NON-SMOOTH GALOIS POINT ON A QUINTIC CURVE WITH ONE SINGULAR POINT

TAKESHI TAKAHASHI

Abstract

Let C be an irreducible plane quintic curve with only one singular point P, which is a double point. Then, we consider a projection of C from P. This projection induces an extension of rational function fields $k(C) / k\left(\mathbb{P}^{1}\right)$. In this paper, we give the defining equation of the curve C when the extension is Galois.

1. Introduction

Let k be an algebraically closed field of characteristic zero, which we fix as the ground field of our discussion. Let C be an irreducible (possibly singular) curve of degree d in the projective plane $\mathbb{P}^{2}=\mathbb{P}^{2}(k)$ and $K=k(C)$ the rational function field of C. For each point $P \in C$, let $\pi_{P}: C \cdots \rightarrow l$ be a projection from C to a line l with the center P. This rational map induces the extension of fields $K / k(l)$. The structure of this extension does not depend on the choice of l, but on P, so that we write K_{P} instead of $k(l)$.

Definition 1. A point $P \in C$ is called a Galois point if the extension K / K_{P} is Galois. In particular, a Galois point is called a non-smooth Galois point [resp. a smooth Galois point] if it is singular. [resp. nonsingular.]

In the papers [5], [6] and [8], Yoshihara raised the following questions:
(1) When is the extension K / K_{P} Galois? Namely, when is the point P Galois?
(2) How many Galois points do there exist on C (or $\mathbb{P}^{2} \backslash C$)?
(3) Let L_{P} be the Galois closure of K / K_{P}. What can we say about L_{P} ?
(4) What is the Galois group $\operatorname{Gal}\left(L_{P} / K_{P}\right)$?
(5) Determine intermediate fields between K_{P} and L_{P}.

These were treated in detail for nonsingular plane curves in papers [5], [6], [8] and Miura's paper [2]. Miura also studied these questions for singular plane quartic curves in [1] and [3].

Let $(X: Y: Z)$ be homogeneous coordinates on \mathbb{P}^{2} and (x, y) affine coordinates such that $x=X / Z$ and $y=Y / Z$. For a nonsingular plane curve, we have an answer to Question (1) as follows.
Proposition 1 ([8], Proposition 5). Let C be a nonsingular plane curve of degree $d(d \geq 4)$. Then, the point $P \in C$ is Galois if and only if the defining equation

Key words and phrases. non-smooth Galois point, rational function field, plane quintic curve.
of C can be expressed as a standard form $y+h(x, y)$ by taking a suitable projective transformation which moves P to (0,0), where $h(x, y)$ is a form of degree d with distinct factors.

If P is a Galois point of C, then an element σ of the Galois group $\operatorname{Gal}\left(K / K_{P}\right)$ induces a birational map $C \cdots \rightarrow C$. In this paper, we use the same symbol $\sigma \in \operatorname{Gal}\left(K / K_{P}\right)$ to denote this birational map, when there is no fear of confusion. Moreover, if an element $\sigma \in \operatorname{Gal}\left(K / K_{P}\right)$ is the restriction of a projective transformation of \mathbb{P}^{2}, then we say that σ belongs to $P G L(3, k)$, and denote by $\sigma \in P G L(3, k)$.

For singular plane curves, we have no good answer to Question (1). The reason is that the following well-known assertion does not hold true for a singular plane curve:

An automorphism of a nonsingular plane curve of degree $d(d \geq 4)$ is the restriction of some projective transformation of \mathbb{P}^{2}.
So, the question seems difficult. However, we have the following.
Proposition 2 ([4], Proposition 2). Let C be a plane curve of degree d and P be a singular point of C with multiplicity m_{P}. Suppose that P is a Galois point. Then, the Galois group $\operatorname{Gal}\left(K / K_{P}\right)$ is contained in $P G L(3, k)$ if and only if C is projectively equivalent to the curve given by $f_{m_{P}}(x, y)+f_{d}(x, y)=0$, where $f_{i}(x, y)$ is a homogeneous polynomial of x and y of degree $i\left(i=m_{P}\right.$ or d).

There was no study on non-smooth Galois points. The purpose of this paper is to show when the point P is Galois under the following assumption: the plane quintic curve C has only one singular point P, which is a double point. This case is the most simple one of Question (1) for non-smooth Galois points.

2. Statement of results

We use the same notation as is used in Section 1 and restrict ourselves to the case where C is an irreducible quintic curve with only one singular point P, which is a double point. We denote by $g(C)$ the genus of a nonsingular model of a curve C. Note that from the genus formula, $g(C)=0,1,2,3,4$ or 5 . Our main theorem is stated as follows.

