On Some EP Operators

Masuo Itoh

Abstract

Let H be Hilbert space, and let $T: H \rightarrow H$ be a bounded linear operator with closed range. In this paper, we introduce a new family of operators with generalized inverse T^{\dagger} such that $T^{\dagger} T \geq T T^{\dagger}$, which is weaker than the case of EP. Moreover we characterize such operators and give some fundamental properties.

1 Introduction and preliminaries

Throughout this paper we assume that H_{1}, H_{2}, and H are separable complex Hilbert spaces with inner product (\cdot, \cdot). Let $B\left(H_{1}, H_{2}\right)$ be the set of all bounded linear operators from H_{1} into H_{2}. Let $B_{C}\left(H_{1}, H_{2}\right)$ be the subspace of all $T \in B\left(H_{1}, H_{2}\right)$ such that the range of T is closed in H_{2}. If $H_{1}=H_{2}=H$, we write $B(H)=B(H, H)$ and $B_{C}(H)=B_{C}(H, H)$. For $T \in B\left(H_{1}, H_{2}\right)$, $\operatorname{ker} T$ and $R(T)$ denote the kernel and the range of T, respectively.

According to Nashed [6], $T \in B_{C}\left(H_{1}, H_{2}\right)$ has a Moore-Penrose inverse T^{\dagger}, that is, T^{\dagger} is the unique solution for the equations:

$$
\begin{equation*}
T T^{\dagger} T=T, T^{\dagger} T T^{\dagger}=T^{\dagger},\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \text { and }\left(T^{\dagger} T\right)^{*}=T^{\dagger} T \tag{1.1}
\end{equation*}
$$

where T^{*} denotes the adjoint operator of T. Later of this, we write M-P inverse for short.

We need the following results of T^{\dagger} and $R(T)$. See $[3,4,5]$ for details.
Theorem A. (i) For any $T \in B_{C}\left(H_{1}, H_{2}\right)$ with M-P inverse T^{\dagger}, we have that

$$
T^{\dagger} T=P_{R\left(T^{\dagger}\right)}, T T^{\dagger}=P_{R(T)},\left(T^{\dagger}\right)^{\dagger}=T, \text { and }\left(T^{\dagger}\right)^{*}=\left(T^{*}\right)^{\dagger},
$$

where P_{M} is the orthogonal projection from H onto M.
(ii) For any $T \in B(H)$,
(1) $R(T)$ is closed if and only if T^{\dagger} is bounded;
(2) $R(T)$ is closed if and only if $R\left(T^{*}\right)$ is closed.

An operator T in $B(H)$ is said to be an $E P$ operator if the range of T is equal to the range of its adjoint T^{*}, i.e., $R(T)=R\left(T^{*}\right)$. For $S, T \in B(H)$, we write
$[S, T]:=S T-T S$ for the commutator of S and T. We know that T in $B(H)$ is EP if and only if $\left[T^{\dagger}, T\right]=0$ (see $[7,10]$). An operator $T \in B(H)$ is called normal if $\left[T^{*}, T\right]=0$ and hyponormal if $\left[T^{*}, T\right] \geq 0$ (see e.g. [9]).

2 Characterization of hypo-EP operators

In this section, we define a new family of operators and give some properties.
Definition. For an operator $T \in B_{C}(H)$, if $\left[T^{\dagger}, T\right] \geq 0$ then T is called a hypo-EP operator.

The following theorems immediately follows from the definition of hypo-EP operators, Theorems 2,3 of $\S 29$ of [1] and (1) of Theorem A.

Proposition 2.1. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Then the following statements are equivalent:
(1) T is hypo-EP;
(2) $R\left(T^{*}\right) \supseteq R(T)$;
(3) $R\left(T^{\dagger}\right) \supseteq R(T)$;
(4) $T^{\dagger} T^{2} T^{\dagger}=T T^{\dagger}$;
(5) $T\left(T^{\dagger}\right)^{2} T=T T^{\dagger}$;
(6) $\left\|T^{\dagger} T x\right\| \geq\left\|T T^{\dagger} x\right\|$ for all $x \in H$.

