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NON-SMOOTH GALOIS POINT ON A QUINTIC CURVE WITH
ONE SINGULAR POINT

TAKESHI TAKAHASHI

ABSTRACT. Let $C$ be an irreducible plane quintic curve with only one singular
point $P$ , which is a double point. Then, we consider a projection of $C$ from $P$ .
This projection induces an extension of rational function fields $k(C)/k(P^{1})$ . In
this paper, we give the defining equation of the curve $C$ when the extension is
Galois.

1. INTRODUCTION
Let $k$ be an algebraically closed field of characteristic zero, which we fix as the

ground field of our discussion. Let $C$ be an irreducible (possibly singular) curve of
degree $d$ in the projective plane $P^{2}=P^{2}(k)$ and $K=k(C)$ the rational function
field of $C$ . For each point $P\in C$ , let $\pi_{P}$ : $C\cdots\rightarrow l$ be a projection from $C$ to a line
$l$ with the center $P$ . This rational map induces the extension of fields $K/k(l)$ . The
structure of this extension does not depend on the choice of $l$ , but on $P$ , so that we
write $K_{P}$ instead of $k(l)$ .

Definition 1. A point $P\in C$ is called a Galois point if the extension $K/K_{P}$ is
Galois. In particular, a Galois point is called a non-smooth Galois point [resp. $a$

smooth Galois point] if it is singular. [resp. nonsingular.]

In the papers [5], [6] and [8], Yoshihara raised the following questions:
(1) When is the extension $K/K_{P}$ Galois? Namely, when is the point $P$ Galois?
(2) How many Galois points do there exist on $C$ (or $P^{2}\backslash C$)?
(3) Let $L_{P}$ be the Galois closure of $K/K_{P}$ . What can we say about $L_{P}$ ?
(4) What is the Galois group $Ga1(L_{P}/K_{P})$ ?
(5) Determine intermediate fields between $K_{P}$ and $L_{P}$ .

These were treated in detail for nonsingular plane curves in papers [5], [6], [8]
and Miura’s paper [2]. Miura also studied these questions for singular plane quartic
curves in [1] and [3],

Let (X: $Y:Z$ ) be homogeneous coordinates on $P^{2}$ and $(x, y)$ affine coordinates
such that $x=X/Z$ and $y=Y/Z$ . For a nonsingular plane curve, we have an answer
to Question (1) as follows.

Proposition 1 ([8], Proposition 5). Let $C$ be a nonsingular plane curve of degree
$d(d\geq 4)$ . Then, the point $P\in C$ is Galois if and only if the defining equation
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of $C$ can be expressed as a standard form $y+h(x, y)$ by taking a suitable projective
transformation which moves $P$ to $(0,0)$ , where $h(x, y)$ is a $fo7m$ of degree $d$ with
distinct factors.

If $P$ is a Galois point of $C$ , then an element $\sigma$ of the Galois group $Ga1(K/K_{P})$

induces a birational map $C\cdots\rightarrow C$ . In this paper, we use the same symbol
$\sigma\in Ga1(K/K_{P})$ to denote this birational map, when there is no fear of confu-
sion. Moreover, if an element $\sigma\in Ga1(K/K_{P})$ is the restriction of a projective
transformation of $P^{2}$ , then we say that $\sigma$ belongs to $PGL(3, k)$ , and denote by
$\sigma\in PGL(3, k)$ .

For singular plane curves, we have no good answer to Question (1). The reason
is that the following well-known assertion does not hold true for a singular plane
curve:

An automorphism of a nonsingular plane curve of degree $d(d\geq 4)$ is
the restriction of some projective transformation of $P^{2}$ .

So, the question seems difficult. However, we have the following.

Proposition 2 ([4], Proposition 2). Let $C$ be a plane curwe of degree $d$ and $P$

be a singular point of $C$ with multiplicity $m_{P}$ . Suppose that $P$ is a Galois point.
Then, the Galois group $Ga1(K/K_{P})$ is contained in $PGL(3, k)$ if and only if $C$ is
projectively equivalent to the curve given by $f_{m_{P}}(x, y)+f_{d}(x, y)=0,$ where. $f_{i}(x, y)$

is a homogeneous polynomial of $x$ and $y$ of degree $i$ ($i=m_{P}$ or $d$).