Theorem. Let C be an irreducible plane quintic curve. Suppose that C has only one singular point P, which is a double point. Then we have the following.
(1) If $g(C)=0$ or 3 , then P cannot be a Galois point.
(2) If $g(C)=1$, then P is a Galois point if and only if C is projectively equivalent to the curve given by the equation

$$
\begin{align*}
y^{2}-6 x y(x+2 y)+3 x\left(3 x^{3}+12 x^{2} y\right. & \left.+10 x y^{2}-3 y^{3}\right) \\
& +3 x y\left(6 x^{3}+21 x^{2} y+19 x y^{2}+y^{3}\right)=0 \tag{C1}
\end{align*}
$$

(3) If $g(C)=2$, then P is a Galois point if and only if C is projectively equivalent to the curve given by the equation

$$
\begin{array}{r}
y^{2}-54 c^{4}(1+c) x y(x+y)+243 c^{6}(1+c)^{2} x(x+y)\left((1+c) y^{2}+3 c^{2} x(x+y)\right) \\
-729 c^{8}(1+c)^{4} x y(x+y)\left(-(1+c) y^{2}+9 c^{2} x(x+y)\right)=0 \tag{C2}
\end{array}
$$

where $c \in k$ and $c \neq 0,-1$.
(4) If $g(C)=4$, then P is a Galois point if and only if C is projectively equivalent to the curve given by the equation

$$
\begin{align*}
& y^{2}+h_{5}(x, y)=0 \tag{C3}\\
& y^{2}+3 x^{2} y+3 x^{4}+h_{5}(x, y)=0 \tag{C4}
\end{align*}
$$

where $h_{5}(x, y)$ is a form of degree five.
(5) If $g(C)=5$, then P is a Galois point if and only if C is projectively equivalent to the curve given by the equation

$$
\begin{equation*}
x y+h_{5}(x, y)=0 \tag{C5}
\end{equation*}
$$

where $h_{5}(x, y)$ is a form of degree five.
Remark 1. Let $\rho: \tilde{C} \rightarrow C$ be the resolution of the singularity of C. Then, the number of points $\rho^{-1}(P)$ is equal to one when the curve C is given by Equation (C3), on the other hand, the number is two when the curve C is given by Equation (C 1), (C2), (C4) or (C5).

As a corollary of Theorem, we also see when the Galois group $\operatorname{Gal}\left(K / K_{P}\right)$ is contained in $\operatorname{PGL}(3, k)$.

Corollary 1. With the same assumptions as in Theorem, suppose that P is a Galois point. Then we have the following.
(1) If either
(a) $g(C)=1,2$ or
(b) $g(C)=4$ and C is projectively equivalent to the curve given by Equation (C4),
then $\operatorname{Gal}\left(K / K_{P}\right) \not \subset P G L(3, k)$.
(2) If either
(a) $g(C)=4$ and C is projectively equivalent to the curve given by Equation (C3) or
(b) $g(C)=5$,
then $\operatorname{Gal}\left(K / K_{P}\right) \subset P G L(3, k)$.
Let $F=F(X, Y, Z)=0$ be the homogeneous defining equation of C and $f=$ $f(x, y)=F(x, y, 1)=0$ its dehomogenized equation. Moreover, we put $f(x, y)=$ $\Sigma f_{i}(x, y)$, where $f_{i}=f_{i}(x, y)$ is the homogeneous part of f of degree i. When $g(C)=4$ or 5 , we have the easy criterion for the point P to be Galois, which is similar to [8, Lemma 11] as follows.

Corollary 2. With the same assumptions as in Theorem, suppose that $g(C)=$ 4 or 5. Let the coordinates of P be ($0: 0: 1$) by taking a suitable projective transformation. Then P is a Galois point if and only if $f_{3}{ }^{2}=3 f_{2} f_{4}$.

3. Proofs

We use the following notations.

Notation 1.

- $\omega:=(-1+\sqrt{-3}) / 2$
- $\sim:$ the linearly equivalence of divisors
- $|D|:$ the complete linear system associated with a divisor D
- $L_{C}(D):=\{\phi \in k(C) \mid \phi=0$ or $\operatorname{div}(\phi)+D \geq 0\}$
- $l(D)$: the dimension of $\boldsymbol{L}_{C}(D)$ as a k-vector space
- Φ_{L} : the rational map corresponding to a linear system L
- $\boldsymbol{V}_{C}(L, D):=\{\phi \in k(C) \mid \phi=0$ or $\operatorname{div}(\phi)+D \in L\}$, where L is a sub-linear system of $|D|$
- $\left\langle\phi_{0}, \cdots, \phi_{n}\right\rangle$: the k-vector space generated by elements $\phi_{0}, \cdots, \phi_{n}$

