A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds

Kazuko Matsumoto

Introduction. Let M be a C^{∞} Riemannian manifold with a metric g, let S be a submanifold of M and denote by $d(x)$ the distance from $x \in M$ to S induced by the metric g. In the study of various problems of analysis, the function $d=d(x)$ is a useful tool and one must ensure that it is sufficiently differentiable (on some open subset of M) for one's purpose.

In this paper we prove that if S is a C^{k} regular submanifold of M and $2 \leq k \leq \infty$, then there exists an open subset Δ of M such that $S \subset \Delta$ and the function $h=h(x)=d(x)^{2}$ is of class C^{k} on Δ. Here we say that S is a C^{k} regular submanifold of M if each point x_{0} of S has a C^{k} coordinate neighborhood $(U, \psi), \psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$, such that $S \cap U=\left\{p \in U: \psi_{r+1}(p)=\right.$ $\left.\cdots=\psi_{n}(p)=0\right\}$, where $n=\operatorname{dim} M$ and $0 \leq r \leq n-1$. In particular, the set S has no boundary but it needs not be closed or connected.

When S is a hypersurface of the Euclidean space \mathbf{R}^{n}, it is easy by the implicit function theorem to see that if S is of class $C^{k}, k \geq 2$, then there exists an open set including S where h is of class C^{k-1}. In this case, Gilbarg-Trudinger ([2], Lemma 1 of Appendix) showed, as the strict result of Serrin ([5], Lemma 1 of Chapter I, §3), that h is further of class C^{k} on some open set including S. Their proofs depend on the geometric method, but later Krantz-Parks [3] showed it by elementary means (see also Krantz [4], pp. 136-137). Our proof in this paper is the extension of Krantz-Parks' one.

We note here that the statement above is false in the case $k=1$. In fact, there is a C^{1} curve S in the Euclidean space \mathbf{R}^{2} which contains a point without positive reach (see, for example, [3]). It follows from the general result of Federer ([1], Theorem 4.8) that the function $h=d^{2}$ is then not differentiable near the point of S without positive reach.

1. Let M be a C^{∞} Riemannian manifold of dimension n and let g be a metric on M. For two points x and y of M, we denote by $\delta(x, y)$ the distance between x and y induced by the metric g.

It is well-known that each $x_{0} \in M$ has a coordinate neighborhood U where any two points x and y can be joined by a unique minimizing geodesic $\xi=\xi(s)$, $s \in[0,1]$, in M. If the neighborhood U of x_{0} is sufficiently small, the geodesic ξ has the expression $\xi(s)=\exp _{x} s v$ for some $v=v(x, y) \in T_{x}(M)$ and the mapping $v=v(x, y)$ is of class C^{∞} on $U \times U$. Then we can write

$$
\delta(x, y)=\delta\left(x, \exp _{x} v\right)=\sqrt{g_{x}(v, v)}
$$

for $x, y \in U$.
Regarding the coordinate neighborhood U as an open subset of \mathbf{R}^{n}, we put $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ for $x, y \in U$. Moreover, we put

$$
g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right), \quad 1 \leq i, j \leq n
$$

and write

$$
v=\sum_{i=1}^{n} v_{i}\left(\frac{\partial}{\partial x_{i}}\right)_{x}
$$

Then the functions $g_{i j}=g_{i j}(x)$ and $v_{i}=v_{i}(x, y)$ are of class C^{∞} on U and $U \times U$ respectively, and the matrix $\left(g_{i j}\right)$ is positive definite symmetric at each point of U. Further, it follows from the property of the exponential mapping $y=\exp _{x} v$ that the functions $v_{i}=v_{i}(x, y), 1 \leq i \leq n$, satisfy the conditions

$$
v_{i}\left(x_{0}, x_{0}\right)=0, \quad \frac{\partial v_{i}}{\partial y_{j}}\left(x_{0}, x_{0}\right)=\delta_{i j}, \quad 1 \leq i, j \leq n
$$

Thus we obtain the following:
Lemma. For each point x_{0} of a C^{∞} Riemannian manifold M, there exist a coordinate neighborhood U of x_{0} and C^{∞} functions $v_{i}=v_{i}(x, y), 1 \leq i \leq n$, on $U \times U$ such that

$$
\begin{gather*}
\delta(x, y)^{2}=\sum_{i, j=1}^{n} g_{i j}(x) v_{i}(x, y) v_{j}(x, y), \tag{i}\\
v_{i}\left(x_{0}, x_{0}\right)=0, \quad \frac{\partial v_{i}}{\partial y_{j}}\left(x_{0}, x_{0}\right)=\delta_{i j}, \quad 1 \leq i, j \leq n \tag{ii}
\end{gather*}
$$

2. For a given submanifold S of M, we define the function $d=d(x)$ by

$$
d(x)=\delta(x, S)=\inf \{\delta(x, y): y \in S\}, \quad x \in M
$$

We shall now prove the following:

Theorem. If S is a C^{k} regular submanifold of a C^{∞} Riemannian manifold M and $2 \leq k \leq \infty$, then there exists an open subset Δ of M such that $S \subset \Delta$ and the restriction to Δ of the function $h=d^{2}$ is of class C^{k}.

