AN EXTENSION OF KANTOROVICH INEQUALITY

SAICHI IZUMINO * AND MASAHIRO NAKAMURA **
Dedicated to the memory of Professor Shizuo Kakutani

Abstract

A simple proof of the Kantorovich inequality is presented, and consequently an extension of the inequality is proposed which seems neat.

1. In this note an operator means a bounded linear operator acting on a Hilbert space. For a positive invertible operator A, the interval $I=[m, M]$ is the convex hull of the spectrum of A. Let f be a (real-valued) continuous function defined on I and μ a probability measure on I, then the expectation value is defined by $\mathrm{E}[f]=\int_{I} f(t) d \mu(t)$. For the convenience, by the spectral theorem, an operator A is identified with the function $t, f(A)$ with $f(t)$, and the scalars are identified with the scalar multiples of the identity operator.

In these circumstances, the celebrated Kantorovich inequality is written as follows:

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}, \text { for a unit vector } x \in H \tag{1}
\end{equation*}
$$

There are a lot of proofs of the inequality [10], [14], [16] - [18], etc. Among them, the proof in [14] presents the following equivalent inequality:

$$
\begin{equation*}
\mathrm{E}[t] \mathrm{E}[1 / t] \leq \frac{(M+m)^{2}}{4 M m} \tag{2}
\end{equation*}
$$

Let us cite the proof of (2) in [14]. Put

$$
l(t)=\frac{M+m-t}{M m}
$$

then $1 / t \leq l$, so that $\mathrm{E}[1 / t] \leq \mathrm{E}[l]$, and

$$
\mathrm{E}[t] \mathrm{E}[1 / t] \leq \mathrm{E}[t] \mathrm{E}[l]=\mathrm{E}[t] \cdot l(\mathrm{E}[t])=\frac{1}{M m}\left((M+m) \mathrm{E}[t]-\mathrm{E}[t]^{2}\right)
$$

Since the last term is a quadratic polynomial in $\mathrm{E}[t]$ and approaches its maximum at $\mathrm{E}[t]=(M+m) / 2$, the desired (2) is proved.

Observing the above proof, we see that the essential tools are linearity and monotonicity of the expectation.

There are a large number of authors who have presented extensions of the Kantorovich inequality [2] - [6], [8] - [12], [14] - [18], etc..

In this note we shall modify the above proof in [14] to show an extension of Kantorovich inequality.

2000 Mathematics Subject Classification. 47A30, 47A63.
Key words and phrases. Kantorovich inequality, Kantorovich constant, Specht ratio.
2. For a continuous function f on $I=[m, M]$, we define a linear function

$$
\begin{equation*}
l_{f}(t)=a_{f}(t-m)+f(m), \quad a_{f}=\frac{f(M)-f(m)}{M-m} \tag{3}
\end{equation*}
$$

which corresponds to the line tying two points $(m, f(m))$ and $(M, f(M))$ on the curve $y=f(t)$ in a coordinate plane. For an extension of Kantorovich inequality we take general positive functions $f(t)$ and $h(t)=1 / g(t)$ (not $g(t)$ for simplicity of the later computation) in place of $1 / t$ and t, respectively. Then we have a lemma, partially extended fact of [11, Theorem 6].
Lemma 1. Let f and g be positive continuous functions on I, and assume that $f \leq l$ for a linear function l. Then for a positive operator A with its spectrum in I and for a unit vector $x \in H$,

$$
\begin{equation*}
\frac{(f(A) x, x)}{g((A x, x))} \leq \max _{t \in I} \frac{l(t)}{g(t)} \tag{4}
\end{equation*}
$$

In particular, if f is convex then $f \leq l_{f}$ and

$$
\begin{equation*}
\frac{(f(A) x, x)}{g((A x, x))} \leq K(f, g):=\max _{t \in I} \frac{l_{f}(t)}{g(t)} \tag{5}
\end{equation*}
$$

Proof. Convexity of f implies $f \leq l_{f}$. Hence it suffices to prove the general case, that is, the inequality

$$
\begin{equation*}
\frac{\mathrm{E}[f]}{g(\mathrm{E}[t])} \leq \max _{t \in I} \frac{l(t)}{g(t)} \tag{6}
\end{equation*}
$$

