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ABSTRACT. A simple proof of the Kantorovich inequality is presented, and con-
sequently an extension of the inequality is proposed which seems neat.

1. In this note an operator means a bounded linear operator acting on a Hilbert
space. For a positive invertible operator $A$ , the interval $I=[m, M]$ is the convex
hull of the spectrum of $A$ . Let $f$ be a (real-valued) continuous function defined
on $I$ and $\mu$ a probability measure on $I$ , then the expectation value is defined by

$E[f]=\int_{I}f(t)d\mu(t)$ . For the convenience, by the spectral theorem, an operator $A$

is identffied with the function $t,$ $f(A)$ with $f(t)$ , and the scalars are identified with
the scalar multiples of the identity operator.

In these circumstances, the celebrated Kantorovich inequality is written as follows:

(1) $(Ax, x)(A^{-1}x, x)\leq\frac{(M+m)^{2}}{4Mm}$ for a unit vector $x\in H$.

There are a lot of proofs of the inequality [10], [14], [16] $-[18]$ , etc. Among them,
the proof in [14] presents the following equivalent inequality:

(2) $E[t]E[1/t]\leq\frac{(M+m)^{2}}{4Mm}$

Let us cite the proof of (2) in [14]. Put

$l(t)=\frac{M+m-t}{Mm}$ ,

then $1/t\leq l$ , so that $E[1/t]\leq E[l]$ , and

$E[t]E[1/t]\leq E[t]E[l]=E[t]\cdot l(E[t])=\frac{1}{Mm}((M+m)E[t]-E[t]^{2})$ .

Since the last term is a quadratic polynomial in $E[t]$ and approaches its maximum
at $E[t]=(M+m)/2$ , the desired (2) is proved.

Observing the above proof, we see that the essential tools are linearity and mono-
tonicity of the expectation.

There are a large number of authors who have presented extensions of the Kan-
torovich inequality [2] -[6], $[8]-[12],$ $[14]-[18]$ , etc..

In this note we shall modify the above proof in [14] to show an extension of
Kantorovich inequality.
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2. For a continuous function $f$ on $I=[m, M]$ , we define a linear function

(3) $l_{f}(t)=a_{f}(t-m)+f(m)$ , $a_{f}=\frac{f(M)-f(m)}{M-m}$ ,

which corresponds to the line tying two points $(m, f(m))$ and $(M, f(M))$ on the
curve $y=f(t)$ in a coordinate plane. For an extension of Kantorovich inequality
we take general positive functions $f(t)$ and $h(t)=1/g(t)$ (not $g(t)$ for simplicity of
the later computation) in place of $1/t$ and $t$ , respectively. Then we have a lemma,
partially extended fact of [11, Theorem 6].

Lemma 1. Let $f$ and $g$ be positive continuous functions on $I$ , and assume that $f\leq l$

for a linear function $l$ . Then for a positive operator $A$ with its spectrum in I and for
a unit vector $x\in H$,

(4) $\frac{(f(A)x,x)}{g((Ax,x))}\leq\max_{t\in I}\frac{l(t)}{g(t)}$ .

In particular, if $f$ is convex then $f\leq l_{f}$ and

(5) $\frac{(f(A)x,x)}{g((Ax,x))}\leq K(f,g):=\max_{t\in I}\frac{l_{f}(t)}{g(t)}$ .

Proof. Convexity of $f$ implies $f\leq l_{f}$ . Hence it suffices to prove the general case,
that is, the inequality

(6) $\frac{E[f]}{g(E[t])}\leq\max_{t\in I}\frac{l(t)}{g(t)}$ .

From $f\leq l$ we see $E[f]\leq E[l]$ , so that

$\frac{E[f]}{g(E[t])}\leq\frac{E[l]}{g(E[t])}=\frac{l(E[t])}{g(E[t])}$ .