Remarks 2.2. By using the results of Douglas [2], the following statements can be proved. Here, we refer to a result, only.

Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Then the following statements are equivalent: (1) T is hypo-EP; (2) $\exists \alpha \geq 0$ s.t. $T T^{*} \leq \alpha T^{\dagger}\left(T^{*}\right)^{\dagger}$; (3) $\exists C \in B(H)$ s.t. $T=T^{\dagger} C$.

Theorem 2.3. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Then T is hypo-EP if and only if

$$
\left\|T^{\dagger} x\right\| \leq\left\|T^{\dagger}\right\|^{2}\|T x\| \text { for all } x \in H
$$

Proof. Suppose that T is a hypo-EP operator. Then, from (6) of Proposition 2.1, T satisfies the following condition;

$$
\left\|T^{\dagger} T x\right\| \geq\left\|T T^{\dagger} x\right\| \text { for all } x \in H
$$

It follows from (1.1) that for all $x \in H$,

$$
\begin{gathered}
\left\|T^{\dagger} x\right\|=\left\|T^{\dagger} T T^{\dagger} x\right\| \leq\left\|T^{\dagger}\right\|\left\|T T^{\dagger} x\right\| \\
\leq\left\|T^{\dagger}\right\|\left\|T^{\dagger} T x\right\| \leq\left\|T^{\dagger}\right\|^{2}\|T x\| .
\end{gathered}
$$

Thus we have

$$
\left\|T^{\dagger} x\right\| \leq\left\|T^{\dagger}\right\|^{2}\|T x\| \text { for all } x \in H
$$

Conversely, we suppose that $\left\|T^{\dagger} x\right\| \leq\left\|T^{\dagger}\right\|^{2}\|T x\|(\forall x \in H)$. Then,

$$
T x=0 \Rightarrow T^{\dagger} x=0 \text {, i.e., } \operatorname{ker} T \subseteq \operatorname{ker} T^{\dagger} .
$$

Hence we have $(\operatorname{ker} T)^{\perp} \supseteq\left(\operatorname{ker} T^{\dagger}\right)^{\perp}$. Now we notice that $(\operatorname{ker} T)^{\perp}=R\left(T^{*}\right)=R\left(T^{\dagger}\right)$ and $\left(\operatorname{ker} T^{\dagger}\right)^{\perp}=R(T)$. Therefore

$$
R\left(T^{*}\right)=R\left(T^{\dagger}\right) \supseteq R(T) \text {, i.e., } T \text { is hypo - EP. }
$$

Theorem 2.4. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Then T is hypoEP if and only if one of the following statements holds:
(1) $T^{\dagger} T^{2}=T$;
(2) $T^{*} T^{\dagger} T=T^{*}$.

Proof. (1) From (4) and (5) of Proposition 2.1 we have that T is hypo-EP if and only if $R(T) \subseteq R\left(T^{*}\right)=R\left(T^{\dagger}\right)$. Thus by (1.1) we have

$$
T^{\dagger} T^{2}=\left(T^{\dagger} T\right) T=P_{R\left(T^{\dagger}\right)} T=T
$$

The converse is clear from $T^{\dagger} T=P_{R\left(T^{\dagger}\right)}$.
(2) It is clear from (1.1) and (i) of Theorem A that

$$
\left(T^{\dagger} T^{2}\right)^{*}=\left(\left(T^{\dagger} T\right) T\right)^{*}=T^{*}\left(T^{\dagger} T\right)
$$

Next, we give an example of hypo-EP operators. The following proposition is clear from the fact that if T is hyponormal then $R(T) \subseteq R\left(T^{*}\right)$.

Proposition 2.5. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. If T is hyponormal then it is hypo-EP.

The above proposition guarantees that introducing such an operator is meaningful.

