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Weighted composition operators between weighted
Bergman spaces in the unit ball of C"

Sei-ichiro Ueki

Abstract

Let ¢ be a holomorphic self-map of the unit ball B in C™ and 3 a holomorphic
function in B. Let AP(v,) denote the weighted Bergman space in B. In this
paper, we characterize the boundedness and the compactness of the weighted
composition operator Wy, : f — 9¥(f o ¢) from AP(v,) into A%(vg) (0 < p <
g < 00,—-1 < a,B < 00), in terms of the Carleson-type measures. We also
consider the boundedness and the compactness of W,y : AP(va) — H*(B),
the space of the bounded holomorphic functions in B.

1 Introduction

Throughout this paper, let n be a fixed integer. Let B and S denote the unit ball
and the unit sphere of the complex n-dimensional Euclidean space C", respectively.
Let v and o denote the normalized Lebesgue measures on B and S, respectively.
For each a € (—1,00), weset co =T'(n +a+1)/{T'(n + 1)['(a + 1)} and dv,(2) =
ca(1 — |2|?)*dv(z) (2 € B). Note that v,(B) = 1. Let H(B) denote the space of
all holomorphic functions in B. For each p € (0,00) and a € (—1, 00), the weighted
Bergman space AP(v,) and the Hardy space HP(B) are defined by

#20) = { £ € HEB) : 1y = [ 1P < 0}

HP(B) = {f € HB) : |f|% = sup /lf,l"da < oo},
o<r<1J8

where f,(z) = f(rz) for r € (0,1), z € C"® with r2 € B. For convenience’ sake,

the spaces HP(B) are denoted by the symbols AP(v_;) (0 < p < oco). Note that

limg—1 || fllar(ve) = || fllg» for p € (0,00) and f € H(B). (See [1, §0.3 and p.25].)
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If ¢ is a holomorphic self-map of B and ¢ € H(B), then ¢ and 3 define the
linear operator W,,,, on H(B) by means of the equation W, yf = 9 - (f o ). This
operator W, ,, is called the weighted composition operator induced by ¢ and 1.

In the case of the dimension n = 1, G. Mirzakarimi and K. Seddighi [8] have
studied the weighted composition operators on AP(v,) (0 <p < oo, —1 < a < 00).
Recently, W, on HP (1 < p < oo) has been studied by M. D. Contreras and A.
G. Herndndez-Diaz [2]. Subsequently, they also characterized when W, : H? —
H? (1 < p < g < o) is bounded or compact, in terms of the Carleson measure [3]:

Theorem ([3]). Let1<p < g < oo. Suppose that ¢ is a holomorphic self-map of
the unit disk D and ¢ € H9. Define the measure pi,y 4 on D by

bowaB)= [, 1o,

for all Borel sets E of D. Here ¢* : 0D — D is the radial limit map of .

(a) Wy : HP — H? is bounded if and only if puyy,q is a 1-Carleson measure on
D.

(b) Wey : HP — H? is compact if and only if pyy,e is a comact 2-Carleson
measure on D.

In this paper, we consider the boundedness and the compactness of W, :
AP(v,) — A(vg) (0 < p < g < 00,—1 < @, < 00) in the higher dimensional case
n > 1. We also prove the similar results on the operators W, : H?(B) — H9(B)
(0<p<g<oo)and W,y : H?(B) — A%(v,) (0<p<g<o0,—1<a< ).

In Section 3, we characterize the boundedness of W, ,,. In Section 4, we discuss
the compactness of W, ,,. Moreover, in Section 5, we consider the boundedness and
the compactness of W,y : AP(vy) — H*(B) (0 < p < 00,—1 < a < o0), where
H®(B) is the space of all bounded holomorphic functions on B, endowed with the
norm [|flleo = sup,c |£(2)|-

2 Preliminaries

In order to prove our main result, we will need some notations and lemmas.

Lemma 2.1. Let 0 < p < 00 and —1 £ a < o©o. Suppose f € H(B) and z € B.

Then
1 ntlta

1@< (=) Ml

where || fllar_yy = || fll e (5)-



The proof of this lemma is essentially the same as [5, Lemma 3.2].

Let ¢, (z € B) be the biholomorphic involution of B described in [10, p.25]. For
z€ Band 0 < r < 1, we set E(z,7) = ¢,(rB). According to [10, p.29, §2.2.7],
E(z,r) consists of all w € B that satisfy

|IPw—c|?  |w— Pw|?