Notation 2. Under the assumptions that $g(C) \geq 1$ and P is a Galois point, we use the following notation. Let $\rho: \tilde{C} \rightarrow C$ be the resolution of the singularity of C, and we put $\left\{P_{1}, P_{2}\right\}:=\rho^{-1}(P)$, where points P_{1} and P_{2} may be the same. Let Q be a ramification point of $\pi_{P} \circ \rho: \tilde{C} \rightarrow l$ such that $Q \neq P_{1}, P_{2}$. We denote by L and M the linear systems corresponding to the morphisms ρ and $\pi_{P} \circ \rho$, respectively. Namely, we may write that $\rho=\Phi_{L}$ and $\pi_{P} \circ \rho=\Phi_{M}$. Here, we note that $L \subset\left|3 Q+P_{1}+P_{2}\right|$ and $M \subset L \cap|3 Q|$. Let τ be the number $\min \{n \in \mathbb{N} \mid l(\tau Q)=3\}$ and C_{0} the image of $\Phi_{\mid\ulcorner Q \mid}: \tilde{C} \rightarrow \mathbb{P}^{2}$. Then we note that the degree of the map $\Phi_{\mid\ulcorner Q \mid}: \tilde{C} \rightarrow C_{0}$ is equal to one. Indeed, from $M \subset|\tau Q|$ and $\operatorname{deg} \Phi_{M}=3$, if $\operatorname{deg} \Phi_{|\tau Q|}=3$ then $\operatorname{deg} C_{0}=1$, this contradicts that $l(\tau Q)=3$. Let $\xi: \tilde{C}_{0} \rightarrow C_{0}$ be the resolution of singularities of C_{0}. We denote by N the linear system corresponding to the morphism $\Phi_{L} \circ \Phi_{|\tau Q|}^{-1} \circ \xi: \tilde{C}_{0} \rightarrow C$. Noting that $\xi^{-1} \circ \Phi_{|\tau Q|}: \tilde{C} \rightarrow \tilde{C}_{0}$ is an isomorphism, we put $D:=\xi^{-1} \circ \Phi_{|\tau Q|}\left(3 Q+P_{1}+P_{2}\right)$. Let $\iota: \tilde{C}_{0} \rightarrow \mathbb{P}^{2}$ be the composition of ξ and the inclusion map $C_{0} \hookrightarrow \mathbb{P}^{2}$, and $\iota^{*}(x)$ and $\iota^{*}(y)$ the rational functions $x \circ \iota$ and $y \circ \iota$, respectively. Let σ be a generator of $\mathrm{Gal}\left(K / K_{P}\right)$, which is isomorphic to the cyclic group of order three. If $g(C) \leq 4$, then we denote by $T_{P} C$ the tangent line to C at P, and let $\left(C, T_{P} C\right)_{P}$ be the intersection number of C and $T_{P} C$ at P.

Now, we note the following, which is clear.
Remark 2. The canonical divisor $K_{\tilde{C}}$ of \tilde{C} is linearly equivalent to $6 Q+(g(C)-$ 4) $\left(P_{1}+P_{2}\right)$.

Let us prove Theorem examining the cases that $g(C)=0,1,2,3,4$ and 5 separately.
(1). The case $g(C)=0$.

From [7, Proposition 3], we may assume that $P=(0: 0: 1)$ and C is given by the equation

$$
\left(y-x^{2}\right)\left(y-x^{2}+\alpha y^{2}-\alpha x^{2} y+2 x y^{2}\right)+y^{5}=0
$$

where $\alpha \in k$. Putting $t=x / y$, we have that $K_{P}=k(t)$ and $K=K_{P}(x)$. Thus, we obtain the minimal polynomial of x over K_{P} as follows:

$$
x^{3}+\frac{2 t^{3}-2 \alpha t^{2}+1}{t\left(t^{4}+-2 t+\alpha\right)} x^{2}+\frac{\left(\alpha t^{2}-2\right)}{t^{4}-2 t+\alpha} x+\frac{t}{t^{4}+-2 t+\alpha}
$$

So, we have that the discriminant of this polynomial is

$$
\psi_{\alpha}(t):=\frac{t^{6}\left(\left(4 \alpha^{3}+27\right) t^{4}-36 \alpha t^{3}+8 \alpha^{2} t^{2}-4 t+4 \alpha\right)}{\left(t^{4}-2 t+\alpha\right)^{4}}
$$

From the extension degree of K / K_{P} is equal to three, we infer that the extension K / K_{P} is Galois if and only if $\sqrt{\psi_{\alpha}(t)} \in K_{P}=k(t)$. However, we obtain easily that $\sqrt{\psi_{\alpha}(t)} \notin k(t)$ for any $\alpha \in k$. Therefore, P cannot be a Galois point.
(2). The case $g(C)=1$.