3 Fundamental properties

In this section, we consider about three questions;
(i) What condition is a hypo-EP operator EP?
(ii) Is the limit of hypo-EP operators also hypo-EP?
(iii) What is a value of $\gamma\left(T^{\dagger} T-T T^{\dagger}\right)$?

Next we show fundamental results to investigate hypo-EP operators with generalized inverse.

Theorem 3.1. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. If $\left[T^{\dagger} T, T+T^{\dagger}\right]=0$ then T is hypo-EP.

Proof. By (1.1) and Theorem A,

$$
\begin{gathered}
{\left[T^{\dagger} T, T+T^{\dagger}\right]=T^{\dagger} T\left(T+T^{\dagger}\right)-\left(T+T^{\dagger}\right) T^{\dagger} T} \\
=T^{\dagger} T^{2}+T^{\dagger}-T-\left(T^{\dagger}\right)^{2} T=0 .
\end{gathered}
$$

Multiplying by T on the left hand side, by (1.1) we have

$$
T T^{\dagger}-\left(T T^{\dagger}\right)\left(T^{\dagger} T\right)=0
$$

Hence by Proposition 2.1 (5) we have the required conclusion.
Corollary 3.2. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. If $\left[T, T^{\dagger} T\right]=0$ then T is hypo-EP.

Proof. Since $\left[T, T^{\dagger} T\right]=0$,

$$
T T^{\dagger} T-T^{\dagger} T^{2}=0
$$

Multiplying by T^{\dagger} on the right hand side, by (1.1) we have

$$
T T^{\dagger}=\left(T^{\dagger} T\right)\left(T T^{\dagger}\right)
$$

Hence by Proposition 2.1 (5) we have the required conclusion.
Theorem 3.3. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Suppose that T is hypo-EP. If $\left[T T^{\dagger}, T+T^{\dagger}\right]=0$ then T is EP.

Proof. By (1.1) and Theorem A,

$$
\begin{aligned}
& {\left[T T^{\dagger}, T+T^{\dagger}\right]=T T^{\dagger}\left(T+T^{\dagger}\right)-\left(T+T^{\dagger}\right) T T^{\dagger}} \\
& \quad=T T^{\dagger} T+T\left(T^{\dagger}\right)^{2}-T^{2} T^{\dagger}-T^{\dagger} T T^{\dagger} \\
& \quad=T+T\left(T^{\dagger}\right)^{2}-T^{2} T^{\dagger}-T^{\dagger}=0
\end{aligned}
$$

Thus, we have

$$
\begin{gathered}
T^{2}+T\left(T^{\dagger}\right)^{2} T-T^{2} T^{\dagger} T-T^{\dagger} T \\
\quad=\left(T T^{\dagger}\right)\left(T^{\dagger} T\right)-T^{\dagger} T=0
\end{gathered}
$$

Hence, we have

$$
T^{\dagger} T \leq T T^{\dagger}
$$

Here $T^{\dagger} T \geq T T^{\dagger}$, by assumption.
Therefore, $T^{\dagger} T=T T^{\dagger}$, i.e., T is EP.

Corollary 3.4. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Suppose that T is hypo-EP. If $\left[T, T T^{\dagger}\right]=0$ then T is EP.

Proof. By (1.1),

$$
\begin{gathered}
{\left[T, T T^{\dagger}\right]=T^{2} T^{\dagger}-T T^{\dagger} T} \\
=T^{2} T^{\dagger}-T=0
\end{gathered}
$$

Thus we have

$$
\left(T^{\dagger} T\right)\left(T T^{\dagger}\right)=T^{\dagger} T
$$

Which means $T^{\dagger} T \leq T T^{\dagger}$. Thus T is EP by assumption.
Wei and Chen [11] proved the following theorem, which is a theorem for the continuity of T^{\dagger}.