(rp)? r2p

where P,w = %f—)lz, c= 3—%1::1;)" and p = —u—lizrlzzsz.
For ¢ € S and § > 0, we introduce the Carleson set S({,6) in B :

<1,

8(¢,0)={z€B:1- (20| <d}.
Furthermore, we put B({,6) = S({,6) N B and S(¢,4) = S(¢,9) N S.

Lemma 2.2. For any z € B and 0 < r < 1, there erist ( € S and § > 0 with
E(z,7) C B(¢(,6). Furthermore, § ~ 1 — |2]2.

Proof. By a simple computation, this lemma is easily verified. See [12, Lemma
1.3]. | O

Lemma 2.3. Let0 < p < ¢ < 00 and —1 < a < o0. Suppose that p is a positive
Borel measure on B with

w(B(¢,8)) < C6™ 5™ (¢ e 5,6>0), (2.1)

for some constant C > 0. Then there is a positive constant K such that

{ fB |f I"du} "< Klflargny (f € 47()). (2:2)

Proof. Let z € B and % < r < 1 be fixed. By Lemma 2.2, there exist { € S and
0 > 0 such that

E(z,7) C B((,6), d~1-—|2]% (2.3)
By (2.1) and (2.3), we obtain
w(B(z,7) < C'(1— |22 "5, (2.4)

for some constant C' > 0. Now, take f € AP(v,). Since |f|? is a nonnegative
M-subharmonic function in B, it follows from [11, p.33, (4.3) and (4.4)] that for
z€B

I <8 [ IF@)F0 - ef) " d(w) (25)

By Lemma 2.1, (2.5) and Fubini’s theorem, we have

[ 1#@)1au(z)



<8 [du(a) [ 1F @)1~ )" dv(w)
< NI, [ IF@)PQ = w®* 5 dw) [ xeep@)du).  (26)
Since xp(z,1)(w) < XE(w,)(2) for each (z,w) € B x B, (2.4) and (2.6) give

H(E(w, 7)) dv(w)

L1 @Vdu(z) < 3N FIGR, [ 1F@)PQ = o)==
< SOy [, 1F@IPQ - Pdvw) = £Z

This proves (2.2). O

— v

Remark. By a careful computation, we see that the constant K of (2.2) is taken to
be the product of C*/? and a positive constant depending on o and the dimension
n.

The proof of the following lemma is essentially the same as that of S. C. Power’s
theorem in [9].

Lemma 2.4. Let 0 < p < q < 0o. Suppose that u is a positive Borel measure on B
and there exists a constant C' > 0 such that

p(B((,8)) < C6% (C€8,6>0). (2.7)

Then there exists a constant K > 0 such that

[ /B lflqdur <K|flla» (f € H?(B)). (2.8)

Proof. Fix f € H?(B) and t > 0. By the same argument as the proof of Theorem
in [9, pp.14 - 15], it follows from (2.7) that there exists a constant C’ > 0 such that

u{z € B:|f(x)| 2 1) < C'[o({¢ € S: MF(Q) = 8})]?, (2.9)

where M f is the admissible mazimal function of f which is defined by

Mf(¢) = sup{|f(2)| : z € C*, |1 — (£,{)] < 1 — |2[*},
for { € S. By (2.9), we have

fB | f1%dp = qfooo p{lf] > t}t771dt < C'q /Ooo o{Mf > t}rt9 14t (2.10)

Since f € H?(B) (0 < p < 00), it follows from [10, Theorem 5.6.5] that

sz e < [[usopao| <o) . e



for some positive constant C), depending on p and n. By (2.10) and (2.11), we have

/ |fl%du < C’q/ o{Mf > t}rtdt
1

gC’Z Coll 112> p/ o{Mf >t} dt

-.‘1 -1
P t p
! cpnfn%p 2 [Tolur> 2 (4)

cpufu% r LM F(Qydo(€) < CLCH 2 Sl

IA
3

Cl

RSELS

This completes the proof. O

Lemma 2.5. Let 0 < p < g < co. Suppose that p is a positive Borel measure on S
such that .
p(S(¢,0)) < Cé» (¢ €S,6>0), (2.12)

for some constant C > 0.