First, we can check easily that if C is given by Equation (C1), then the point $P=(0: 0: 1)$ is Galois. Indeed, we have $\sqrt{\psi} \in K_{P}$, where ψ is the discriminant of the minimal polynomial of $x \in K=K_{P}(x)$ over K_{P}.

Next, suppose that $P=(0: 0: 1)$ is a Galois point. Then, we note that $\tau=3, \Phi_{|3 Q|}$ is an isomorphism, and C_{0} is a nonsingular cubic curve. The generator $\sigma \in \operatorname{Gal}\left(K / K_{P}\right) \subset \operatorname{Aut}(\tilde{C})$ induces an automorphism of C_{0}, i.e., there is an injection $\operatorname{Gal}\left(K / K_{P}\right) \hookrightarrow \operatorname{Aut}\left(C_{0}\right)$. (We use the same symbol $\sigma \in \operatorname{Gal}\left(K / K_{P}\right)$ to denote its image.) Hence, we may assume that C_{0} is given by the equation $y^{2}=x^{3}-1$ and $\Phi_{|3 Q|}(Q)=(0: 1: 0)$. Moreover, we see that $\operatorname{Gal}\left(K / K_{P}\right) \subset P G L(3, k)$ and may assume that

$$
\sigma=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Claim 1. We have that $P_{1} \neq P_{2}$.
Proof. Suppose the contrary. Then, from there are five infinitely near singular points over P, we infer that $\left(C, T_{P} C\right)_{P} \neq 3$. Moreover, since Φ_{M} is a Galois cover, we have that $\left(C, T_{P} C\right)_{P} \neq 4$. So, we conclude that $\left(C, T_{P} C\right)_{P}=5$. Hence, putting $P^{\prime}:=P_{1}=P_{2}$, we have that $\sigma\left(\Phi_{|3 Q|}\left(P^{\prime}\right)\right)=\Phi_{|3 Q|}\left(P^{\prime}\right)$. Thus, we obtain that $\Phi_{|3 Q|}\left(P^{\prime}\right)=(0: 1: \sqrt{-1})$ or $(0: 1:-\sqrt{-1})$, so we may assume that $\Phi_{|3 Q|}\left(P^{\prime}\right)=$ ($0: 1: \sqrt{-1}$). Then, we have that $N \subset|D|$ and

$$
\boldsymbol{L}_{C_{0}}(D)=\left\langle 1, \iota^{*}(y), \iota^{*}(x), \frac{\iota^{*}(y)+\sqrt{-1}}{\iota^{*}(x)}, \frac{\left(\iota^{*}(y)+\sqrt{-1}\right)^{2}}{\iota^{*}(x)^{2}}\right\rangle .
$$

Note that $\pi_{P} \circ \Phi_{N}$ is given by the linear system corresponding to the k-vector space $\left\langle 1, \iota^{*}(y)\right\rangle$, we may put

$$
\boldsymbol{V}_{C_{0}}(N, D)=\left\langle 1, \iota^{*}(y), A \iota^{*}(x)+B \frac{\iota^{*}(y)+\sqrt{-1}}{\iota^{*}(x)}+\frac{\left(\iota^{*}(y)+\sqrt{-1}\right)^{2}}{\iota^{*}(x)^{2}}\right\rangle
$$

where $A, B \in k$. Therefore, the defining equation of C (i.e., the image of Φ_{N}) is computed as follows (see Remark 3).

$$
\begin{aligned}
& x^{2}+ 2 \sqrt{-1} x y-y^{2}-3 \sqrt{-1}(A-1) B x^{4}+3(A+1) B x^{3} y \\
&-3 \sqrt{-1}(A-1) B x^{2} y^{2}+3(A+1) B x y^{3}+\left(-(A-1)^{3}+\sqrt{-1} B^{3}\right) x^{5} \\
&\left.+\left(-2 \sqrt{-1}(A-1)^{2}(A+2)+B^{3}\right)\right) x^{4} y+\left(-6+6 A^{2}+\sqrt{-1} B^{3}\right) x^{3} y^{2} \\
& \quad+\left(-2 \sqrt{-1}(A-2)(A+1)^{2}+B^{3}\right) x^{2} y^{3}+(1+A)^{3} x y^{4}=0
\end{aligned}
$$

Here, we check that the number of infinitely near singular points over $P=(0: 0: 1)$ of this curve. Then, it is equal to two. However, since the quintic curve C has only one singular point P with multiplicity two and $g(C)=1$, the number of infinitely near singular points over P must be equal to five. This is a contradiction.