Proof: Let x_{0} be a point of S and let r be the dimension of the connected component of S containing x_{0}. Then we can take a coordinate neighborhood $U(\subset M)$ of x_{0}, so that the set $S \cap U$ is written by

$$
S \cap U=\left\{\varphi(t)=\left(\varphi_{1}(t), \ldots, \varphi_{n}(t)\right): t=\left(t_{1}, \ldots, t_{r}\right) \in E\right\}
$$

for some open subset $E \subset \mathbf{R}^{r}$ and some C^{k} mapping $\varphi: E \longrightarrow U$ such that the Jacobian matrix

$$
\Phi=\frac{D\left(\varphi_{1}, \ldots, \varphi_{n}\right)}{D\left(t_{1}, \ldots, t_{r}\right)}=\left(\frac{\partial \varphi_{i}}{\partial t_{\mu}}\right)_{1 \leq i \leq n, 1 \leq \mu \leq r}
$$

has the rank r at $t=t_{0}$ if $x_{0}=\varphi\left(t_{0}\right)$ for $t_{0} \in E$. (When $r=0$, we take U so that $S \cap U=\left\{x_{0}\right\}$.)

Now if $U^{\prime}(\subset M)$ is a neighborhood of x_{0} and

$$
U^{\prime} \subset\left\{x \in M: \delta\left(x, x_{0}\right)<\varepsilon\right\} \subset\left\{x \in M: \delta\left(x, x_{0}\right)<2 \varepsilon\right\} \subset U
$$

for some $\varepsilon>0$, then it follows that $d(x)=\delta(x, S)=\delta(x, S \cap U)$ for $x \in U^{\prime}$. Therefore, it is sufficient for the proof of Theorem to show that the point x_{0} has a neighborhood $U_{0}\left(\subset U^{\prime}\right)$ where the function $h=d(x)^{2}=\delta(x, S \cap U)^{2}$ is of class C^{k}. Moreover, we may, by shrinking the neighborhoods U and U^{\prime} of x_{0} if necessary, assume that for this U there exist C^{∞} functions $v_{i}=v_{i}(x, y)$, $1 \leq i \leq n$, on $U \times U$ satisfying the conditions (i) and (ii) of Lemma.

First if $r=0$, that is, if $S \cap U=\left\{x_{0}\right\}$, it follows immediately from the condition (i) that $h=d(x)^{2}=\delta\left(x, x_{0}\right)^{2}$ is of class C^{∞} on U^{\prime}. Hence we suppose that $1 \leq r \leq n-1$.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in U$ and $t=\left(t_{1}, \ldots, t_{r}\right) \in E$, we put

$$
f(x, t)=\delta(x, \varphi(t))^{2}=\sum_{i, j=1}^{n} g_{i j}(x) v_{i}(x, \varphi(t)) v_{j}(x, \varphi(t))
$$

and

$$
F_{\mu}(x, t)=\frac{\partial f}{\partial t_{\mu}}(x, t), \quad 1 \leq \mu \leq r
$$

Then the mapping $F=\left(F_{1}, \ldots, F_{r}\right)$ is of class $C^{k-1}, k \geq 2$, on $U \times E$. Moreover, we can verify that

$$
\begin{equation*}
\operatorname{det} \frac{D\left(F_{1}, \ldots, F_{r}\right)}{D\left(t_{1}, \ldots, t_{r}\right)}\left(x_{0}, t_{0}\right) \neq 0 . \tag{*}
\end{equation*}
$$

In fact, it follows from the condition (ii) and the symmetry of the matrix $G=$ ($g_{i j}$) that