There was no study on non-smooth Galois points. The purpose of this paper is to
show when the point $P$ is Galois under the following assumption: the plane quintic
curve $C$ has only one singular point $P$ , which is a double point. This case is the
most simple one of Question (1) for non-smooth Galois points.

2. STATEMENT OF RESULTS

We use the same notation as is used in Section 1 and restrict ourselves to the case
where $C$ is an irreducible quintic curve with only one singular point $P$ , which is a
double point. We denote by $g(C)$ the genus of a nonsingular model of a curve $C$ .
Note that from the genus formula, $g(C)=0,1,2,3,4$ or 5. Our main theorem is
stated as follows.

Theorem. Let $C$ be an irreducible plane quintic curve. Suppose that $C$ has only
one singular point $P$ , which is a double point. Then we have the following.

(1) If $g(C)=0$ or 3, then $P$ cannot be a Galois point.
(2) If$g(C)=1$ , then $P$ is a Galois point if and only if $C$ is projectively equivalent

to the curve given by the equation

$y^{2}-6xy(x+2y)+3x(3x^{3}+12x^{2}y+10xy^{2}-3y^{3})$

$+3xy(6x^{3}+21x^{2}y+19xy^{2}+y^{3})=0$ . (C1)
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(3) If $g(C)=2_{f}$ then $P$ is a Galois point if and only if $C$ is projectively equivalent
to the curve given by the equation

$y^{2}-54c^{4}(1+c)xy(x+y)+243c^{6}(1+c)^{2}x(x+y)((1+c)y^{2}+3c^{2}x(x+y))$

$-729c^{8}(1+c)^{4}xy(x+y)(-(1+c)y^{2}+9c^{2}x(x+y))=0$ , (C2)

where $c\in k$ and $c\neq 0,$ $-1$ .
(4) If$g(C)=4$ , then $P$ is a Galois point if and only if $C$ is projectively equivalent

to the curve given by the equation

$y^{2}+h_{5}(x, y)=0$ or (C3)

$y^{2}+3x^{2}y+3x^{4}+h_{5}(x, y)=0$ , (C4)
where $h_{5}(x, y)$ is a form of degree five.

(5) If $g(C)=5_{f}$ then $P$ is a Galois point if and only if $C$ is projectively equivalent
to the curve given by the equation

$xy+h_{5}(x, y)=0$ , (C5)

where $h_{5}(x, y)$ is a form of degree five.

Remark 1. Let $\rho$ : $\tilde{C}\rightarrow C$ be the resolution of the singularity of C. Then, the
number ofpoints $\rho^{-1}(P)$ is equal to one when the curve $C$ is given by Equation (C3),
on the other hand, the number is two when the curve $C$ is given by Equation (C1),
(C2), (C4) or (C5).

As a corollary of Theorem, we also see when the Galois group $Ga1(K/K_{P})$ is
contained in $PGL(3, k)$ .

Corollary 1. With the same assumptions as in Theorem, suppose that $P$ is a Galois
point. Then we have the following.

(1) If either
(a) $g(C)=1,2$ or
(b) $g(C)=4$ and $C$ is projectively equivalent to the curve given by Equa-

tion (C4),
then $Ga1(K/K_{P})\not\subset PGL(3, k)$ .

(2) If either
(a) $g(C)=4$ and $C$ is projectively equivalent to the curve given by Equa-

tion (C3) or
(b) $g(C)=5$ ,
then $Ga1(K/K_{P})\subset PGL(3, k)$ .

Let $F=F(X, Y, Z)=0$ be the homogeneous defining equation of $C$ and $f=$

$f(x, y)=F(x, y, 1)=0$ its dehomogenized equation. Moreover, we put $f(x, y)=$

$\Sigma f_{i}(x, y)$ , where $f_{i}=f_{i}(x, y)$ is the homogeneous part of $f$ of degree $i$ . When
$g(C)=4$ or 5, we have the easy criterion for the point $P$ to be Galois, which is
similar to [8, Lemma 11] as follows.
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Corollary 2. With the same assumptions as in Theorem, suppose that $g(C)=$
$4$ or 5. Let the coordinates of $P$ be $(0$ : $0$ : 1 $)$ by taki$ng$ a suitable projective
transformation. Then $P$ is a Galois point if and only if $f_{3}^{2}=3f_{2}f_{4}$ .

3. PROOFS

We use the following notations.