Noting that $P_{1} \neq P_{2}$ and $\Phi_{M}\left(P_{1}\right)=\Phi_{M}\left(P_{2}\right)$, let us put that $P_{2}=\sigma\left(P_{1}\right), P_{3}:=$ $\sigma\left(P_{2}\right)$ and $P_{1}=\sigma\left(P_{3}\right)$, and let (a, b) be the affine coordinates of $\Phi_{|3 Q|}\left(P_{3}\right)$. Then, we obtain that

$$
\boldsymbol{L}_{C_{0}}(D)=\left\langle 1, \iota^{*}(y), \iota^{*}(x), \frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega a}, \frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega^{2} a}\right\rangle .
$$

Hence, we may put

$$
\boldsymbol{V}_{C_{0}}(N, D)=\left\langle 1, \iota^{*}(y), A \iota^{*}(x)+B \frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega a}+\frac{\iota^{*}(y)+b}{\iota^{*}(x)-\omega^{2} a}\right\rangle
$$

where $A, B \in k$. Therefore, the defining equation of C is computed (see Remark 3) as

$$
\begin{aligned}
& b^{2} x^{2}-2 b x y+y^{2}-3 a^{2} b B x^{3}+3 a^{2}(B+\omega-\omega B) x^{2} y+3 \omega a^{2} b(1-B) x^{3} \\
& \quad-3 A(1+B) x^{3} y-3 A(1+B) x y^{3}-3(1+B)(-a-A b-\omega a+\omega a B) x^{2} y^{2} \\
& \quad+3\left(A b-a b^{2}+3 a B+A b B+2 a b^{2} B-\omega a b^{2}+\omega a b^{2} B^{2}\right) x^{4} \\
& +\left(-3 a b A^{2}-b^{2} A^{3}+b^{3}-9 a^{2} A B-3 b B-6 b B^{2}-3 b^{3} B^{2}+b^{3} B^{3}-3 \omega b a A^{2}\right. \\
& \left.\quad+3 \omega b B+3 \omega a b A^{2} B+3 \omega b^{3} B-3 \omega b B^{2}-3 \omega b^{3} B^{2}\right) x^{5} \\
& \quad+\left(3 a A^{2}+2 A^{3}+b^{2}-3 B-6 B^{2}-3 b^{2} B^{2}+b^{2} B^{3}+3 \omega a A^{2}+3 \omega B\right. \\
& \left.\quad-3 \omega a A^{2} B+3 \omega b^{2} B-3 \omega B^{2}-3 \omega b^{2} B^{2}\right) x^{4} y \\
& +\left(-A^{3}-b-3 a b A^{2}-b^{2} A^{3}-9 a^{2} A B-3 b B-3 b B^{2}-b B^{3}-3 \omega a b A^{2}+3 \omega a b A^{2} B\right) x^{3} y^{2} \\
& +\left(-1+3 a A^{2}+2 b A^{3}-3 B-3 B^{2}-B^{3}+3 \omega a A^{2}-3 \omega a A^{2} B\right) x^{2} y^{3}-A^{3} x y^{4}=0
\end{aligned}
$$

Here, considering the blowing-ups at five infinitely near singular points over P, we conclude that $a^{3}=4, b^{2}=3, A=-2 \omega b / 3 a^{2}$ and $B=\omega^{2}$. So, we may assume that
$a=\sqrt[3]{4}$ and $b=\sqrt{3}$. By taking the inverse image of the projective transformation

$$
\left(\begin{array}{ccc}
\sqrt{3} / 12 & 0 & 0 \\
1 / 4 & 1 / 2 & 0 \\
4 /\left(3(1+\sqrt{-3}) \sqrt[3]{2}^{2}\right) & 0 & -1 /\left(3(1+\sqrt{-3}) \sqrt[3]{2}^{2}\right)
\end{array}\right)
$$

we obtain Equation (C 1).

(3). The case $g(C)=2$.

We can check easily that if C is given by Equation (C2), then the point $P=(0$: $0: 1)$ is Galois.