Since $m\leq E[t]\leq M$, the desired inequality (6) is obtained. $\square $

Now if we put $g=f$ in the particular case of Lemma 1, then we have an inequality
which is equivalent to Mond-Pe\v{c}ari\v{c} convex inequality [12]:

Theorem 2. (cf. [12, Corollary 1], [11, Corollary 4].) Let $f$ be a positive continuous
convex function, and assume $A$ and $x$ as in Lemma 1. Then

(7) $\frac{(f(A)x,x)}{f((Ax,x))}\leq K(f)=\max_{t\in I}\frac{l_{f}(t)}{f(t)}$ $(K(f)=K(f, f))$ .

If $f$ is continuously differentiable, $a_{f}\neq 0$ and

(8) $f^{\prime}(m)<a_{f}<f^{\prime}(M)$ ,

or $f$ is strictly convex, then there is a point $t(=t^{*})\in(m, M)$ , at which $\frac{l_{f}(t)}{f(t)}$ attains

its maximum, $i.e.$ ,

(9) $K(f)=\frac{l_{f}(t^{*})}{f(t^{*})}=\frac{a_{f}}{f^{\prime}(t^{*})}$ .
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Proof. For (9), put $h(t)=\frac{l_{f}(t)}{f(t)}$ Then

(10) $h^{\prime}(t)=\frac{1}{f(t)^{2}}\{a_{f}f(t)-l_{f}(t)f^{\prime}(t)\}=\frac{1}{f(t)}(a_{f}-\frac{l_{f}(t)f^{\prime}(t)}{f(t)})$ .

Note that $a_{f}=\frac{f(M)-f(m)}{M-m}=f^{\prime}(\tau)$ for some $\tau\in(m, M)$ by the mean-value the-

orem, so that from (8) or strict convexity of $f$ , we have

$h^{\prime}(m)=\frac{a_{f}-f^{\prime}(m)}{f(m)}>0$ and $h^{\prime}(M)=\frac{a_{f}-f^{\prime}(M)}{f(M)}<0$ .

Hence $h^{\prime}(t)=0$ for a point (denoted by $t^{*}$ ) in $(m, M)$ , at which $h(t)$ attains its
maximum. Since $a_{f}f(t)-l_{f}(t)f^{\prime}(t)=0$ for $t=t^{*}$ (from the first identity of (10)),
we have

$\max_{m\leq t\leq M}h(t)=h(t^{*})=\frac{l_{f}(t^{*})}{f(t^{*})}=\frac{a_{f}}{f’(t^{*})}$ .

$\square $

As an application of the above theorem we have:

Corollary 3. (cf. [1, Theorem (Furuta)].)

$\frac{(e^{A}x,,x)}{e^{(Axx)}}\leq\frac{k-1}{e\log k}k^{\frac{1}{k-1}}$ $(k=e^{M-m})$ .

Proof. Since $f(t)=e^{t}$ is strictly convex, the condition (8) is satisfied and for the

corresponding function $h(t)=\frac{l_{e^{t}}(t)}{e^{t}}$ in the proof of the theorem, we see that $h^{\prime}(t)=0$

if
$a-\{a(t-m)+e^{m}\}=0$ $(a=a_{e^{t}})$ .

The solution is then $t=t^{*}=\frac{a+am-e^{m}}{a}\in(m, M)$ , so that by (9),

$K(e^{t})=\frac{a}{e^{t^{*}}}=ae^{-\frac{a+am-\epsilon^{m}}{a}}=\frac{k-1}{e\log k}e^{\underline{1}\circ\underline{s}_{\frac{k}{1}}}k=\frac{k-1}{e\log k}k^{\frac{1}{k-1}}$ .

$\square $

The constant $K(e^{t})$ is called Specht ratio and its property has been studied in [1],
[2], $[4]-[6],$ $[8]$ , etc.

Specializing as $g(t)=t^{p}$ in Lemma 1, we have the following theorem which is due
to T. Furuta.

Theorem 4. (cf. [7, p.189].) Let $0<m<M$ and $p\not\in[0,1]$ . Then with the same
assumptions for $f,$ $A$ and $x$ as before
(11) $(Ax, x)^{-p}(f(A)x, x)\leq K(f, t^{p})$ .

