THE CONDITIONS THAT THE TOEPLITZ OPERATOR IS NORMAL OR ANALYTIC

Takashi YOSHINO

Abstract. P. R. Halmos [6; Problem 5] asked whether every subnormal Toeplitz operators on H^2 was either analytic or normal. A negative example was given by C. C. Cowen and J. J. Long [5; Theorem]. In this paper, we shall give the conditions that the Toeplitz operator T_{φ} is normal or analytic and show, as their applications, the following results: (1) If T_{φ} is hyponormal with $\mathcal{N}_{T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*}=\{f\in H^2: (T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)f=o\}$ as its invariant subspace and if $\mathcal{N}_{H_{\varphi}}\cup\mathcal{N}_{H_{\varphi}}\neq\{o\}$, then T_{φ} is normal or analytic ([1; Theorem]) and (2) Every quasi-normal Toeplitz operator is only normal or a scalar multiple of an isometry ([2; Theorem]).

1. Preliminaries. A bounded measurable function $\varphi \in L^{\infty}$ on the circle induces the multiplication operator on L^2 called the Laurent operator L_{φ} given by $L_{\varphi}f = \varphi f$ for $f \in L^2$. And the Laurent operator induces in a natural way twin operators on H^2 called Toeplitz operator T_{φ} given by $T_{\varphi}f = PL_{\varphi}f$ for $f \in H^2$, where P is the orthogonal projection from L^2 onto H^2 and Hankel operator H_{φ} given by $H_{\varphi}f = J(I-P)L_{\varphi}f$ for $f \in H^2$, where J is the unitary operator on L^2 defined by $J(z^{-n}) = z^{n-1}$, $n = 0, \pm 1, \pm 2, \cdots$. The following results are well known.

Proposition 1. ([3; Theorem IV]) If \mathcal{M} is a non-zero invariant subspace of T_z , then there exists an isometric Toeplitz operator T_g uniquely, up to a unimodular constant, such that $\mathcal{M} = T_g H^2$.

 $Mathematics\ Subject\ Classification\ 2000:47B35$

Keywords: Toeplitz operators

Proposition 2. ([4; Theorems 6 and 7]) $A \in \mathcal{B}(H^2)$ is a Toeplitz operator if and only if $T_z^*AT_z = A$. And, in particular, $A \in \mathcal{B}(H^2)$ is an analytic Toeplitz operator (i.e., $A = T_{\varphi}$ for some $\varphi \in H^{\infty}$) if and only if $T_z A = AT_z$.

Proposition 3. ([4; Theorem 8]) $T_{\varphi}T_{\psi}$ is a Toeplitz operator if and only if $\bar{\varphi}$ or $\psi \in H^{\infty}$, where the bar denotes the complex conjugate. And, in this case, $T_{\varphi}T_{\psi}=T_{\varphi\psi}$. In particular, T_{φ} is an analytic Toeplitz operator or a co-analytic Toeplitz operator if and only if T_{φ}^2 is a Toeplitz operator.

Proposition 4. ([7; Theorem 7, Corollary 6]) If φ is a non-constant function in L^{∞} , then $\sigma_p(T_{\varphi}) \cap \overline{\sigma_p(T_{\varphi}^*)} = \emptyset$ where $\sigma_p(T_{\varphi})$ denotes the point spectrum of T_{φ} . And, as a special case, for a non-constant function φ in L^{∞} , if T_{φ} is hyponormal (i.e., $T_{\varphi}^* T_{\varphi} \ge T_{\varphi} T_{\varphi}^*$), then $\sigma_p(T_{\varphi}) = \emptyset$.

Proposition 5. If φ and ψ are in H^{∞} , then $T_{\varphi}H^2 \subseteq T_{\psi}H^2$ if and only if there exists a $g \in H^{\infty}$ uniquely such that $T_{\varphi} = T_{\psi}T_g = T_{\psi g}$. And then $\varphi = \psi g$. Particularly, if φ and ψ are inner, then g is also inner.

Proposition 6. ([7; Theorem 5]) For a T_{φ} such as $||T_{\varphi}|| = 1$, if $\{f \in H^2 : \|T_{\varphi}^{\ n}f\|_2 = \|f\|_2, \ n = 0, 1, 2, \cdots\} \neq \{o\}, \ ext{then } T_{\varphi} \ ext{is an isometry}.$

Proposition 7. ([8; Theorems 3 and 1, Corollary 2]) $H_{\psi}^*H_{\varphi} = T_{\bar{\psi}\varphi} - T_{\bar{\psi}}T_{\varphi}$ and, in particular, we have $H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}=T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*$. For any $\psi\in H^{\infty}$, $H_{\varphi}T_{\psi}=H_{\varphi\psi} \text{ and } T_{\psi}^*H_{\varphi}=H_{\varphi}T_{\psi^*}=H_{\varphi\psi^*} \text{ where } \psi^*(z)=\overline{\psi(\bar{z})}.$

Proposition 8. ([8; Theorem 2]) The following assertions are equivalent.