Suppose that $P=(0: 0: 1)$ is a Galois point.
Claim 2. We have that $P_{1} \neq P_{2}$.
Proof. Suppose the contrary. Then, by an argument similar to that in the proof of Claim 1, we see that $\left(C, T_{P} C\right)_{P}=5$. So, putting $P^{\prime}:=P_{1}=P_{2}$, we infer that $3 Q \sim 3 P^{\prime}$. Hence, we have that $K_{\tilde{C}} \sim 2 P^{\prime}$, so $l\left(2 P^{\prime}\right)=l\left(K_{\tilde{C}}\right)=2$. From the Riemann-Roch theorem, we infer that $l\left(3 P^{\prime}\right)=2$. Therefore we have that $\left|3 P^{\prime}\right|=\left|2 P^{\prime}\right|$. However, we see that $M=|3 Q|=\left|3 P^{\prime}\right|$ and $\operatorname{deg} \Phi_{M}=3$, this contradicts that $\operatorname{deg} \Phi_{\left|3 P^{\prime}\right|}=\operatorname{deg} \Phi_{\left|2 P^{\prime}\right|}=2$.

Since $\Phi_{M}\left(P_{1}\right)=\Phi_{M}\left(P_{2}\right)$, we may put that $P_{2}=\sigma\left(P_{1}\right), P_{3}:=\sigma\left(P_{2}\right)$ and $P_{1}=$ $\sigma\left(P_{3}\right)$. Noting that $\tau=4$, from $\sigma^{*}|4 Q|=|4 Q|$, we infer that the birational map $\Phi_{|4 Q|} \circ \sigma \circ \Phi_{|4 Q|}^{-1}: C_{0} \cdots \rightarrow C_{0}$ belongs to $P G L(3, k)$. From Proposition 1 , we may assume that $\Phi_{|4 Q|}(Q)=(0: 0: 1)$ and C_{0} is given by the equation $y+f_{4}(x, y)=0$, where $f_{4}(x, y)$ is a form of degree four. Then, because $g(C)=g\left(C_{0}\right)=2, C_{0}$ has one double point. Hence, by taking a suitable projective transformation, we may assume that C_{0} is given by the equation $y+x^{2}(x+y)(x+a y)=0$, where $a \in k$. Here, we claim that P_{3} is a Weierstrass point, so P_{1} and P_{2} are also Weierstrass points. Indeed, noting that $3 Q \sim P_{1}+P_{2}+P_{3}$ and $l\left(K_{\tilde{C}}-2 P_{3}\right)=l\left(6 Q-2 P_{1}-2 P_{2}-2 P_{3}\right)=1$, from the Riemann-Roch theorem, we infer that $l\left(2 P_{3}\right)=2$. Because of this, we may put $\Phi_{|4 Q|}\left(P_{3}\right)=(\sqrt{a}: 1: \alpha \sqrt{a})$, where $\alpha \in k$ such that $\alpha^{3}=-(\sqrt{a}+1)^{2}$. Then, we obtain that

$$
\boldsymbol{L}_{\tilde{C}_{0}}(D)=\left\langle 1, \frac{\iota^{*}(x)}{\iota^{*}(y)}, \frac{\iota^{*}(x)\left(\iota^{*}(x)-\sqrt{a} \iota^{*}(y)\right)}{\iota^{*}(y)\left(\omega \alpha \iota^{*}(x)-1\right)}, \frac{\iota^{*}(x)\left(\iota^{*}(x)-\sqrt{a} \iota^{*}(y)\right)}{\iota^{*}(y)\left(\omega^{2} \alpha \iota^{*}(x)-1\right)}\right\rangle .
$$

So, noting that $N \subset|D|$, we may put

$$
V_{\tilde{C}_{0}}(N, D)=\left\langle 1, \frac{\iota^{*}(x)}{\iota^{*}(y)}, A \frac{\iota^{*}(x)\left(\iota^{*}(x)-\sqrt{a} \iota^{*}(y)\right)}{\iota^{*}(y)\left(\omega \alpha \iota^{*}(x)-1\right)}+\frac{\iota^{*}(x)\left(\iota^{*}(x)-\sqrt{a} \iota^{*}(y)\right)}{\iota^{*}(y)\left(\omega^{2} \alpha \iota^{*}(x)-1\right)}\right\rangle
$$

where $A \in k$. Therefore, the defining equation of C is computed (see Remark 3) as