Notation 1.
$\bullet\omega$ $:=(-1+\sqrt{-3})/2$

$\bullet\sim$ : the linearly equivalence of divisors
$\bullet$ $|D|$ : the complete linear system associated with a divisor $D$

$\bullet$ $L_{C}(D)$ $:=$ { $\phi\in k(C)|\phi=0$ or $div(\phi)+D\geq 0$ }
$\bullet$ $l(D)$ : the dimension of $L_{C}(D)$ as a k-vector space
$\bullet$ $\Phi_{L}$ : the mtional map corresponding to a linear system $L$

$\bullet$ $V_{C}(L, D)$ $:=$ { $\phi\in k(C)|\phi=0$ or $div(\phi)+D\in L$ }, where $L$ is a sub-linear
system $of|D|$

$\bullet$ $\langle\phi_{0}, \cdots\phi_{n}\rangle$ : the k-vector space genemted by elements $\phi_{0},$ $\cdots\phi_{\mathfrak{n}}$

Notation 2. Under the assumptions that $g(C)\geq 1$ and $P$ is a Galois point, we use
the following notation. Let $\rho$ : $\tilde{C}\rightarrow C$ be the resolution of the singularity of $C_{f}$ and
we put $\{P_{1}, P_{2}\}$ $:=\rho^{-1}(P)$ , where points $P_{1}$ and $P_{2}$ may be the same. Let $Q$ be a
mmification point of $\pi_{P}\circ\rho:\tilde{C}\rightarrow l$ such that $Q\neq P_{1},$ $P_{2}$ . We denote by $L$ and $M$ the
linear systems corresponding to the morphisms $\rho$ and $\pi_{P}\circ\rho$ , respectively. Namely,
we may write that $\rho=\Phi_{L}$ and $\pi_{P}\circ\rho=\Phi_{M}$ . Here, we note that $L\subset|3Q+P_{1}+P_{2}|$

and $M\subset L\cap|3Q|$ . Let $\tau$ be the number $\min\{n\in N|l(\tau Q)=3\}$ and $C_{0}$ the
image of $\Phi_{|\tau Q|}$ : $\tilde{C}\rightarrow P^{2}$ . Then we note that the degree of the map $\Phi_{|\tau Q|}$ : $\tilde{C}\rightarrow C_{0}$

is equal to one. Indeed, from $ M\subset$ I $\tau Q|$ and deg $\Phi_{M}=3$ , if deg $\Phi_{|\tau Q|}=3$ then
deg $C_{0}=1$ , this contmdicts that $l(\tau Q)=3$ . Let $\xi$ : $\tilde{C}_{0}\rightarrow C_{0}$ be the resolution of
singularities of $C_{0}$ . We denote by $N$ the linear system corresponding to the morphism
$\Phi_{L}\circ\Phi_{|\tau Q|}^{-1}\circ\xi$ : $\tilde{C}_{0}\rightarrow C$ . Noting that $\xi^{-1}\circ\Phi_{|\tau Q|}$ : $\tilde{C}\rightarrow\tilde{C}_{0}$ is an isomorphism, $we$

put $D:=\xi^{-1}\circ\Phi_{|\tau Q|}(3Q+P_{1}+P_{2})$ . Let $\iota$ : $\tilde{C}_{0}\rightarrow P^{2}$ be the composition of $\xi$ and the
inclusion map $C_{0}\rightarrow P^{2}$ , and $\iota^{*}(x)$ and $\iota^{*}(y)$ the mtional functions $ xo\iota$ and $ yo\iota$ ,
respectively. Let $\sigma$ be a generator of $Ga1(K/K_{P})$ , which is isomorphic to the cyclic
group of order three. If $g(C)\leq 4$ , then we denote by $T_{P}C$ the tangent line to $C$ at
$P_{f}$ and let $(C, T_{P}C)_{P}$ be the intersection number of $C$ and $T_{P}C$ at $P$ .

Now, we note the following, which is clear.

Remark 2. The canonical divisor $K_{\overline{C}}$ of $\tilde{C}$ is linearly equivalent to $6Q+(g(C)-$
$4)(P_{1}+P_{2})$ .