Theorem B (Cor. 1 of [11]). Let $T \in B_{C}\left(H_{1}, H_{2}\right)$, and let $\left\{T_{n}\right\}$ be a sequence of operators in $B_{C}\left(H_{1}, H_{2}\right)$. Let T_{n}^{\dagger} be the M-P inverse of T_{n} for every n. Suppose that $T_{n} \rightarrow T$ (with respect to the norm $\|\cdot\|$ on $B_{C}\left(H_{1}, H_{2}\right)$). Then the following conditions are equivalent:
(1) $T_{n}^{\dagger} \rightarrow T^{\dagger}$;
(2). $T_{n}^{\dagger} T_{n} \rightarrow T^{\dagger} T$;
(3) $\sup _{n}\left\|T_{n}^{\dagger}\right\|<\infty$.

By Theorem B, we get the following theorem.
Theorem 3.5. Let $T \in B_{C}(H)$, and let $\left\{T_{n}\right\}$ be a sequence of hypo-EP operators in $B_{C}(H)$. Let T_{n}^{\dagger} be the M-P inverse of T_{n} for every n. Suppose that $T_{n} \rightarrow T$ (with respect to the norm $\|\cdot\|$ on $B_{C}(H)$). Then T is a hypo-EP operator.

Proof. It is clear from Theorem B that if $T_{n} \rightarrow T$ then $T_{n} T_{n}^{\dagger} \rightarrow T T^{\dagger}$. And following inequality holds,

$$
\left\|T_{n}^{\dagger} T_{n} x-T^{\dagger} T x\right\| \geq\| \| T_{n}^{\dagger} T_{n} x\|-\| T^{\dagger} T x\| \| .
$$

Hence we have

$$
\left\|T_{n}^{\dagger} T_{n} x\right\| \rightarrow\left\|T^{\dagger} T x\right\| \text { for all } x \in H
$$

Similarly, we obtain

$$
\left\|T_{n} T_{n}^{\dagger} x\right\| \rightarrow\left\|T T^{\dagger} x\right\| \text { for all } x \in H
$$

Therefore, by Proposition 2.1 (7), we have

$$
\left\|T^{\dagger} T x\right\|=\lim _{n \rightarrow \infty}\left\|T_{n}^{\dagger} T_{n} x\right\| \geq \lim _{n \rightarrow \infty}\left\|T_{n} T_{n}^{\dagger} x\right\|=\left\|T T^{\dagger} x\right\|
$$

That is, T is hypo-EP.

According to Kato [8], for $T \in B\left(H_{1}, H_{2}\right)$, the reduced minimum modulus $\gamma(T)$ of T is defined as follows:

$$
\gamma(T)=\inf \frac{\|T x\|}{\operatorname{dist}(x, \operatorname{ker} T)},
$$

where $\operatorname{dist}(x, \operatorname{ker} T)=\min _{y \in \operatorname{ker} T}\|x-y\|$.
The following statements are well known, see [8] for details.
Theorem C. For any $T \in B(H)$. Then
(1) $R(T)$ is closed if and only if $\gamma(T)>0$;
(2) if $\gamma(T)>0$ then $\left\|T^{\dagger}\right\|=\frac{1}{\gamma(T)}$.

By using of Theorem C, we show the following theorem.
Theorem 3.6. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Suppose that T is hypo-EP but it is not EP. Then

$$
\gamma\left(T^{\dagger} T-T T^{\dagger}\right)=1
$$

To show this, we need the following two lemmas.
Lemma 3.7. Let P be a bounded projection operator. Then $P^{\dagger}=P, P^{\dagger} P=$ $P P^{\dagger}=P$.