From $f \leq l$ we see $\mathrm{E}[f] \leq \mathrm{E}[l]$, so that

$$
\frac{\mathrm{E}[f]}{g(\mathrm{E}[t])} \leq \frac{\mathrm{E}[l]}{g(\mathrm{E}[t])}=\frac{l(\mathrm{E}[t])}{g(\mathrm{E}[t])}
$$

Since $m \leq \mathrm{E}[t] \leq M$, the desired inequality (6) is obtained.
Now if we put $g=f$ in the particular case of Lemma 1 , then we have an inequality which is equivalent to Mond-Pečarić convex inequality [12]:
Theorem 2. (cf. [12, Corollary 1], [11, Corollary 4].) Let f be a positive continuous convex function, and assume A and x as in Lemma 1. Then

$$
\begin{equation*}
\frac{(f(A) x, x)}{f((A x, x))} \leq K(f)=\max _{t \in I} \frac{l_{f}(t)}{f(t)} \quad(K(f)=K(f, f)) \tag{7}
\end{equation*}
$$

If f is continuously differentiable, $a_{f} \neq 0$ and

$$
\begin{equation*}
f^{\prime}(m)<a_{f}<f^{\prime}(M) \tag{8}
\end{equation*}
$$

or f is strictly convex, then there is a point $t\left(=t^{*}\right) \in(m, M)$, at which $\frac{l_{f}(t)}{f(t)}$ attains its maximum, i.e.,

$$
\begin{equation*}
K(f)=\frac{l_{f}\left(t^{*}\right)}{f\left(t^{*}\right)}=\frac{a_{f}}{f^{\prime}\left(t^{*}\right)} \tag{9}
\end{equation*}
$$

Proof. For (9), put $h(t)=\frac{l_{f}(t)}{f(t)}$. Then

$$
\begin{equation*}
h^{\prime}(t)=\frac{1}{f(t)^{2}}\left\{a_{f} f(t)-l_{f}(t) f^{\prime}(t)\right\}=\frac{1}{f(t)}\left(a_{f}-\frac{l_{f}(t) f^{\prime}(t)}{f(t)}\right) . \tag{10}
\end{equation*}
$$

Note that $a_{f}=\frac{f(M)-f(m)}{M-m}=f^{\prime}(\tau)$ for some $\tau \in(m, M)$ by the mean-value theorem, so that from (8) or strict convexity of f, we have

$$
h^{\prime}(m)=\frac{a_{f}-f^{\prime}(m)}{f(m)}>0 \text { and } h^{\prime}(M)=\frac{a_{f}-f^{\prime}(M)}{f(M)}<0 .
$$

Hence $h^{\prime}(t)=0$ for a point (denoted by t^{*}) in (m, M), at which $h(t)$ attains its maximum. Since $a_{f} f(t)-l_{f}(t) f^{\prime}(t)=0$ for $t=t^{*}$ (from the first identity of (10)), we have

$$
\max _{m \leq t \leq M} h(t)=h\left(t^{*}\right)=\frac{l_{f}\left(t^{*}\right)}{f\left(t^{*}\right)}=\frac{a_{f}}{f^{\prime}\left(t^{*}\right)} .
$$

As an application of the above theorem we have:
Corollary 3. (cf. [1, Theorem (Furuta)].)

$$
\frac{\left(e^{A} x, x\right)}{e^{(A x, x)}} \leq \frac{k-1}{e \log k} k^{\frac{1}{k-1}} \quad\left(k=e^{M-m}\right)
$$

Proof. Since $f(t)=e^{t}$ is strictly convex, the condition (8) is satisfied and for the corresponding function $h(t)=\frac{l_{e^{t}}(t)}{e^{t}}$ in the proof of the theorem, we see that $h^{\prime}(t)=0$ if

$$
a-\left\{a(t-m)+e^{m}\right\}=0 \quad\left(a=a_{e^{t}}\right)
$$

The solution is then $t=t^{*}=\frac{a+a m-e^{m}}{a} \in(m, M)$, so that by (9),

$$
K\left(e^{t}\right)=\frac{a}{e^{t^{*}}}=a e^{-\frac{a+a m-e^{m}}{a}}=\frac{k-1}{e \log k} e^{\frac{\log k}{k-1}}=\frac{k-1}{e \log k} k^{\frac{1}{k-1}} .
$$

The constant $K\left(e^{t}\right)$ is called Specht ratio and its property has been studied in [1], [2], [4] - [6], [8], etc.