- (1) $\mathcal{N}_{H_{\varphi}} \stackrel{\text{def}}{=} \{ f \in H^2 : H_{\varphi}f = o \} \neq \{ o \}$ (2) $[H_{\varphi}H^2]^{\sim L^2} \neq H^2$
- $\varphi = \bar{g}h$ for some inner function g and $h \in H^{\infty}$ such that g and h have no common non-constant inner factor and that $\mathcal{N}_{H_{\omega}} = T_g H^2$.

Proposition 9. ([8; Corollary 3]) $H_{\varphi}H_{\psi}=O$ if and only if $H_{\varphi}=O$ or $H_{\psi} = O$. In particular, there is no non-zero nilpotent Hankel operator.

A function in L^{∞} is said to be of bounded type 2. Main results. or in the Nevanlina class if it can be written as the quotient of two functions in H^{∞} . The Nevanlina class function is characterized as follows.

Proposition 10. ([1; Lemma 3]) $\varphi \in L^{\infty}$ is of bounded type if and only if $\mathcal{N}_{H_{\varphi}} \neq \{o\}$.

Proof. (\leftarrow) It is clear by Proposition 8.

$$(\rightarrow)$$
 Let $\varphi = \frac{u}{f}$ for some u and f in H^{∞} . Then $H_{\varphi}f = J(I-P)\varphi f = J(I-P)u = o$ and $\mathcal{N}_{H_{\varphi}} \neq \{o\}$.

Lemma 1. ([1; Lemma 8]) If $\mathcal{N}_{H_{\varphi}} \neq \{o\}$, then $\vee \{\mathcal{N}_{H_{\varphi}}, T_{\varphi}\mathcal{N}_{H_{\varphi}}\} = H^2$.

Proof. If $\mathcal{N}_{H_{\varphi}} \neq \{o\}$, then, by Proposition 8, $\varphi = \bar{g}h$ for some inner function g and $h \in H^{\infty}$ such that g and h have no common non-constant inner factor and that $\mathcal{N}_{H_{\varphi}} = T_g H^2$. Then $T_{\varphi} \mathcal{N}_{H_{\varphi}} = T_g^* T_h T_g H^2 = T_h H^2$ and $\{o\} \neq \bigvee \{\mathcal{N}_{H_{\varphi}}, T_{\varphi} \mathcal{N}_{H_{\varphi}}\} = \bigvee \{T_g H^2, T_h H^2\}$ is invariant under T_z and hence, by Proposition 1, there exists an inner function q uniquely, up to a unimodular constant, such that $\bigvee \{T_g H^2, T_h H^2\} = T_q H^2$. Hence $T_g H^2 \cup T_h H^2 \subseteq T_q H^2$ and, by Proposition 5, there exist u and v in H^{∞} such that g = qu and h = qv. Since g and h have no common non-constant inner factor, q is constant and we have the conclusion.

Lemma 2. ([1; Lemma 10]) For inner functions g and q, if $T_gH^2 \subseteq \mathcal{N}_{H_{\varphi}^*H_{\varphi}-H_{\varphi}^*H_{\varphi}}$ and if $T_qH^2 \subseteq \mathcal{N}_{H_{\varphi}}$, then either T_gH^2 or T_qH^2 is contained in $\mathcal{N}_{H_{\varphi}}$.

Proof. For any u and v in H^2 , we have, by Proposition 7,

$$\begin{split} 0 &= \langle T_q u, \ (H_{\bar{\varphi}}{}^* H_{\bar{\varphi}} - H_{\varphi}{}^* H_{\varphi}) T_g v \rangle = \langle H_{\bar{\varphi}} T_q u, \ H_{\bar{\varphi}} T_g v \rangle - \langle H_{\varphi} T_q u, \ H_{\varphi} T_g v \rangle \\ &= \langle H_{\bar{\varphi}} T_q u, \ H_{\bar{\varphi}} T_g v \rangle = \langle H_{\bar{\varphi}q} u, \ H_{\bar{\varphi}g} v \rangle = \langle H_{\bar{\varphi}g}{}^* H_{\bar{\varphi}q} u, \ v \rangle \end{split}$$

and $H_{\bar{\varphi}g}^*H_{\bar{\varphi}q}=O$ and hence, by Proposition 9, $H_{\bar{\varphi}g}=O$ or $H_{\bar{\varphi}q}=O$. Therefore $T_gH^2\subseteq \mathcal{N}_{H_{\bar{\varphi}}}$ or $T_gH^2\subseteq \mathcal{N}_{H_{\bar{\varphi}}}$.

Lemma 3. For any $\varphi \notin H^{\infty}$, T_{φ} has no such type of invariant subspace as T_gH^2 for some non-constant inner function g.