(a) If p = g, then there ezist a g € L*®(S) and a constant C' > 0 (C' is the
product of C and a constant depending only on n) such that du = gdo and
lgllz~ < C".

(b) If p < q, then u = 0 for all Borel sets of S.

Proof. (cf. [6, p.238, Lemma 1.3].) Since o(S(¢,d)) ~ ™ (see [10, p.67, Proposition
5.1.4]), there exist positive constants C; and C, depending only on n, such that

C16™" < 0(S(¢,0)) < Cx6™ ((€8,6>0). (2.13)
By (2.12) and (2.13), we see that for all { € S and § > 0

(S0 _ C amismsy
(5, 8) = 015 (2.14)

Note that S(¢,8) = S when § > 2. Thus p(S(¢,0))/0(S(¢,9)) = u(S) = u(S(¢,3)) <

3%Cif6 > 2 If0 < & < 2, then we have u(S(¢,6))/0(S(¢,8)) < 2_"(%_:?_0, by
(2.14). Hence we see that the maximal function My of the positive measure y satis-
fies Mu(¢) < oo for all ¢ € S. By [10, Theorem 5.2.7 and Theorem 5.3.1], we obtain
du = gdo for some g € L'(o) and

(S8, 9)

=) M

9(¢) = 610—-——0(5@ %)) S(“)gd MM(C)—SUP

for a.e. (€ S.



In the case p = g, it follows from (2.14) and (2.15) that g € L*®(S) and ||g||z=~ <
—gl—. This proves (a).

In the case p < g, by (2.14), we have
1 d — ,"’(S(C? 6)) < C 611(%—1),

0= 36 Jseo '™ = 5(3(¢,8) = G

forall( € Sand § > 0. Asé | 0, we have g = 0 a.e. on S. Thus x = 0. This
completes the proof. |

Lemma 2.6. Let0<p<g< 0. Suppose thai L i a positive Borel measure on B
such that = .
u(S(C,8) S €% (C€8,5>0), (2.16)

for some constant C > 0. Then there exists a constant K > Q such that

(i)’ < Kt .17

for all f € HP(B). Here the notation f* denotes the function defined on B by f* = f
in B and f* =lim,1; fr a.e. [0] on S.

Proof. (cf. [6, p.239].) Put u3 = p | and pue = p |g. By (2.16) we have

w(B((,6)) < Cs%, (2.18)
u2(S(¢,6)) < C5%, | (2.19)

for all { € S and § > 0. By (2.18) and Lemma 2.4, there exists a constant K’ > 0
such that

I:/; Iflqdul] g < K'”f”HP (f € HP(B)) (2.20)

Moreover, it follows from (2.19) and Lemma 2.5 that du; = gdo for some g € L*°(S)
when p = q and p2 = 0 when p < ¢q. Thus using (2.20), we have

J1t1edu = [ 119+ [ 119
B B S
< B8 + gl [ 17 Pdo, ifp=q,
R L™ ifp<aq
This proves (2.17). a

Remark. In Lemma 2.6 (or Lemma 2.4), we see that the constant K of (2.17) (or

(2.8)) can be chosen to be the product of C/? and a positive constant depending
only on p, g and the dimension n.



3 Boundedness of W, : AP(v,) — A%(vp)

Let 0 < ¢ < oo and —1 < 8 < oo. For a holomorphic map ¢ : B — B and
Y € A%(vg), we define a finite positive Borel measure fi,4,43 On B by

.“wﬁ,q,ﬂ(E) = /99 [¥|%dvg,

“N(E)
for all Borel sets E of B. Moreover, for ¢ € H4(B), we also define a finite positive

‘Borel measure (4, on B by

Popwg(E) = [P |4*|%o  (for all Borel sets E of B),

=\ (B)
where ¢* denotes the radial limit map of the mapping ¢ considered as a map of
S — B.

The following lemma is a change of variables formula from measure theory.

Lemma 3.1. Let 0 < g < oo and —1 < 3 < 0o. Suppose that ¢ is a holomorphic
self-map of B and ¢ € A¥(vg).

(a) If B > —1, then for each nonnegative measurable functién ginB
[ 9bonas = [ 1e1%(a o @) dus. (3.)