Let us prove Theorem examining the cases that $g(C)=0,1,2,3,4$ and 5 sepa-
rately.
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(1). The case $g(C)=0$ .
From [7, Proposition 3], we may assume that $P=$ $(0$ : $0$ : 1 $)$ and $C$ is given by

the equation

$(y-x^{2})(y-x^{2}+\alpha y^{2}-\alpha x^{2}y+2xy^{2})+y^{5}=0$ ,

where $\alpha\in k$ . Putting $t=x/y$ , we have that $K_{P}=k(t)$ and $K=K_{P}(x)$ . Thus, we
obtain the minimal polynomial of $x$ over $K_{P}$ as follows:

$x^{3}+\frac{2t^{3}-2\alpha t^{2}+1}{t(t^{4}+-2t+\alpha)}x^{2}+\frac{(\alpha t^{2}-2)}{t^{4}-2t+\alpha}x+\frac{t}{t^{4}+-2t+\alpha}$

So, we have that the discriminant of this polynomial is

$\psi_{\alpha}(t)$ $:=\frac{t^{6}((4\alpha^{3}+27)t^{4}-36\alpha t^{3}+8\alpha^{2}t^{2}-4t+4\alpha)}{(t^{4}-2t+\alpha)^{4}}$

From the extension degree of $K/K_{P}$ is equal to three, we infer that the extension
$K/K_{P}$ is Galois if and only if $\sqrt{\psi_{\alpha}(t)}\in K_{P}=k(t)$ . However, we obtain easily that
$\sqrt{\psi_{\alpha}(t)}\not\in k(t)$ for any $\alpha\in k$ . Therefore, $P$ cannot be a Galois point.

(2). The case $g(C)=1$ .
First, we can check easily that if $C$ is given by Equation (C1), then the point

$P=(O:0:1)$ is Galois. Indeed, we have $\sqrt{\psi}\in K_{P}$ , where $\psi$ is the discriminant of
the minimal polynomial of $x\in K=K_{P}(x)$ over $K_{P}$ .

Next, suppose that $P=$ $(0$ : $0$ : 1 $)$ is a Galois point. Then, we note that
$\tau=3,$ $\Phi_{|3Q|}$ is an isomorphism, and $C_{0}$ is a nonsingular cubic curve. The generator
$\sigma\in Ga1(K/K_{P})\subset Aut(\tilde{C})$ induces an automorphism of $C_{0}$ , i.e., there is an injection
$Ga1(K/K_{P})\rightarrow Aut(C_{0})$ . (We use the same symbol $\sigma\in Ga1(K/K_{P})$ to denote its
image.) Hence, we may assume that $C_{0}$ is given by the equation $y^{2}=x^{3}-1$ and
$\Phi_{|3Q|}(Q)=(0$ : 1 : $0)$ . Moreover, we see that $Ga1(K/K_{P})\subset PGL(3, k)$ and may
assume that

$\sigma=\left(\begin{array}{lll}\omega & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ .

Claim 1. We have that $P_{1}\neq P_{2}$ .

Proof. Suppose the contrary. Then, from there are five infinitely near singular points
over $P$ , we infer that $(C, T_{P}C)_{P}\neq 3$ . Moreover, since $\Phi_{M}$ is a Galois cover, we
have that $(C, T_{P}C)_{P}\neq 4$ . So, we conclude that $(C, T_{P}C)_{P}=5$ . Hence, putting
$P^{\prime}$ $:=P_{1}=P_{2}$ , we have that $\sigma(\Phi_{|3Q|}(P^{\prime}))=\Phi_{|3Q|}(P^{\prime})$ . Thus, we obtain that
$\Phi_{|3Q|}(P^{\prime})=(0$ : 1 : $\sqrt{-1})$ or $(0 : 1 : -\sqrt{-1})$ , so we may assume that $\Phi_{|3Q|}(P$

‘
$)$ $=$

$(0:1 : \sqrt{-1})$ . Then, we have that $N\subset|D|$ and

$ L_{C_{0}}(D)=\langle 1, \iota^{*}(y), \iota^{*}(x), \frac{\iota^{*}(y)+\sqrt{-1}}{\iota^{*}(x)}, \frac{(\iota^{*}(y)+\sqrt{-1})^{2}}{\iota^{*}(x)^{2}}\rangle$ .
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Note that $\pi_{P}\circ\Phi_{N}$ is given by the linear system corresponding to the k-vector space
\langle 1, $\iota^{*}(y))$ , we may put

$ V_{C_{0}}(N, D)=\langle 1, \iota^{*}(y), A\iota^{*}(x)+B\frac{\iota^{*}(y)+\sqrt{-1}}{\iota^{*}(x)}+\frac{(\iota^{*}(y)+\sqrt{-1})^{2}}{\iota^{*}(x)^{2}}\rangle$ ,

where $A,$ $B\in k$ . Therefore, the defining equation of $C$ (i.e., the image of $\Phi_{N}$ ) is
computed as follows (see Remark 3).