If
(12) $\frac{f(m)}{m}p<a_{f}<\frac{f(M)}{M}p$
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holds, then

(13) $K(f, t^{p})=\frac{f(M)-f(m)}{p(M-m)}\{\frac{(p-1)(f(M)-f(m)}{p(mf(M)-Mf(m))}\}^{p-1}$

Proof. It suffices to show (13) with the assumption (12). Let $g(t)=t^{p}$ and $h(t)=$

$t^{-p}l_{f}(t)(t>0)$ . Then since

$h^{\prime}(t)=t^{-p-1}(-pl_{f}(t)+a_{f}t)=t^{-p}(-p\frac{l_{f}(t)}{t}+a_{f})$ ,

we see that the equation $h^{\prime}(t)=0$ has a unique solution $t=t^{*}=\frac{p(a_{f}m-f(m))}{(p-1)a_{f}}$

in $(0, \infty)$ , and that $h^{\prime}(m)>0,$ $h^{\prime}(M)<0$ if (12) is satisfied. Hence the solution $t^{*}$

is a point in $(m, M)$ , at which $h(t)$ attains its maximum. We then obtain

$K(f, t^{p})=h(t^{*})=\frac{a_{f}}{p}t\frac{(p-1)a_{f}}{p(a_{f}m-f(m))}\}^{p-1}$

$=\frac{f(M)-f(m)}{p(M-m)}\{\frac{(p-1)(f(M)-f(m)}{p(mf(M)-Mf(m))}\}^{p-1}$ ,

as desired.
$\square $

The following result is an application of the above theorem.

Corollary 5. (cf. [7, p.191], [9, Theorem 3].) If $p\not\in[0,1]$ , then

(14) $(A^{p}x, x)\leq K(t^{p})(Ax, x)^{p}$ ,

where

(15) $K(t^{p})=\left\{\begin{array}{ll}\frac{(p-1)^{p-1}}{p^{\rho}} & \frac{(M^{p}-m^{p})^{p}}{(M-m)(M^{p}m-Mm^{p})^{p-1}} (p>1),\\\frac{(-p)^{-p}}{(1-p)^{1-p}} & \frac{(M^{p}-m^{p})^{1-p}}{(M-m)(M^{p}m-Mm^{p})^{-p}} (p<0).\end{array}\right.$

Proof. Let $f(t)=t^{p}$ . Then since $f$ is strictly convex, the inequality (12) in Theorem
4 holds. Hence from (13) we can obtain the desired $K(t^{p})$ .

$\square $

The constant $K(p)=K(t^{p})$ is called (generalized) Kantorovich constant. Its
interesting properties and relations with Specht ratio have been presented in [2] -

[6], [8], [9], etc..
By a similar argument as in Theorem 4 we can show the following:

Theorem 6. Let $0<m<M,$ $p\not\in[0,1]$ , and let $g$ be a positive, continuously
differentiable function on I. Then with the same assumptions for $A$ and $x$ as before,

(16) $\frac{(A^{p}x,x)}{g((Ax,x))}\leq K(t^{p},g)$ .
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If
(17) $m^{p}\frac{g^{\prime}(m)}{g(m)}<a_{t^{p}}<M^{p}\frac{g^{\prime}(M)}{g(M)}$

holds, then the equation

(18) $a_{t^{p}}g(t)-l_{t^{p}}(t)g^{\prime}(t)=0$

has a solution (denoted by $t^{*}$ ) in $(m, M)$ , at which $\frac{l_{t^{p}}(t)}{g(t)}$ attains its maximum, $so$

that

(19) $K(t^{p}, g)=\frac{l_{t^{p}}(t^{*})}{g(t^{*})}=\frac{a_{t^{p}}}{g^{\prime}(t^{*})}=\frac{1}{g^{\prime}(t^{*})}\cdot\frac{M^{p}-m^{p}}{M-m}$ .

An application of the above theorem is the following fact which is considered as
a special case of a general result in [11].