$$
\begin{gathered}
\left(\sqrt{-1}+b^{3}\right)^{2} x^{2}+2\left(-1+\sqrt{-1} b^{3}\right) x y-y^{2}+3 b^{4}\left(-1+\sqrt{-1} b^{3}\right)(A-\omega+\omega A) x^{2} y \\
-3 b^{4}(A-\omega+\omega A) x y^{2}+3 b^{2}\left(\sqrt{-1}+b^{3}\right)^{2}(1+A)(\omega(A-1)-1) x^{3} y \\
-3 b^{2}\left(A\left(-2+2 \sqrt{-1} b^{3}+3 b^{6}\right)+2\left(-1 \sqrt{-1} b^{3}\right)(1+\omega)+2\left(\omega-\sqrt{-1} b^{3} \omega\right) A^{2}\right) x^{2} y^{2} \\
+3 b^{2}\left(1+\omega+A-\omega A^{2}\right) x y^{3}-(1+A)^{3}\left(-1+\sqrt{-1} b^{3}\right)^{3} x^{4} y \\
-3\left(1-\sqrt{-1} b^{3}\right)\left(-1+\sqrt{-1} b^{3}+A\left(-3+3 \sqrt{-1} b^{3}+\left(-1+\sqrt{-1} b^{3}\right) A^{2}\right.\right. \\
\left.\left.-(-1+\omega) b^{6}+A\left(-3+3 \sqrt{-1} b^{3}+(2+\omega) b^{6}\right)\right)\right) x^{3} y^{2} \\
+3\left(1-\sqrt{-1} b^{3}+\left(1-\sqrt{-1} b^{3}\right) A^{3}+A\left(3-3 \sqrt{-1} b^{3}+(-1+\omega) b^{6}\right)\right. \\
\left.-A^{2}\left(-3+3 \sqrt{-1} b^{3}+(2+\omega) b^{6}\right)\right) x^{2} y^{3}+(1+A)^{3} x y^{4}=0
\end{gathered}
$$

where $b \in k$ such that $b^{2}=\alpha$ and $b^{3}=-\sqrt{-1}(\sqrt{a}+1)$. Considering the blowing-ups of this curve at four infinitely near singular points over P, we conclude that $A=\omega^{2}$. Letting $c=-\sqrt{-1} b^{3}$ and taking the inverse image of the projective transformation

$$
\left(\begin{array}{ccc}
1 /(\sqrt{-1}(1+c)) & 0 & 0 \\
\sqrt{-1} & \sqrt{-1} & 0 \\
0 & 0 & -2 /\left(9(-\sqrt{-1}+\sqrt{3})(\sqrt{-1} c)^{2 / 3} c^{2}(1+c)^{2}\right)
\end{array}\right)
$$

we obtain Equation (C2).
(4). The case $g(C)=3$.

Then first, we infer that $L=\left|3 Q+P_{1}+P_{2}\right|$ from $l\left(3 Q+P_{1}+P_{2}\right)=3$ and $L \subset\left|3 Q+P_{1}+P_{2}\right|$. On the other hand, we note that $l\left(P_{1}+P_{2}\right)=1$. Indeed, if $l\left(P_{1}+P_{2}\right)=2$ then we infer that $\Phi_{\left|P_{1}+P_{2}\right|}=\pi_{R} \circ \Phi_{\left|3 Q+P_{1}+P_{2}\right|}$, where π_{R} is a projection of C from some point $R \in \mathbb{P}^{2}$. However, we have that $\operatorname{deg} \Phi_{\left|3 Q+P_{1}+P_{2}\right|}=1$ and $\operatorname{deg} \Phi_{\left|P_{1}+P_{2}\right|}=2$, this contradicts that $\operatorname{deg} \pi_{R} \geq 3$. Next, we see that $P_{1}+P_{2} \sim$ $\sigma^{*}\left(P_{1}+P_{2}\right)$, because we have that $6 Q-P_{1}-P_{2} \sim K_{\tilde{C}} \sim \sigma^{*} K_{\tilde{C}} \sim 6 Q-\sigma^{*}\left(P_{1}+P_{2}\right)$. Hence, we obtain that $P_{1}+P_{2}=\sigma^{*}\left(P_{1}+P_{2}\right)$. Thus, we conclude that $L=\sigma^{*} L$ and the birational map $\Phi_{L} \circ \sigma \circ \Phi_{L}^{-1}: C \cdots \rightarrow C$ belongs to $P G L(3, k)$. Therefore, from Proposition 2, we may assume that C is given by the equation $y^{2}+f_{5}(x, y)=0$, where $f_{5}(x, y)$ is a form of degree five. However, the genus of a nonsingular model of this curve is equal to four. This contradicts that $g(C)=3$.
(5). The case $g(C)=4$.

We can check easily that if C is given by Equation (C3) or (C4), then the point $P=(0: 0: 1)$ is Galois.