(b) If B = —1, then for each nonnegative measurable function g on B
f9duove = [ 190 4" do. (3:2)
Proof. By adopting the way to prove [7, p.16, Theorem 1.19], we can verify this

lemma. d

We introduce a y-Carleson measure on B or B. For v > n, we say a finite
positive Borel measure y on B (resp. on B) is a y-Carleson measure if there exists
a constant C' > 0 such that u(B((,d)) < C8” (resp. u(S(¢,0)) < Cé") forall( € S
and § > 0.

Now, we give a characterization of the boundedness of W, ,, : AP(vy) — AI(vs)
in terms of a ﬂpiplﬁl-(]arleson measure.

Theorem 3.1. Let 0 < p < ¢ < 00 and —1 < o, < oo. Suppose that ¢ is
a holomorphic self-map of B and ¢ € A%(vg). Then the following conditions are
equivalent:

(a) Wy AP(Vy) — A% (vg) is bounded.

(b) tpppqp 1S @ m‘iz-}i’l-Carleson measure on B.



(c) ¢ and ¢ satisfy
g!n+1+a!

= z)|? L |af" ’ vg(z) < oo
M= [ oGl T we < (9)

Remark. When p = ¢, a = 8 > —1 and n = 1, the above result appears in (8,
Theorem 4.3].

Proof. (¢c) = (b). For { € S and § € (0,1), put a = (1 — )¢ € B. Define the
function f, on B by

1— a2 "5 —
Wo-{asgap) | <P

We can easily see that f, is in the ball algebra A(B) C AP(v,) and |fo(2)]? >
g!n+1+a!

(46)"" »  for all z € B(¢,d). By (3.1) and (3.3), we have
_g(n+1+a)
Ho.w,a.8(B(C,6))(49) P < B | fal®dbp 0.8
()
< [ Wllfa 0 plidus < M.
That is, pypqes(B((,6)) < A= i s € (0,1). If 6 > 1, we see

g!n 1+a)
that pey,4,6(B(¢,6)) < ||1,b||qu(,,ﬁ)5 5 These prove that pg, 445 is a ﬂ—l":“’a -

Carleson measure on B.
(b) = (a). By the assumption (b) and Lemma 2.3, there exists a constant K > 0
such that

|, Pditnsan] " < Kl (34
for all f € AP(v,). On the other hand, by Lemma 3.1, we have

L £ g0 = [ 161915 0 @ltdus = [Wyg fllheqy (35)

Hence (3.4) and (3.5) show that W, is a bounded operator from AP(v,) to A9(v;).

(a) = (c). Let a € B be fixed. Take the function f, as in the proof of (c) =
(b). Then f, € A(B) C A?(v,). Moreover, by [10, Proposition 1.4.10], we see that
there exists a constant C' > 0 such that

(1 — |af)m++e(l — |2)%)

B |1 — (2, a)|2(n+1te) dv(z) < C(1 — |a’)**H*(1 — |af?)~ "1+ = C,

Thus, we have sup,p || fallar@a) < {caC'}%. Since W,y : AP(Va) — A%(vp) is
a bounded operator, there exists a constant K > 0 such that W,y fall%e,) <



{K|| fall ap(va) }? < K%{c,C}¥ for all a € B. It follows from the form of the function
fa that

q!n+1+a!

/ w(z >|q{ — lal } " dvs(z)
1= (p(2),a)]?
= ”th,wfa”Aq(,,ﬁ) < K‘I{CQC}§ < 00,

for all @ € B. This gives (3.3). a

Theorem 3.2. Let 0 < p < g < 00. Suppose that ¢ is a holomorphic self-map of B
and ¢ € HY(B). Then the following conditions are equivalent:

(a) W, : HP(B) — H9(B) is bounded.
(b) bouw,q s a Lt-Carleson measure on B.
(c) ¢ and ¢ satisfy

lal?

*(€)|? 1- 4 o 00
swp [0 OP{ ) ) < &0

Proof. The proofs of (a) = (c) and (c) = (b) are entirely similar to those of Theorem
3.1 except that we choose the test function

fulz) = {%} (zeB).