$x^{2}+2\sqrt{-1}xy-y^{2}-3\sqrt{-1}(A-1)Bx^{4}+3(A+1)Bx^{3}y$

$-3\sqrt{-1}(A-1)Bx^{2}y^{2}+3(A+1)Bxy^{3}+(-(A-1)^{3}+\sqrt{-1}B^{3})x^{5}$

$+(-2\sqrt{-1}(A-1)^{2}(A+2)+B^{3}))x^{4}y+(-6+6A^{2}+\sqrt{-1}B^{3})x^{3}y^{2}$

$+(-2\sqrt{-1}(A-2)(A+1)^{2}+B^{3})x^{2}y^{3}+(1+A)^{3}xy^{4}=0$

Here, we check that the number of infinitely near singular points over $P=(O$ : $0$ : 1 $)$

of this curve. Then, it is equal to two. However, since the quintic curve $C$ has only
one singular point $P$ with multiplicity two and $g(C)=1$ , the number of infinitely
near singular points over $P$ must be equal to five. This is a contradiction.

Noting that $P_{1}\neq P_{2}$ and $\Phi_{M}(P_{1})=\Phi_{M}(P_{2})$ , let us put that $P_{2}=\sigma(P_{1}),$ $P_{3}$ $:=$

$\sigma(P_{2})$ and $P_{1}=\sigma(P_{3})$ , and let $(a, b)$ be the affine coordinates of $\Phi_{|3Q|}(P_{3})$ . Then,
we obtain that

$ L_{C_{0}}(D)=\langle 1, \iota^{*}(y), \iota^{*}(x), \frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega a}, \frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega^{2}a}\rangle$ .

Hence, we may put

$ V_{C_{0}}(N, D)=\langle 1, \iota^{*}(y), A\iota^{*}(x)+B\frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega a}+\frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega^{2}a}\rangle$ ,

where $A,$ $B\in k$ . Therefore, the defining equation of $C$ is computed (see Remark 3)
as

$b^{2}x^{2}-2bxy+y^{2}-3a^{2}bBx^{3}+3a^{2}(B+\omega-\omega B)x^{2}y+3\omega a^{2}b(1-B)x^{3}$

$-3A(1+B)x^{3}y-3A(1+B)xy^{3}-3(1+B)(-a-Ab-\omega a+\omega aB)x^{2}y^{2}$

+3 $(Ab-ab^{2}+3aB+AbB+2ab^{2}B-\omega ab^{2}+\omega ab^{2}B^{2})x^{4}$

$+(-3abA^{2}-b^{2}A^{3}+b^{3}-9a^{2}AB-3bB-6bB^{2}-3b^{3}B^{2}+b^{3}B^{3}-3\omega baA^{2}$

$+3\omega bB+3\omega abA^{2}B+3\omega b^{3}B-3\omega bB^{2}-3\omega b^{3}B^{2})x^{5}$

$+(3aA^{2}+2A^{3}+b^{2}-3B-6B^{2}-3b^{2}B^{2}+b^{2}B^{3}+3\omega aA^{2}+3\omega B$

$-3\omega aA^{2}B+3\omega b^{2}B-3\omega B^{2}-3\omega b^{2}B^{2})x^{4}y$

$+(-A^{3}-b-3abA^{2}-b^{2}A^{3}-9a^{2}AB-3bB-3bB^{2}-bB^{3}-3\omega abA^{2}+3\omega abA^{2}B)x^{3}y^{2}$

$+(-1+3aA^{2}+2bA^{3}-3B-3B^{2}-B^{3}+3\omega aA^{2}-3\omega aA^{2}B)x^{2}y^{3}-A^{3}xy^{4}=0$ .