Next, suppose that the point P is Galois. Then, we infer that $L=\left|3 Q+P_{1}+P_{2}\right|$ from $L \subset\left|3 Q+P_{1}+P_{2}\right|$ and $l\left(3 Q+P_{1}+P_{2}\right)=3$. Now, we assume that $P_{1}=P_{2}$. Then, by an argument similar to that in the proof of Claim 1, we conclude that $\left(C, T_{P} C\right)_{P}=5$, and $P_{1}=P_{2}=\sigma\left(P_{1}\right)=\sigma\left(P_{2}\right)$. Thus, we see that $\sigma^{*} L=L$, and therefore we conclude that $\operatorname{Gal}\left(K / K_{P}\right) \subset P G L(3, k)$. From Proposition 2, by taking a suitable projective transformation, we obtain Equation (C3). Next, let us assume that $P_{1} \neq P_{2}$. Then, since $\Phi_{M}\left(P_{1}\right)=\Phi_{M}\left(P_{2}\right)$, we may put that $P_{2}=\sigma\left(P_{1}\right)$,
$P_{3}:=\sigma\left(P_{2}\right)$ and $P_{1}=\sigma\left(P_{3}\right)$. Noting that $\tau=5$, since $\sigma^{*}|5 Q|=|5 Q|$, the birational $\operatorname{map} \Phi_{|5 Q|} \circ \sigma \circ \Phi_{|5 Q|}^{-1}: C_{0} \cdots \rightarrow C_{0}$ belongs to $P G L(3, k)$. From Proposition 2, we may assume that $\Phi_{|5 Q|}(Q)=(0: 0: 1)$ and C_{0} is given by the equation $x^{2}+f_{5}(x, y)=0$, where $f_{5}(x, y)$ is a form of degree five. Moreover, by taking a suitable projective transformation, we may assume that $\Phi_{|5 Q|}\left(P_{3}\right)=(1: 0: 1)$. Then, we have that $\Phi_{|5 Q|}\left(P_{1}\right)=(\omega: 0: 1)$ and $\Phi_{|5 Q|}\left(P_{2}\right)=\left(\omega^{2}: 0: 1\right)$, hence, we conclude that

$$
\boldsymbol{V}_{\tilde{C}_{0}}(N, D)=\left\langle 1, \frac{\iota^{*}(y)}{\iota^{*}(x)}, \frac{\iota^{*}(x)-1}{\iota^{*}(y)}\right\rangle .
$$

Therefore, we obtain Equation (C4) (see Remark 3).
(6). The case $g(C)=5$.

We can check easily that if C is given by Equation (C5), then the point $P=(0$: $0: 1$) is Galois.

Suppose that the point P is Galois. By an argument similar to that in (4) the case $g(C)=3$, we conclude that $\sigma^{*} L=L$ and the birational map $\Phi_{L} \circ \sigma \circ \Phi_{L}^{-1}$: $C \cdots \rightarrow C$ belongs to $P G L(3, k)$. Therefore, from Proposition 2, by taking a suitable projective transformation, C is given by Equation (C5). Now we complete the proof of Theorem.

Remark 3. In the previous proof, we can compute the defining equation of C from $V_{\tilde{C}_{0}}(N, D)$ as follows. Let us assume that

$$
\boldsymbol{V}_{\tilde{C}_{0}}(N, D)=\left\langle 1, \phi_{1}\left(\iota^{*}(x), \iota^{*}(y)\right), \phi_{2}\left(\iota^{*}(x), \iota^{*}(y)\right)\right\rangle,
$$

and $C_{0} \subset \mathbb{P}^{2}$ is given by the equation $g(x, y)=0$. Then, we put that $(Y / X)=$ $\phi_{1}\left(\iota^{*}(x), \iota^{*}(y)\right)$ and $(Z / X)=\phi_{2}\left(\iota^{*}(x), \iota^{*}(y)\right)$, and we have that $g\left(\iota^{*}(x), \iota^{*}(y)\right)=0$. Here, we eliminate $\iota^{*}(x)$ and $\iota^{*}(y)$ from these equations by elimination theory $[9$, Chapter XI. Thus, we obtain the defining equation of C.

Corollary 1 and 2 is obvious from Theorem.
Acknowledgement. The author expresses his sincere thanks to Professor Hisao Yoshihara for giving him valuable advice.

References

[1] K. Miura, Field theory for function fields of singular plane quartic curves, Bull. Austral. Math. Soc., 62 (2000), 193-204.
[2] , Field theory for function fields of plane quintic curves, Algebra Colloq., 9 (2002), 303-312.
[3] , Galois points for plane curves and Cremona transformations, preprint.
[4] _ On plane curves with a Galois point, preprint.
[5] K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), 283-294.
[6] , Field theory for the function field of the quintic Fermat curves, Comm. Algebra, 28 (2000), 1979-1988.
[7] H. Yoshihara, On plane rational curves, Proc. Japan Acad. Ser. A Math. Sci., 55, (1979), 152-155.
[8] , Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), 340-355.
[9] B. L. van der Waerden, "Modern Algebra", Volume II, F. Unger Publishing Co., New York, (1950).

Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Nigata 940-8532, Japan

E-mail address: takeshi@nagaoka-ct.ac.jp

Received 17 February, 2005