(b) = (a). By Lemma 2.6, there exists a constant K > 0 such that

/Elf*|qdl“p,¢,q < K| fllur}? (3.7)

for all f € HP(B). Let f be in HP(B). Since A(B) is dense in HP(B), there is a
sequence {f;} in A(B) such that lim; . ||fj — f|lg» = 0. Noting that f; € A(B)
implies that (f; o ¢)* = f; o ¢* a.e. on S. Thus, by Lemma 3.1 and (3.7), we have

IWosfillhs = [ 1071155 0 "1%do = [ 11;dnoma < {Kslm},  (38)

for all j € N. Since lim;_,o || f; — flla» = 0, it follows from (3.8) that {W,,.f;} is a
Cauchy sequence in H?(B). The completeness of H(B) gives W, f € HY(B) and
IWe s fllae < K| f||ue. This proves that W,,,, : H?(B) — H%(B) is bounded. 0O

The proof of the following theorem is entirely similar to that of Theorem 3.2,
except for using Lemma 2.4 instead of Lemma 2.6. In fact, the proof is much easier
than that of Theorem 3.2 because the boundary functions are not involved.



Theorem 3.3. Let 0 < p < g < o0 and a € (—1,00). Suppose that ¢ is a
holomorphic self-map of B and ¢ € A%(v,). Then the following conditions are
equivalent:

(a) W,y : HP(B) — AY(v,) is bounded.
(b) Bypaa is a L-Carleson measure on B.
(c) ¢ and ¢ satisfy

1—|al?

sup [y WO e el <o

4 Compactness of W, : AP(vy) — A(vp)

The proofs of the results in Sections 4 and 5 depend on the following characterization
of the compactness of W, : AP(va) — A%(v3) 0 <p<g< 00,-1< @, < 00)
expressed in terms of sequential convergence. Here A®(v,) = H*°(B). By using
Lemma 2.1 and the fact that bounded subsets of AP(v,) are normal families, we can
prove the next proposition in the same way as we prove (4, Proposition 3.11].

Proposition 4.1. Let0 <p < qg< o0 and -1 < &, < 00. Let ¢ be a holomorphic
self-map of B and ¢ € A%(vg). Suppose that W, ,(AP(v,)) C A¥(vg). Then W,y :
AP(v,) — A%(vg) is compact if and only if for every bounded sequence {f;} in AP(v,)
which converges to 0 uniformly on compact subsets of B, {W,f;} converges to 0
mn Aq(Vg).

In order to state our results, we introduce a compact y-Carleson measure on B
or B. For v > n, a finite positive Borel measure 2 on B (resp. on B) is called a
compact y-Carleson measure if

: u(B(¢,6))
Ll S T

_ : w8 9) _
=0 (resp. lgﬁ)ls(gg 5 =0).

In this section, we characterize the compactness of the operators W, ,, : AP(v,) —
A%(vg), H?(B) — HY(B) and H?(B) — A%(v,) (0 < p < ¢ < 00).

Theorem 4.1. Let 0 < p < g < o0 and -1 < ¢o,B < oo. Suppose that ¢ is
a holomorphic self-map of B and ¢ € A¥(vg). Then the following conditions are
equivalent:

(a) Wey : AP(Va) — A¥(vg) is compact.

(b) Po.qep @S a compact ﬂﬂM—Carleson measure on B.



(c) ¢ and ¢ satisfy

1 _ la|2 4§n+p1+0¢2
i [ W e | s =0 (1)

Proof. (a) = (c). Take a sequence {a;} in B with lim; ., [a;] = 1. We define
functions f; on B by

n+l4o
1—|a;[?

As in the proof of Theorem 3.1, we see that f; € A(B) and || f;||%s(,.) < caC < oo for
some constant C' > 0. Moreover, we can easily see that { f;} converges to 0 uniformly
on compact subsets of B. By Proposition 4.1, we have {W,, ,f;} converges to 0 in

A%vg). Hence,

gsn+1+a!

. 1 -— 'a.lz 4 .
1 a 4 = lm [|[Wyf5]%ey = O-
jim, [ WG {Il - (so(z),aj>|2} dvs(2) = Jizn [Wewfillasea)

This implies (4.1).
(c) = (b). Fix € > 0. By (4.1) and Lemma 3.1, we can choose rq € (3,1) such

that
gSn+1+a2

/ 1—lal? P (z)<__€_'_ “s)
B |1 - (z,a)|2 Ho,q,8 4g§ﬂ+1+a2 ) .