Here, considering the blowing-ups at five infinitely near singular points over $P$ , we
conclude that $a^{3}=4,$ $b^{2}=3,$ $A=-2\omega b/3a^{2}$ and $B=\omega^{2}$ . So, we may assume that
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$a=\sqrt[3]{4}$ and $b=\sqrt{3}$ . By taking the inverse image of the projective transformation

( $1/4$ $1/200$
$-1/(3(1+\sqrt{-3})\sqrt[3]{2}^{2})00$ ))

we obtain Equation (C1).

(3). The case $g(C)=2$ .
We can check easily that if $C$ is given by Equation (C2), then the point $P=(0$ :

$0$ : 1) is Galois.
Suppose that $P=(O:0:1)$ is a Galois point.

Claim 2. We have that $P_{1}\neq P_{2}$ .

Proof. Suppose the contrary. Then, by an argument similar to that in the proof
of Claim 1, we see that $(C, T_{P}C)_{P}=5$ . So, putting $P^{\prime}$ $:=P_{1}=P_{2}$ , we infer
that $3Q\sim 3P^{\prime}$ . Hence, we have that $K_{\overline{C}}\sim 2P^{\prime}$ , so $l(2P^{\prime})=l(K_{\tilde{C}})=2$ . Rom
the Riemann-Roch theorem, we infer that $l($3 $P$‘ $)$ $=2$ . Therefore we have that
$|3P^{\prime}|=|2P^{\prime}|$ . However, we see that $M=|3Q|=|3P$ ‘1 and deg $\Phi_{M}=3$ , this
contradicts that deg $\Phi_{|3P^{\prime}|}=\deg\Phi_{|2P^{\prime}|}=2$ . $\square $

Since $\Phi_{M}(P_{1})=\Phi_{M}(P_{2}))$ we may put that $P_{2}=\sigma(P_{1}))P_{3}$ $:=\sigma(P_{2})$ and $P_{1}=$

$\sigma(P_{3})$ . Noting that $\tau=4$ , from $\sigma^{*}|4Q|=|4Q|$ , we infer that the birational map
$\Phi_{|4Q|}\circ\sigma\circ\Phi_{|4Q|}^{-1}$ : $C_{0}\cdots\rightarrow C_{0}$ belongs to $PGL(3, k)$ . From Proposition 1, we may
assume that $\Phi_{|4Q|}(Q)=(0:0 : 1)$ and $C_{0}$ is given by the equation $y+f_{4}(x, y)=0$ ,
where $f_{4}(x, y)$ is a form of degree four. Then, because $g(C)=g(C_{0})=2,$ $C_{0}$ has one
double point. Hence, by taking a suitable projective transformation, we may assume
that $C_{0}$ is given by the equation $y+x^{2}(x+y)(x+ay)=0$ , where $a\in k$ . Here,
we claim that $P_{3}$ is a Weierstrass point, so $P_{1}$ and $P_{2}$ are also Weierstrass points.
Indeed, noting that $3Q\sim P_{1}+P_{2}+P_{3}$ and $l(K_{\overline{C}}-2P_{3})=l(6Q-2P_{1}-2P_{2}-2P_{3})=1$ ,
from the Riemann-Roch theorem, we infer that $l(2P_{3})=2$ . Because of this, we may
put $\Phi_{|4Q|}(P_{3})=(\sqrt{a}:1 : \alpha\sqrt{a})$ , where $\alpha\in k$ such that $\alpha^{3}=-(\sqrt{a}+1)^{2}$ . Then, we
obtain that

$ L_{\overline{C}_{0}}(D)=\langle 1, \frac{\iota^{*}(x)}{\iota^{*}(y)}, \frac{\iota^{*}(x)(\iota^{*}(x)-\sqrt{a}\iota^{*}(y))}{\iota^{*}(y)(\omega\alpha\iota^{*}(x)-1)}, \frac{\iota^{*}(x)(\iota^{*}(x)-\sqrt{a}\iota^{*}(y))}{\iota^{*}(y)(\omega^{2}\alpha\iota^{*}(x)-1)}\rangle$ .