Specializing as $g(t)=t^{p}$ in Lemma 1, we have the following theorem which is due to T. Furuta.

Theorem 4. (cf. [7, p.189].) Let $0<m<M$ and $p \notin[0,1]$. Then with the same assumptions for f, A and x as before

$$
\begin{equation*}
(A x, x)^{-p}(f(A) x, x) \leq K\left(f, t^{p}\right) \tag{11}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{f(m)}{m} p<a_{f}<\frac{f(M)}{M} p \tag{12}
\end{equation*}
$$

holds, then

$$
\begin{equation*}
K\left(f, t^{p}\right)=\frac{f(M)-f(m)}{p(M-m)}\left\{\frac{(p-1)(f(M)-f(m)}{p(m f(M)-M f(m))}\right\}^{p-1} . \tag{13}
\end{equation*}
$$

Proof. It suffices to show (13) with the assumption (12). Let $g(t)=t^{p}$ and $h(t)=$ $t^{-p} l_{f}(t)(t>0)$. Then since

$$
h^{\prime}(t)=t^{-p-1}\left(-p l_{f}(t)+a_{f} t\right)=t^{-p}\left(-p \frac{l_{f}(t)}{t}+a_{f}\right)
$$

we see that the equation $h^{\prime}(t)=0$ has a unique solution $t=t^{*}=\frac{p\left(a_{f} m-f(m)\right)}{(p-1) a_{f}}$ in $(0, \infty)$, and that $h^{\prime}(m)>0, h^{\prime}(M)<0$ if (12) is satisfied. Hence the solution t^{*} is a point in (m, M), at which $h(t)$ attains its maximum. We then obtain

$$
\begin{aligned}
K\left(f, t^{p}\right) & =h\left(t^{*}\right)=\frac{a_{f}}{p}\left\{\frac{(p-1) a_{f}}{p\left(a_{f} m-f(m)\right)}\right\}^{p-1} \\
& =\frac{f(M)-f(m)}{p(M-m)}\left\{\frac{(p-1)(f(M)-f(m)}{p(m f(M)-M f(m))}\right\}^{p-1}
\end{aligned}
$$

as desired.

The following result is an application of the above theorem.
Corollary 5. (cf. [7, p.191], [9, Theorem 3].) If $p \notin[0,1]$, then

$$
\begin{equation*}
\left(A^{p} x, x\right) \leq K\left(t^{p}\right)(A x, x)^{p} \tag{14}
\end{equation*}
$$

where

$$
K\left(t^{p}\right)= \begin{cases}\frac{(p-1)^{p-1}}{p^{p}} \cdot \frac{\left(M^{p}-m^{p}\right)^{p}}{(M-m)\left(M^{p} m-M m^{p}\right)^{p-1}} & (p>1) \tag{15}\\ \frac{(-p)^{-p}}{(1-p)^{1-p}} \cdot \frac{\left(M^{p}-m^{p}\right)^{1-p}}{(M-m)\left(M^{p} m-M m^{p}\right)^{-p}} & (p<0)\end{cases}
$$

Proof. Let $f(t)=t^{p}$. Then since f is strictly convex, the inequality (12) in Theorem 4 holds. Hence from (13) we can obtain the desired $K\left(t^{p}\right)$.

The constant $K(p)=K\left(t^{p}\right)$ is called (generalized) Kantorovich constant. Its interesting properties and relations with Specht ratio have been presented in [2] [6], [8], [9], etc..