4

for all @ € B with 1o < |a| < 1. Put §g = 1—1ry. For { € S and § € (0,d), we
put a = (1 —8)¢. Then a € B and ry < |a|] < 1. Moreover, we see that for each
z € B((,9)

By (4.3) and (4.4), we have
q(nt+ita)

1—|af? ”
{m} dpipp,a,6(2) < €,

for all 6 € (0,90) and ¢ € S. This implies that p., 4 4 is a compact gi'ﬁ;il-Carleson
measure on B.

(b) = (a). We assume that p, 4,5 is a compact ﬂ'iplt‘ﬁ-Carleson measure on
B. For ( € Sand § > 0,set D({,0) ={z€ B:1-6 < |z|,2/|2|] € S(¢,8)}. Then
we easily see that

l”"P:"/)’q)ﬁ(‘B(C’ 6)) < 4§§"+p1+a2 /
5g§n+Pl+a2 = B(C‘a)

B(¢,6/2) € D(¢,6) € B(¢,25) for( e S and § > 0. (4.5)



. g(ntlitao)
By the assumption on p, .5 and (4.5), we obtain py,4.04(D((,6))/07 = — 0

as § | 0 uniformly in ¢ € S. Hence, as in the proof of [6, Theorem 1.1(ii)], we can
prove that there exists a constant C' > 0 depending only on p, ¢,a and n such that

A(B((,8) < Ces™5™ (¢ €5,6>0), (4.6)

where ¢ > 0 is fixed and & = Ly4,0,8] p\(1-5,)F fOr some & € (0,1).
Suppose that {f;} C AP(v,) satisfies M = sup,ey || f;ll4r(ue) < 00 and converges
to 0 uniformly on compact subsets of B. By Lemma 3.1, we have for each j € N

Wi ilian = [ s 0 DY@Ndvs(z) = [ 15:(2)1dbsgupan(2)
= [16@0dRE) + [ 1) dupas(o) @

1-60)B

By (4.6) and Lemma 2.3, there exists a positive constant K depending only on p, q,
and n such that
[, 1fi1%d5 < KCellf;14nq.,y < KMC, (4.8)

for each j € N. Since {f;} converges to 0 uniformly on (1 — &)B, it follows that

i (2)|9d =0. 4.9
j-»%lo (1_50)_§|f1(z)| l‘w,tﬁ,q,ﬂ(z) ( )

Hence (4.7)—(4.9) show that {W,,f;} converges to 0 in A(vg). By Proposition 4.1,
we see that W,, ,, : AP(v,) — A%(vp) is compact. O

In order to prove Theorem 4.2, we show two lemmas. These are the extensions
of [6, Corollary 1.4 and Lemma 1.6] to the weighted composition operator W, ,;.

Lemma 4.1. Let 0 < p < g < co. Suppose that ¢ : B — B is a holomorphic map
and v € H4(B)\ {0} such that W, : H?(B) — H9(B) is bounded. Then ¢* cannot
carry a set of positive o-measure in S into a set of o-measure 0 in S.

Proof. Suppose E,F C S and ¢*(E) C F with o(F) > 0 and o(F) = 0. Put
A = popglg. Since W, o, 1 HP(B) — H4(B) is bounded, by Theorem 3.2, we have

A(S(¢,8)) < C6% (¢ €5,6>0),

for some positive constant C. By Lemma 2.5, we see that A =0 (if p < q) or ) is
absolutely continuous with respect to o (if p = q). Thus we have

02 Ne'(E) = [ [¥*1%do > [ |y*|do.

*~1(p*(E))

That is, * = 0 a.e. on E. Hence [10, Theorem 5.5.9] gives that 1 = 0 in B. This
contradicts ¢ # 0. O



Lemma 4.2. Let 0 < p < g < oo and f € HP(B). Suppose that ¢ : B — B
is a holomorphic map and ¢ € HY(B) \ {0} such that W, : H?(B) — H(B) is
bounded. Then ¥*(f o p)* = Y*(f*o*) a.e. [0] on S. Here the notation f* is used
as in Lemma 2.6.

Proof. (cf. [6, Lemma 1.6].) Since ¢* cannot carry a set of positive measure in S
into a set of measure 0 in S (by Lemma 4.1) and since the radial limit of ¢, f and
Y exist on a set of full measure in S, we have lim,1 ¥*(f, 0 ¢*) = V*(f* o ¢*) a.e.
[o] on S.