So, noting that $N\subset|D|$ , we may put

$ V_{\overline{C}_{0}}(N, D)=\langle 1, \frac{\iota^{*}(x)}{\iota^{*}(y)}, A\frac{\iota^{*}(x)(\iota^{*}(x)-\sqrt{a}\iota^{*}(y))}{\iota^{*}(y)(\omega\alpha\iota^{*}(x)-1)}+\frac{\iota^{*}(x)(\iota^{*}(x)-\sqrt{a}\iota^{*}(y))}{\iota^{*}(y)(\omega^{2}\alpha\iota^{*}(x)-1)}\rangle$ ,
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where $A\in k$ . Therefore, the defining equation of $C$ is computed (see Remark 3) as

$(\sqrt{-1}+b^{3})^{2}x^{2}+2(-1+\sqrt{-1}b^{3})xy-y^{2}+3b^{4}(-1+\sqrt{-1}b^{3})(A-\omega+\omega A)x^{2}y$

$-3b^{4}(A-\omega+\omega A)xy^{2}+3b^{2}(\sqrt{-1}+b^{3})^{2}(1+A)(\omega(A-1)-1)x^{3}y$

$-3b^{2}(A(-2+2\sqrt{-1}b^{3}+3b^{6})+2(-1\sqrt{-1}b^{3})(1+\omega)+2(\omega-\sqrt{-1}b^{3}\omega)A^{2})x^{2}y^{2}$

+3$b^{2}(1+\omega+A-\omega A^{2})xy^{3}-(1+A)^{3}(-1+\sqrt{-1}b^{3})^{3}x^{4}y$

$-3(1-\sqrt{-1}b^{3})(-1+\sqrt{-1}b^{3}+A(-3+3\sqrt{-1}b^{3}+(-1+\sqrt{-1}b^{3})A^{2}$

$-(-1+\omega)b^{6}+A(-3+3\sqrt{-1}b^{3}+(2+\omega)b^{6})))x^{3}y^{2}$

+3 $(1-\sqrt{-1}b^{3}+(1-\sqrt{-1}b^{3})A^{3}+A(3-3\sqrt{-1}b^{3}+(-1+\omega)b^{6})$

$-A^{2}(-3+3\sqrt{-1}b^{3}+(2+\omega)b^{6}))x^{2}y^{3}+(1+A)^{3}xy^{4}=0$ ,

where $b\in k$ such that $ b^{2}=\alpha$ and $b^{3}=-\sqrt{-1}(\sqrt{a}+1)$ . Considering the blowing-ups
of this curve at four infinitely near singular points over $P$ , we conclude that $A=\omega^{2}$ .
Letting $c=-\sqrt{-1}b^{3}$ and taking the inverse image of the projective transformation

( $0\sqrt{-1}$

$\sqrt{-1}00$ $-2/(9(-\sqrt{-1}+\sqrt{3})(\sqrt{-1}c)^{2/3}c^{2}(1+c)^{2})00$ ),
we obtain Equation (C2).

(4). The case $g(C)=3$ .
Then first, we infer that $L=|3Q+P_{1}+P_{2}|$ from $l(3Q+P_{1}+P_{2})=3$ and

$L\subset|3Q+P_{1}+P_{2}|$ . On the other hand, we note that $l(P_{1}+P_{2})=1$ . Indeed,
if $l(P_{1}+P_{2})=2$ then we infer that $\Phi_{|P_{1}+P_{2}|}=\pi_{R}\circ\Phi_{|3Q+P_{1}+P_{2}|}$ , where $\pi_{R}$ is a
projection of $C$ from some point $R\in P^{2}$ . However, we have that deg $\Phi_{|3Q+P_{1}+P_{2}|}=1$

and deg $\Phi_{|P_{1}+P_{2}|}=2$ , this contradicts that deg $\pi_{R}\geq 3$ . Next, we see that $ P_{1}+P_{2}\sim$

$\sigma^{*}(P_{1}+P_{2})$ , because we have that $6Q-P_{1}-P_{2}\sim K_{\overline{C}}\sim\sigma^{*}K_{\overline{C}}\sim 6Q-\sigma^{*}(P_{1}+P_{2})$ .
Hence, we obtain that $P_{1}+P_{2}=\sigma^{*}(P_{1}+P_{2})$ . Thus, we conclude that $L=\sigma^{*}L$ and
the birational map $\Phi_{L}0\sigma\circ\Phi_{L}^{-1}$ : $C\cdots\rightarrow C$ belongs to $PGL(3, k)$ . Therefore, from
Proposition 2, we may $as$sume that $C$ is given by the equation $y^{2}+f_{5}(x, y)=0$ ,
where $f_{5}(x, y)$ is a form of degree five. However, the genus of a nonsingular model
of this curve is equal to four. This contradicts that $g(C)=3$ .
(5). The case $g(C)=4$ .