By a similar argument as in Theorem 4 we can show the following:
Theorem 6. Let $0<m<M, p \notin[0,1]$, and let g be a positive, continuously differentiable function on I. Then with the same assumptions for A and x as before,

$$
\begin{equation*}
\frac{\left(A^{p} x, x\right)}{g((A x, x))} \leq K\left(t^{p}, g\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
m^{p} \frac{g^{\prime}(m)}{g(m)}<a_{t^{p}}<M^{p} \frac{g^{\prime}(M)}{g(M)} \tag{17}
\end{equation*}
$$

holds, then the equation

$$
\begin{equation*}
a_{t^{p}} g(t)-l_{t^{p}}(t) g^{\prime}(t)=0 \tag{18}
\end{equation*}
$$

has a solution (denoted by $\left.t^{*}\right)$ in (m, M), at which $\frac{l_{t p}(t)}{g(t)}$ attains its maximum, so that

$$
\begin{equation*}
K\left(t^{p}, g\right)=\frac{l_{t^{p}}\left(t^{*}\right)}{g\left(t^{*}\right)}=\frac{a_{t^{p}}}{g^{\prime}\left(t^{*}\right)}=\frac{1}{g^{\prime}\left(t^{*}\right)} \cdot \frac{M^{p}-m^{p}}{M-m} . \tag{19}
\end{equation*}
$$

An application of the above theorem is the following fact which is considered as a special case of a general result in [11].
Corollary 7. (cf. [11, Corollary 9].) If $1 \leq m \leq p \leq M$, then

$$
\begin{equation*}
\left(A^{p} x, x\right) \leq K\left(t^{p}, e^{t}\right) e^{(A x, x)} \tag{20}
\end{equation*}
$$

where $K\left(t^{p}, e^{t}\right)=\frac{M^{p}-m^{p}}{M-m} e^{-\frac{(m+1) M^{p}-(M+1) m^{p}}{M^{p}-m^{P}}}$.
Proof. Put $g(t)=e^{t}$. Then (17) in the above theorem is satisfied, and (18) has a unique solution $t^{*}=\frac{a+a m-m^{p}}{a}\left(a=a_{t} p=\frac{M^{p}-m^{p}}{M-m}\right)$ in (m, M). Hence from (19) we obtain

$$
K\left(t^{p}, e^{t}\right)=\frac{a}{e^{t^{*}}}=a e^{-\frac{a+a m+m^{p}}{a}}=\frac{M^{p}-m^{p}}{M-m} e^{-\frac{(m+1) M^{p} p(M+1) m^{p}}{M^{p}-m^{P}}} .
$$

3. An extension of Kantorovich inequality due to Schopf [18] is:

$$
\begin{equation*}
\left(A^{n+1} x, x\right)\left(A^{n-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}\left(A^{n} x, x\right)^{2} \text { for all integers } n \tag{21}
\end{equation*}
$$

Here A is a positive operator with $(0<) m \leq A \leq M$ and $x \in H$ is a unit vector.
A state ϕ is a positive linear functional on a C^{*}-algebra \mathbb{A} of operators acting on H such that $\|\phi\|=\phi(1)=1$. Now we show a generalization related to a state of the above inequality (21) by using an idea due to [17]:
Theorem 8. Let ϕ be a state on a C^{*}-algebra \mathbb{A}. Then for all positive operators A in \mathbb{A} with $0<m \leq A \leq M$ and for all real numbers r

$$
\begin{equation*}
\phi\left(A^{r+1}\right) \phi\left(A^{r-1}\right) \leq \frac{(M+m)^{2}}{4 M m} \phi\left(A^{r}\right)^{2} \tag{22}
\end{equation*}
$$

Proof. Since $m \leq A \leq M$, we see

$$
A^{r-1}(A-M)(A-m) \leq 0
$$

or

$$
A^{r+1}+M m A^{r-1} \leq(M+m) A^{r}
$$

so that

$$
\phi\left(A^{r+1}\right)+M m \phi\left(A^{r-1}\right) \leq(M+m) \phi\left(A^{r}\right) .
$$