On the other hand, since f, € A(B) and f, — f as r T 1 in H?(B), the
boundedness of W, ,, shows that

0< [ QO 09) (O) = ¥ (O 0 9")(Q) o (¢)
= [Hm (O 0 9)"(€) = ¥ () (f 0 ") (O dor(()

S rTl
<liminf [ [(O)(F 0 ) (O) =¥ (O)(F- 0 9) (%o (€)
=l inf Wy, f ~ Wiy frllf = 0.

This implies that ¥*(f o p)* = ¢*(f* o ¢*) a.e. [o] on S. O

Theorem 4.2. Let 0 < p < g < 0o0. Suppose that ¢ is a holomorphic self-map of B
and ¢ € HY(B). Then the following conditions are equivalent:

(a) Wy : HP(B) — H9(B) is compact.
(b) teyyq IS a compact L-Carleson measure on B.

(c) ¢ and 1 satisfy

n

* q 1—|a|2 P o —
Lwor{ =l v -0 (410)

Proof. If 1 = 0, then W, ,, is compact. Thus, we consider the case 1 # 0.
(a) = (c). For any sequence {a;} in B with lim; ., |a;| = 1, put

lim
la|T1

1 — |a;|®
(1—(z,qa;))?

We can easily see that {f;}(C A(B)) is a bounded sequence in H?(B) which con-
verges to 0 uniformly on compact subsets of B. By Proposition 4.1, we have
lim; o ||Wo,4 fill e = 0. Since (f; o p)* = f; o ¢* a.e. on S, we obtain

) ={ } (:€B,jeN).

ol L=lal  \F ; .
[S' 'w (C)I {Il _ <¢*(C),a]>12} dO'(C) - ”W<F:’l/)fj”H‘i' —0 asj— oo



This proves (4.10).

The proof of (¢c) = (b) is entirely similar to that of Theorem 4.1.

(b) = (a). Fix € > 0. As in the proof of (b) = (a) in Theorem 4.1, there exists
a constant C' > 0 dpending only on p, g and n such that

i(S(¢,0)) < Ced® (€ 8,6>0), (4.11)

where i = Lig,y,q|5\1-s0)F for some & € (0, 1).

Now, suppose that {f;} is a bounded sequence in H?(B) which converges to
0 uniformly on compact subsets of B. By the assumption (b) and Theorem 3.2,
W, : HP(B) — H9(B) is bounded. Hence, it follows from Lemma 4.2 that ¥*(f; o
©)* = ¢*(f; op*) a.e. on S (j € N). By Lemma 3.1, we obtain for each j € N

Wasillhe = [ 167Uy 0 ) o = [ 71015} 0"l
= L151%dn0.q
= L1f1dz + /(1_60)1_3_| Fil%dpp g | (4.12)

On the other hand, by (4.11) and Lemma 2.6, there exists a constant K > 0 de-
pending only on p, q and n such that

L1515 < KCell £l < KMCe, (413)

where M = sup;.y || fjllz» < o0. Since {f;} converges to 0 uniformly on (1 — &)B,
we have

lim |£il"Appp,q = 0. (4.14)

j—o00 J(1—60)B

Hence (4.12)—(4.14) show that limj o || W4 fillae = 0 By Proposition 4.1, W, is
compact from H?(B) to HY(B). O

Theorem 4.3. Let 0 < p < ¢ < o0 and a € (—1,00). Suppose that ¢ is a
holomorphic self-map of B and v € A%(v,). Then the following conditions are
equivalent:

(a) W,y : H?(B) — A(v,) is compact.
(b) Lppaa is a compact £2-Carleson measure on B.

(c) ¢ and ¢ satisfy

: o\, -
im [, e =l e =

Proof. By replacing Lemma 2.6 with Lemma 2.4 in the proof of Theorem 4.2, we
can prove this theorem. In fact, the proof of this theorem become much easier than
that of Theorem 4.2 because the boundary functions are not involved. O



5 W,y from AP(v,) to H*(B)

In this section, we study the boundedness and the compactness of W, from

AP(1y) (0 < p < 00,—1 < a < 00) to H*®(B). Our results in this section are

the extensions of the results by M. D. Contreras and A. G. Herndndez-Diaz ([3]).
From now on, till the end of this paper, we fix a € [~1,00) and p € (0, 00).

