d^2$ is of class C^k .

PROOF: Let x_0 be a point of S and let r be the dimension of the connected component of S containing x_0 . Then we can take a coordinate neighborhood $U (\subset M)$ of x_0 , so that the set $S \cap U$ is written by

$$S \cap U = \{\varphi(t) = (\varphi_1(t), \ldots, \varphi_n(t)) : t = (t_1, \ldots, t_r) \in E\}$$

for some open subset $E \subset \mathbf{R}^r$ and some C^k mapping $\varphi : E \longrightarrow U$ such that the Jacobian matrix

$$\Phi = \frac{D(\varphi_1, \ldots, \varphi_n)}{D(t_1, \ldots, t_r)} = \left(\frac{\partial \varphi_i}{\partial t_{\mu}}\right)_{1 \le i \le n, 1 \le \mu \le r}$$

has the rank r at $t = t_0$ if $x_0 = \varphi(t_0)$ for $t_0 \in E$. (When r = 0, we take U so that $S \cap U = \{x_0\}$.)

Now if $U' (\subset M)$ is a neighborhood of x_0 and

$$U' \subset \{x \in M : \delta(x, x_0) < \varepsilon\} \subset \{x \in M : \delta(x, x_0) < 2\varepsilon\} \subset U$$

for some $\varepsilon > 0$, then it follows that $d(x) = \delta(x, S) = \delta(x, S \cap U)$ for $x \in U'$. Therefore, it is sufficient for the proof of Theorem to show that the point x_0 has a neighborhood U_0 ($\subset U'$) where the function $h = d(x)^2 = \delta(x, S \cap U)^2$ is of class C^k . Moreover, we may, by shrinking the neighborhoods U and U' of x_0 if necessary, assume that for this U there exist C^{∞} functions $v_i = v_i(x, y)$, $1 \leq i \leq n$, on $U \times U$ satisfying the conditions (i) and (ii) of Lemma.

First if r = 0, that is, if $S \cap U = \{x_0\}$, it follows immediately from the condition (i) that $h = d(x)^2 = \delta(x, x_0)^2$ is of class C^{∞} on U'. Hence we suppose that $1 \le r \le n-1$.

For $x = (x_1, \ldots, x_n) \in U$ and $t = (t_1, \ldots, t_r) \in E$, we put

$$f(x,t) = \delta(x,\varphi(t))^2 = \sum_{i,j=1}^n g_{ij}(x) v_i(x,\varphi(t)) v_j(x,\varphi(t))$$

and

$$F_{\mu}(x,t) = \frac{\partial f}{\partial t_{\mu}}(x,t), \qquad 1 \leq \mu \leq r.$$

— 83 —

Then the mapping $F = (F_1, \ldots, F_r)$ is of class C^{k-1} , $k \ge 2$, on $U \times E$. Moreover, we can verify that

(*)
$$\det \frac{D(F_1,\ldots,F_r)}{D(t_1,\ldots,t_r)}(x_0,t_0) \neq 0.$$

In fact, it follows from the condition (ii) and the symmetry of the matrix $G = (g_{ij})$ that

$$\begin{aligned} \frac{\partial F_{\mu}}{\partial t_{\nu}}(x_{0},t_{0}) &= \frac{\partial^{2} f}{\partial t_{\mu} \partial t_{\nu}}(x_{0},t_{0}) \\ &= 2 \sum_{i,j=1}^{n} g_{ij}(x_{0}) \left\{ \sum_{\alpha=1}^{n} \frac{\partial v_{i}}{\partial y_{\alpha}}(x_{0},x_{0}) \frac{\partial \varphi_{\alpha}}{\partial t_{\mu}}(t_{0}) \right\} \\ &\qquad \times \left\{ \sum_{\beta=1}^{n} \frac{\partial v_{j}}{\partial y_{\beta}}(x_{0},x_{0}) \frac{\partial \varphi_{\beta}}{\partial t_{\nu}}(t_{0}) \right\} \\ &= 2 \sum_{i,j=1}^{n} g_{ij}(x_{0}) \frac{\partial \varphi_{i}}{\partial t_{\mu}}(t_{0}) \frac{\partial \varphi_{j}}{\partial t_{\nu}}(t_{0}) \end{aligned}$$

for $1 \leq \mu, \nu \leq r$, and hence

$$\frac{D(F_1,\ldots,F_r)}{D(t_1,\ldots,t_r)}(x_0,t_0) = 2 t \Phi(t_0) G(x_0) \Phi(t_0).$$

Now since $G(x_0)$ is positive definite symmetric and $\Phi(t_0)$ has the rank r, the matrix ${}^t\Phi(t_0) G(x_0) \Phi(t_0)$ is also positive definite symmetric and so its determinant does not vanish. This implies (*). Therefore, we can by the implicit function theorem find a neighborhood U_0 ($\subset U'$) of x_0 , so that each $x \in U_0$ has a unique solution $t = t(x) \in E$ of the system of equations $F_{\mu}(x,t) = 0$, $1 \leq \mu \leq r$, and the mapping $t = t(x) = (t_1(x), \ldots, t_r(x))$ is of class C^{k-1} on U_0 . Then for each $x \in U_0$ there exists at least one point $t' \in E$ such that $d(x) = \delta(x, S \cap U) = \delta(x, \varphi(t'))$. Further, the point t' is uniquely determined by x and it must coincide to t(x) because $f = f(x,t) = \delta(x, \varphi(t))^2$ is minimal at t = t' for each x.

Hence we can write

$$h(x) = \delta(x, S \cap U)^2 = \delta(x, \varphi(t(x)))^2 = f(x, t(x))$$

for $x \in U_0$, and first see that h is of class C^{k-1} on U_0 . Then the partial derivatives of h are expressed by

$$\frac{\partial h}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x,t(x)) + \sum_{\mu=1}^r \frac{\partial f}{\partial t_{\mu}}(x,t(x)) \frac{\partial t_{\mu}}{\partial x_i}(x).$$

Since t = t(x) is the solution of $F_{\mu}(x,t) = (\partial f/\partial t_{\mu})(x,t) = 0$ for $1 \le \mu \le r$, we further obtain

$$\frac{\partial h}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x, t(x)), \qquad 1 \le i \le n,$$

and see that they are also of class C^{k-1} on U_0 . Therefore, we can conclude that the function $h = d^2$ is of class C^k on $U_0 = U(x_0)$ and hence on the open set $\Delta = \bigcup_{x_0 \in S} U(x_0)$ including S, which proves the theorem.

3. When $M = \mathbb{R}^n$ and the metric g of M is Euclidean, the distance $\delta(x, y)$ between $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ is given by $\delta(x, y)^2 = \sum_{i=1}^n (y_i - x_i)^2$. Then the functions $g_{ij} = g_{ij}(x)$ and $v_i = v_i(x, y)$ in Lemma are written by $g_{ij}(x) \equiv \delta_{ij}$ and $v_i(x, y) = y_i - x_i$. Finally we note that the calculation above of our proof of Theorem is simpler than that of Krantz ([4], pp. 136-137) in this case.

References

- 1. H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
- 2. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer, Berlin-Heidelberg-New York, 1977.
- 3. S. G. Krantz and H. R. Parks, Distance to C^k hypersurfaces, J. Differential Equations, 40 (1981), 116-120.
- 4. S. G. Krantz, "Function Theory of Several Complex Variables," John Wiley, New York-London, 1982.
- 5. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413-496.

Kazuko MATSUMOTO

Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata, 950-21 Japan

Received April 27, 1992, Revised June 12, 1992.