Then by the arithmetic-geometric mean inequality, we have

$$
2\left(M m \phi\left(A^{r+1}\right) \phi\left(A^{r-1}\right)\right)^{1 / 2} \leq \phi\left(A^{r+1}\right)+M m \phi\left(A^{r-1}\right)
$$

from which we obtain the desired (22).
The inequality (22) can be rewritten as follows:

$$
\begin{equation*}
1 \leq \frac{\phi\left(A^{r+1}\right) \phi\left(A^{r-1}\right)}{\phi\left(A^{r}\right)^{2}} \leq \frac{M+m)^{2}}{4 M m} \tag{23}
\end{equation*}
$$

where the left-hand side inequality is the well-known inequality of Liapounoff. Hence we can deduce by (23) the following:
Corollary 9. The Kantorovich inequality is a reverse of Liapounoff's inequality.
For two nonnegative operators A and B, the geometric mean $A \sharp B$ is defined [13] by

$$
A \sharp B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

(If A is not invertible, then $A \sharp B$ is defined as the limit of $(A+\epsilon) \sharp B$ for $\epsilon(>0) \downarrow 0$.) It is well known that the arithmetic-geometric mean inequality holds;

$$
A \sharp B \leq \frac{1}{2}(A+B) .
$$

A unital positive map Φ between two C^{*}-algebras is defined as a linear map such that $\Phi(1)=1$ and $\Phi(A) \geq 0$ for $A \geq 0$. Then a Kantorovich type inequality with respect to a unital positive map, slight extension of [15, Theorem 1] is given similarly as before, in the following:
Theorem 10. Let Φ be a unital positive map between two C^{*}-algebras. Then for all positive operators A with $0<m \leq A \leq M$ and for all real numbers r

$$
\Phi\left(A^{r+1}\right) \sharp \Phi\left(A^{r-1}\right) \leq \frac{(M+m)}{2 \sqrt{M m}} \Phi\left(A^{r}\right) .
$$

References

[1] J.I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math. 1, No. 3 (1998), 307-310.
[2] J.I. Fujii, Y. Seo and M. Tominaga, Kantorovich type operator inequalities via the Specht ratio, Linear Alg. Appl., 377 (2004), 69-81.
[3] M. Fujir, E. Kamei and A. Matsmoto, Parameterized Kantorovich inequality for positive operators, Nihonkai Math. J., 6 (1995), 129-134.
[4] M. Fujii, S. H. Lee, Y. Seo and D. Jung, Reverse inequalities on chaotically geometricmean via Specht ratio, Math. Inequal. Appl., 6 (2003), 509-519.
[5] M. Fujil, Y. Seo and M. Tominaga, Goldon-Thompson type inequalities related to a geometric mean via Specht's ratio, Math. Inequal. Appl., 5 (2002), 573-582.
[6] T. Furuta, Operator inequalities associated with Höider-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137-148.
[7] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London and New York, 2001.
[8] T. Furuta, Specht ratio $S(1)$ can be expressed by Kantorovich constant $K(p): S(1)=\exp K^{\prime}(1)$ and its application, Math. Inequal. Appl., 6 (2003), 521-530.
[9] T. FURUTA, Basic properties of the generalized Kantorovich constant $K(h, p)=$ $\frac{\left(h^{p}-h\right)}{(p-1)(h-1)}\left(\frac{(p-1)}{p} \frac{\left(h^{p}-1\right)}{\left(h^{p}-h\right)}\right)^{p}$ and its application, Acta Sci. Math. Szeged, 70 (2004), 319-337.
[10] W. Greub and W. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
[11] J. Micic, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and MondPečarić, Math. Inequal. Appl., 2 (1999), 83-111.
[12] B. Mond and J. E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420.
[13] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[14] M. Nakamura, A remark on a paper of W. Greub and W. Rheinboldt, Proc. Japan Acad., 36 (1960), 198-199.
[15] R. Nakamoto and M. Nakamura Operator mean and Kantorovich inequality, Math. Japon., 44 (1996), 495-498.
[16] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1954, p. 57.
[17] B. C. Rennie, An inequality which includes that of Kantorovich, Amer. Math. Monthly, 70 (1963), 982.
[18] A. H. Schopf, On the Kantorovich inequality, Num. Math., 2 (1960), 344-346.

* Faculty of Education, Toyama University, Gofuku, Toyama 930-8555, JAPAN

E-mail address: s-izumino@@h5.dion.ne.jp
** Department of Mathematics Osaka Kyoiku University, Kashiwara, Osaka 582, JAPAN

Received 25 November, 2004 Reviesed 7 February, 2005