Theorem 5.1. Suppose that ¢ is a holomorphic self-map of B and ¢ € H(B).
Then the following conditions are equivarent:

(a) W,y : AP(vy) — H*°(B) is bounded.

(b) ¢ and ¢ satisfy
< o0.

(2P
2eb (1— [p(2)P)rrive

Proof. (b) = (a). Take f € AP(v,). By Lemma 2.1, we have |f(z)] < (1 —
|2[2)~ 5 | 1l 4p(va) for all z € B. Thus we have for z € B

(1- tsr(b(n)'):; 1flarem) < M7 £l ar s

where M = sup,cp 7 ‘PIE/; gfggiﬂﬂ < o0o. This implies W, : AP(v,) — H™(B) is
bounded.
(a) = (b). For z € B, we define the function f, on B by

(W f(2)] <

nt+lto

w) = { L le@)P * weB
s ={ i) weD

We can easily see that f, € A(B) and C = sup ¢ || f:|/%s(,) < 00. Since Wy
AP(v,) — H>(B) is bounded, there exists a constant K > 0 such that |W,, , f.||% <
Kpllfz”i,,(ua < CK? for all z € B. Hence, we obtain

(1-— |‘!0dzgz)?2|§n+1+a = |(Weuf2) (2)IP < CKP;

for all z € B. This completes the proof. O

Theorem 5.2. Suppose that ¢ is a holomorphic self-map of B and ¢ € H®(B).
Then the following conditions are equivarent:

(a) W, @ AP(Vy) — H*®(B) is compact.
(b) ¢ and ¢ satisfy either sup,.g |¢(2)| <1 or

. wEp  _
I<p1(1zI)I|1T1 (1 — |p(2)[2)ntite 0.




Proof. (a) = (b). Assume, to reach a contradiction, that sup,.p |¢(2)| =1 and

. % (=)
lim sup
it (1= [p(z)[2)n+ite

Then there exist a sequence {z;} in B and an g > 0 such that
Jim lp(z)] = 1, 6.)

[w)P
T = Toly) Pyeriss = = 62

for all j € N. We define functions f; by

#0.

ntlda

_ 1 — |o(z;)]? ® =
fi(#) = {(1 T, <P(2j)))2} (z€5).

By (5.1), we see that {f;} is a bounded sequence in A?(v,) which converges to 0 uni-
formly on compact subsets of B. Since W, ,, is compact, it follows from Proposition
4.1 that lim;_o ||Wey filleo = O.

On the other hand, by (5.2),

| o = e Lol 15
IWe s filloo 2 |(Wep i) (25)| = [9(25)] 1= |o(2)2)?
I"/)(ZJ)I > 50% >0,

B

for all j € N. This contradicts lim;_, ||W, 4 fjllec = 0.

(b) = (a). Suppose that {f;} is a bounded sequence in AP(v,) which converges
to 0 uniformly on compact subsets of B. By Proposition 4.1, it suffices to show that
Wy Silloo — 0 a5 5 — oo. _

First, we assume that sup,cp |¢(2)| < 1. Since ¢(B) is a compact subset of B,
we have SUD,,c5(5) |fi(w)| — 0 as j — oo. Thus,

0 < W fillo = sup 19(2)fi(p(2)] < [¥lloo - sup_|fi(w)| — 0,

weEp(B)

as j — oo. That is, imj o ||Wy 4 fillo = 0.
Suppose now that limy,)11 a wl(d; §,’3{‘,’,+1+a = 0. Let € > 0 be given. By the
hypothesis, we can choose 7y € (3, 1) such that

()P < e(1 = |p(2)[?)" 1+, (5.3)

for all z € B with |p(2)| > ro.




For each z € B with |p(2)| > ro, it follows from Lemma, 2.1 and (5.3) that

|(Weu £5)(2)| = [9(2) f3(p(2))]
<e (1= lp@P) ™5 (1= o@D F 2 fillarwa) < Ce?,  (54)
for all 7 € N. Here C = SupjeN_”fj“AP(ya)-

On the other hand, since 7B is a compact subset of B and {f;} converges to 0
uniformly on compact subsets of B, we have

0<  sup  |(Weufi)(2)] < [[¥lleo - sup_|f;(w)]

z€B,|p(z)|<ro weroB
—0 asj— oo (5.5)

Hence (5.4) and (5.5) show that [|[Wyyfillc — 0 as j — oo. This completes the
proof. , O
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