We can check $e$asily that if $C$ is given by Equation (C3) or (C4), then the point
$P=(O:0:1)$ is Galois.

Next, suppose that the point $P$ is Galois. Then, we infer that $L=|3Q+P_{1}+P_{2}|$

from $L\subset|3Q+P_{1}+P_{2}|$ and $l(3Q+P_{1}+P_{2})=3$ . Now, we assume that $P_{1}=P_{2}$ .
Then, by an argument similar to that in the proof of Claim 1, we conclude that
$(C, T_{P}C)_{P}=5$ , and $P_{1}=P_{2}=\sigma(P_{1})=\sigma(P_{2})$ . Thus, we see that $\sigma^{*}L=L$ ,
and therefore we conclude that $Ga1(K/K_{P})\subset PGL(3, k)$ . IFlrom Proposition 2, by
taking a suitable projective transformation, we obtain Equation (C3). Next, let us
assume that $P_{1}\neq P_{2}$ . Then, since $\Phi_{M}(P_{1})=\Phi_{M}(P_{2})$ , we may put that $P_{2}=\sigma(P_{1})$ ,
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$P_{3}$ $:=\sigma(P_{2})$ and $P_{1}=\sigma(P_{3})$ . Noting that $\tau=5$ , since $\sigma^{*}|5Q|=|5Q|$ , the birational
map $\Phi_{|5Q|}\circ\sigma\circ\Phi_{|5Q|}^{-1}$ : $C_{0}\cdots\rightarrow C_{0}$ belongs to $PGL(3, k)$ . From Proposition 2, we may
assume that $\Phi_{|5Q|}(Q)=(0$ : $0$ : 1 $)$ and $C_{0}$ is given by the equation $x^{2}+f_{5}(x, y)=0$ ,
where $f_{5}(x, y)$ is a form of degree five. Moreover, by taking a suitable projective
transformation, we may assume that $\Phi_{|5Q|}(P_{3})=(1$ : $0$ : 1 $)$ . Then, we have that
$\Phi_{|5Q|}(P_{1})=(\omega : 0:1)$ and $\Phi_{|5Q|}(P_{2})=(\omega^{2} : 0:1)$ , hence, we conclude that

$ V_{\tilde{C}0}(N, D)=\langle 1, \frac{\iota^{*}(y)}{\iota^{*}(x)}, \frac{\iota^{*}(x)-1}{\iota^{*}(y)}\rangle$ .

Therefore, we obtain Equation (C4) (see Remark 3).

(6). The case $g(C)=5$ .
We can check easily that if $C$ is given by Equation (C5), then the point $P=(0$ :

$0:1)$ is Galois.
Suppose that the point $P$ is Galois. By an argument similar to that in (4) the

case $g(C)=3$ , we conclude that $\sigma^{*}L=L$ and the birational map $\Phi_{L}\circ\sigma\circ\Phi_{L}^{-1}$ :
$C\cdots\rightarrow Cb$elongs to $PGL(3, k)$ . Therefore, from Proposition 2, by taking a suitable
projective transformation, $C$ is given by Equation (C5). Now we complete the proof
of Theorem.

Remark 3. In the previous proof, we can compute the defining equation of $C$ from
$V_{\overline{C}_{0}}(N, D)$ as follows. Let us assume that

$ V_{\overline{C}_{0}}(N, D)=\langle 1, \phi_{1}(\iota^{*}(x), \iota^{*}(y)), \phi_{2}(\iota^{*}(x))\iota^{*}(y))\rangle$ ,

and $C_{0}\subset P^{2}$ is given by the equation $g(x, y)=0$ . Then, we put that $(Y/X)=$
$\phi_{1}(\iota^{*}(x), \iota^{*}(y))$ and $(Z/X)=\phi_{2}(\iota^{*}(x), \iota^{*}(y))$ , and we have that $g(\iota^{*}(x), \iota^{*}(y))=0$ .
Here, we eliminate $\iota^{*}(x)$ and $\iota^{*}(y)$ from these equations by elimination theory [9,
Chapter $Xl$]. Thus, we obtain the defining equation of $C$ .

Corollary 1 and 2 is obvious from Theorem.
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