Proof. Since P is bounded, $P^{\dagger} P$ and $P P^{\dagger}$ are projection operators. Hence $\left(P^{\dagger} P\right)^{*}=P^{\dagger} P$. It follows from $\left(P^{\dagger}\right)^{*}=\left(P^{*}\right)^{\dagger}=P^{\dagger}$ that

$$
P P^{\dagger}=P^{*}\left(P^{\dagger}\right)^{*}=\left(P^{\dagger} P\right)^{*}=P^{\dagger} P
$$

Thus, we have $P P^{\dagger}=P^{\dagger} P$. Using the above relation, we have

$$
P=P P^{\dagger} P=P^{2} P^{\dagger}=P P^{\dagger}
$$

Hence,

$$
P^{\dagger}=P^{\dagger} P P^{\dagger}=P^{\dagger} P=P
$$

Therefore,

$$
P^{\dagger}=P
$$

Theorem 3.8. Let $T \in B_{C}(H)$ with a bounded M-P inverse T^{\dagger}. Then

$$
\gamma\left(T^{\dagger} T\right)=\gamma\left(T T^{\dagger}\right)=1
$$

Proof. Since $T^{\dagger} T$ and $T T^{\dagger}$ are bounded operators, from Theorem C

$$
\gamma\left(T^{\dagger} T\right)=\frac{1}{\left\|\left(T^{\dagger} T\right)^{\dagger}\right\|} \text { and } \gamma\left(T T^{\dagger}\right)=\frac{1}{\left\|\left(T T^{\dagger}\right)^{\dagger}\right\|}
$$

Since $T^{\dagger} T$ and $T T^{\dagger}$ are non-trivial projection operators, from Lemma 3.7 we have

$$
\left\|\left(T^{\dagger} T\right)^{\dagger}\right\|=\left\|T^{\dagger} T\right\|=1 \text { and }\left\|\left(T T^{\dagger}\right)^{\dagger}\right\|=\left\|T T^{\dagger}\right\|=1
$$

Therefore,

$$
\gamma\left(T^{\dagger} T\right)=\frac{1}{\left\|T^{\dagger} T\right\|}=1 \text { and } \gamma\left(T T^{\dagger}\right)=\frac{1}{\left\|T T^{\dagger}\right\|}=1
$$

Proof of Theorem 3.6. Since T is not EP, $T^{\dagger} T-T T^{\dagger}$ is a non-trivial projection operator. Thus by Lemma 3.8 we have $\left\|T^{\dagger} T-T T^{\dagger}\right\|=1$.
Therefore,

$$
\gamma\left(T^{\dagger} T-T T^{\dagger}\right)=\frac{1}{\left\|\left(T^{\dagger} T-T T^{\dagger}\right)^{\dagger}\right\|}=\frac{1}{\left\|T^{\dagger} T-T T^{\dagger}\right\|}=1
$$

4 Acknowledgement

The author would like to express his thanks to the referee for several improvements on the presentation of this paper.

References

[1] P. R. Halmos, Introduction to Hilbert Space, Chelsea, New York, (1957).
[2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Amer. Math. Soc. 17, 413-415, (1966).
[3] R. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (4), 489-495 (1973).
[4] R. Bouldin, The product of operators with closed range, Tôhoku Math.J. 25, 359363 (1973).
[5] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Willey, New York, (1974).
[6] M. Z. Nashed, Perturbations and approximations for generalized inverses and linear operator equations, in: M. Z. Nashed(Ed.), Generalized Inverses and Approximations, Academic Press, New York/San Francisco / London, (1976).
[7] S. L. Campbell and C. D. Meyer,Jr., Generalized Inverses of Linear Transformations, Pitman, (1979).
[8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, (1984).
[9] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhäuser Verlag, Basel / Boston / Berlin, (1989).
[10] D. S. Djorrdjević, Product of EP operators on Hilbert spaces, Proc. Amer. Math. Soc. 129 (6), 1727-1731 (2000).
[11] Y. Wei and G. Chen, Perturbation of least squares problem in Hilbert spaces, Appl. Math. Comput. 121, 177-183 (2001).

Department of Mathematics
Kagoshima National College of Technology, Kagoshima, 899-5193 JAPAN e-mail number: mitoh@kagoshima-ct.ac.jp

Received 15 February, 2005 Revised 18 April, 2005