$$
\begin{aligned}
\frac{\partial F_{\mu}}{\partial t_{\nu}}\left(x_{0}, t_{0}\right)= & \frac{\partial^{2} f}{\partial t_{\mu} \partial t_{\nu}}\left(x_{0}, t_{0}\right) \\
= & 2 \sum_{i, j=1}^{n} g_{i j}\left(x_{0}\right)\left\{\sum_{\alpha=1}^{n} \frac{\partial v_{i}}{\partial y_{\alpha}}\left(x_{0}, x_{0}\right) \frac{\partial \varphi_{\alpha}}{\partial t_{\mu}}\left(t_{0}\right)\right\} \\
& \times\left\{\sum_{\beta=1}^{n} \frac{\partial v_{j}}{\partial y_{\beta}}\left(x_{0}, x_{0}\right) \frac{\partial \varphi_{\beta}}{\partial t_{\nu}}\left(t_{0}\right)\right\} \\
= & 2 \sum_{i, j=1}^{n} g_{i j}\left(x_{0}\right) \frac{\partial \varphi_{i}}{\partial t_{\mu}}\left(t_{0}\right) \frac{\partial \varphi_{j}}{\partial t_{\nu}}\left(t_{0}\right)
\end{aligned}
$$

for $1 \leq \mu, \nu \leq r$, and hence

$$
\frac{D\left(F_{1}, \ldots, F_{r}\right)}{D\left(t_{1}, \ldots, t_{r}\right)}\left(x_{0}, t_{0}\right)=2^{t} \Phi\left(t_{0}\right) G\left(x_{0}\right) \Phi\left(t_{0}\right)
$$

Now since $G\left(x_{0}\right)$ is positive definite symmetric and $\Phi\left(t_{0}\right)$ has the rank r, the matrix ${ }^{t} \Phi\left(t_{0}\right) G\left(x_{0}\right) \Phi\left(t_{0}\right)$ is also positive definite symmetric and so its determinant does not vanish. This implies (*). Therefore, we can by the implicit function theorem find a neighborhood $U_{0}\left(\subset U^{\prime}\right)$ of x_{0}, so that each $x \in U_{0}$ has a unique solution $t=t(x) \in E$ of the system of equations $F_{\mu}(x, t)=0$, $1 \leq \mu \leq r$, and the mapping $t=t(x)=\left(t_{1}(x), \ldots, t_{r}(x)\right)$ is of class C^{k-1} on U_{0}. Then for each $x \in U_{0}$ there exists at least one point $t^{\prime} \in E$ such that $d(x)=\delta(x, S \cap U)=\delta\left(x, \varphi\left(t^{\prime}\right)\right)$. Further, the point t^{\prime} is uniquely determined by x and it must coincide to $t(x)$ because $f=f(x, t)=\delta(x, \varphi(t))^{2}$ is minimal at $t=t^{\prime}$ for each x.

Hence we can write

$$
h(x)=\delta(x, S \cap U)^{2}=\delta(x, \varphi(t(x)))^{2}=f(x, t(x))
$$

for $x \in U_{0}$, and first see that h is of class C^{k-1} on U_{0}. Then the partial derivatives of h are expressed by

$$
\frac{\partial h}{\partial x_{i}}(x)=\frac{\partial f}{\partial x_{i}}(x, t(x))+\sum_{\mu=1}^{r} \frac{\partial f}{\partial t_{\mu}}(x, t(x)) \frac{\partial t_{\mu}}{\partial x_{i}}(x) .
$$

Since $t=t(x)$ is the solution of $F_{\mu}(x, t)=\left(\partial f / \partial t_{\mu}\right)(x, t)=0$ for $1 \leq \mu \leq r$, we further obtain

$$
\frac{\partial h}{\partial x_{i}}(x)=\frac{\partial f}{\partial x_{i}}(x, t(x)), \quad 1 \leq i \leq n,
$$

and see that they are also of class C^{k-1} on U_{0}. Therefore, we can conclude that the function $h=d^{2}$ is of class C^{k} on $U_{0}=U\left(x_{0}\right)$ and hence on the open set $\Delta=\cup_{x_{0} \in S} U\left(x_{0}\right)$ including S, which proves the theorem.
3. When $M=\mathbf{R}^{n}$ and the metric g of M is Euclidean, the distance $\delta(x, y)$ between $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is given by $\delta(x, y)^{2}=$ $\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}$. Then the functions $g_{i j}=g_{i j}(x)$ and $v_{i}=v_{i}(x, y)$ in Lemma are written by $g_{i j}(x) \equiv \delta_{i j}$ and $v_{i}(x, y)=y_{i}-x_{i}$. Finally we note that the calculation above of our proof of Theorem is simpler than that of Krantz ([4], pp. 136-137) in this case.

References

1. H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
2. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer, Berlin-Heidelberg-New York, 1977.
3. S. G. Krantz and H. R. Parks, Distance to C^{k} hypersurfaces, J. Differential Equations, 40 (1981), 116-120.
4. S. G. Krantz, "Function Theory of Several Complex Variables," John Wiley, New York-London, 1982.
5. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413-496.

Kazuko MATSUMOTO
Department of Mathematical Science
Graduate School of Science and Technology
Niigata University
Niigata, 950-21
Japan

Received April 27, 1992, Revised June 12, 1992.