Corollary 7. (cf. [11, Corolary 9].) If $1\leq m\leq p\leq M$ , then

(20) $(A^{p}x, x)\leq K(t^{p}, e^{t})e^{(Ax,x)}$ ,

where $K(t^{p}, e^{t})=\frac{M^{p}-m^{p}}{M-m}e^{-\frac{(m+1)M^{p}-(M+1)m^{p}}{Mp-m^{p}}}$

Proof. Put $g(t)=e^{t}$ . Then (17) in the above theorem is satisfied, and (18) has a

unique solution $t^{*}=\frac{a+am-m^{p}}{a}(a=a_{t^{p}}=\frac{M^{p}-m^{p}}{M-m})$ in $(m, M)$ . Hence from

(19) we obtain

$K(t^{p}, e^{t})=\frac{a}{e^{t^{*}}}=ae^{-\frac{a+am+m^{p}}{a}}=\frac{M^{p}-m^{p}}{M-m}e^{-\frac{(m+1)M^{p}-(M+1)m^{p}}{M^{p}-m^{p}}}$

$\square $

3. An extension of Kantorovich inequality due to Schopf [18] is:

(21) $(A^{n+1}x, x)(A^{n-1}x, x)\leq\frac{(M+m)^{2}}{4Mm}(A^{n}x, x)^{2}$ for all integers $n$ .

Here $A$ is a positive operator with $(0<)m\leq A\leq M$ and $x\in H$ is a unit vector.
A state $\phi$ is a positive linear functional on a C’-algebra A of operators acting on

$H$ such that I $\phi||=\phi(1)=1$ . Now we show a generalization related to a state of the
above inequality (21) by using an idea due to [17]:

Theorem 8. Let $\phi$ be a state on a $\sigma$ -algebra A. Then for all positive operators $A$

$in$ A with $0<m\leq A\leq M$ and for all real numbers $r$

(22) $\phi(A^{r+1})\phi(A^{r-1})\leq\frac{(M+m)^{2}}{4Mm}\phi(A^{r})^{2}$ .

Proof. Since $m\leq A\leq M$ , we see
$A^{r-1}(A-M)(A-m)\leq 0$

or
$A^{r+1}+MmA^{r-1}\leq(M+m)A^{r}$ ,
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so that
$\phi(A^{r+1})+Mm\phi(A^{r-1})\leq(M+m)\phi(A^{r})$ .

Then by the arithmetic-geometric mean inequality, we have

2 $(Mm\phi(A^{r+1})\phi(A^{r-1}))^{1/2}\leq\phi(A^{r+1})+Mm\phi(A^{r-1})$ ,

$hom$ which we obtain the desired (22). $\square $

The inequality (22) can be rewritten as follows:

(23) $1\leq\frac{\phi(A^{r+1})\phi(A^{r-1})}{\phi(A^{r})^{2}}\leq\frac{M+m)^{2}}{4Mm}$

where the left-hand side inequality is the well-known inequality of Liapounoff. Hence
we can deduce by (23) the following:

Corollary 9. The Kantorovich inequality is a reverse of Liapounoff’s inequality.

For two nonnegative operators $A$ and $B$ , the geometric mean $A\# B$ is defined [13]
by

$A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ .

(IfA is not invertible, $thenA\# Bisdefinedasthelimitof(A+\epsilon)\# Bfor\epsilon(>0)\downarrow 0.$ )
It is wel known that the arithmetic-geometric mean inequality holds;

$A\# B\leq\frac{1}{2}(A+B)$ .

A unital positive map $\Phi$ between two $C^{*}$-algebras is defined as a linear map such
that $\Phi(1)=1$ and $\Phi(A)\geq 0$ for $A\geq 0$ . Then a Kantorovich type inequality with
respect to a unital positive map, slight extension of [15, Theorem 1] is given similarly
as before, in the following:

Theorem 10. Let $\Phi$ be a unital positive map between two O-algebras. Then for all
positive operators $A$ with $0<m\leq A\leq M$ and for all real numbers $r$

$\Phi(A^{r+1})\#\Phi(A^{r-1})\leq\frac{(M+m)}{2\sqrt{Mm}}\Phi(A^{r})$ .
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