Proof. If $T_{\varphi}T_gH^2\subseteq T_gH^2$ for some non-constant inner function g, then there exists a $C\in\mathcal{B}(H^2)$ such that $T_{\varphi g}=T_gC$ because $T_{\varphi}T_g=T_{\varphi g}$ by Proposition 3. Since g is inner, $C=T_g^*T_{\varphi g}=T_{\bar{g}}T_{\varphi g}=T_{\bar{g}\varphi g}=T_{\varphi}$ and $T_{\varphi g}=T_gT_{\varphi}$ and hence $\varphi\in H^{\infty}$ by Proposition 3 because $\bar{g}\notin H^{\infty}$.

Theorem 1. If $\{o\} \neq \mathcal{N}_{H_{\bar{\varphi}}} \subseteq \mathcal{N}_{H_{\varphi}} \cap \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$ and if $\mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$ is invariant under T_{φ} , then T_{φ} is normal or analytic.

Proof. Since $\{o\} \neq \mathcal{N}_{H_{\bar{\varphi}}} \subseteq \mathcal{N}_{H_{\varphi}}$, we have, by Proposition 8, $\varphi = \bar{g}h$, $\bar{\varphi} = \bar{q}k$ for some inner functions g and q and some h, $k \in H^{\infty}$ such that each pair (g, h) and (q, k) has no common non-constant inner factor and that $\mathcal{N}_{H_{\varphi}} = T_g H^2$, $\mathcal{N}_{H_{\bar{\varphi}}} = T_q H^2$. And then $\mathcal{N}_{H_{\bar{\varphi}}} \subseteq \mathcal{N}_{H_{\varphi}}$ implies that

$$T_a H^2 \subseteq T_a H^2 \tag{1}$$

and, by Proposition 5, there exists an inner function u uniquely, up to a unimodular constant, such that

$$q = gu. (2)$$

Since $T_qH^2=T_uT_gH^2$ by (2) and since, by Proposition 3, $T_{\varphi}T_qH^2=T_{\bar{g}h}T_{gu}H^2=T_hT_uH^2=T_uT_{\bar{g}h}T_gH^2=T_uT_{\varphi}T_gH^2$,

by Lemma 1 and

$$T_u H^2 \subseteq \mathcal{N}_{H_{\bar{\sigma}}^* H_{\bar{\sigma}} - H_{\bar{\sigma}}^* H_{\bar{\sigma}}} \tag{4}$$

because $\vee \{T_q H^2, T_{\varphi} T_q H^2\} \subseteq \mathcal{N}_{H_{\varphi}^* H_{\varphi} - H_{\varphi}^* H_{\varphi}}$ by the assumption and hence, by Lemma 2, either $T_u H^2$ or $T_q H^2$ is contained in $\mathcal{N}_{H_{\varphi}}$.

If $T_uH^2\subseteq \mathcal{N}_{H_{\varphi}}=T_qH^2$, then $T_{\varphi}T_qH^2\subseteq T_qH^2$ by (3) and $\varphi\in H^{\infty}$ by Lemma 3.

If $T_gH^2\subseteq \mathcal{N}_{H_{\bar{\varphi}}}=T_qH^2$, then $T_gH^2=T_qH^2$ by (1) and u in (2) is a constant inner function and hence $\mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}=H^2$ by (4). Therefore T_{φ} is normal because $H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}=T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*$ by Proposition 7.

Since, for any $f \in H^2$, $\|H_{\bar{\varphi}}f\|_{2}^2 = \|H_{\varphi}f\|_{2}^2 + \langle (H_{\bar{\varphi}}^*H_{\bar{\varphi}} - H_{\varphi}^*H_{\varphi})f, f \rangle$, any two intersection of the following three sets $\mathcal{N}_{H_{\varphi}}$, $\mathcal{N}_{H_{\bar{\varphi}}}$ and $\mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$ is contained in the rest set. Hence the condition $\mathcal{N}_{H_{\bar{\varphi}}} \subseteq \mathcal{N}_{H_{\varphi}} \cap \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$ in Theorem 1 is equivalent to $\mathcal{N}_{H_{\bar{\varphi}}} = \mathcal{N}_{H_{\varphi}} \cap \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$. And if T_{φ} is hyponormal, then $\langle (H_{\bar{\varphi}}^*H_{\bar{\varphi}} - H_{\varphi}^*H_{\varphi})f, f \rangle = \|(T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^*)^{\frac{1}{2}}f\|_{2}^2$ by Proposition 7 and we have easily the following.

Lemma 4. ([1; Lemma 2]) If T_{φ} is hyponormal, then $\mathcal{N}_{H_{\bar{\varphi}}} = \mathcal{N}_{H_{\varphi}} \cap \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$.

Lemma 5. For any $\varphi \in L^{\infty}$ such as $\mathcal{N}_{H_{\varphi}} = \{o\}$ and for any inner function $g, \mathcal{N}_{H_{\varphi\bar{g}}} = \{o\}$ and $\mathcal{N}_{H_{\varphi g}} = \{o\}$.

Proof. By Proposition 7, $H_{\varphi}H^2 = H_{\varphi\bar{g}g}H^2 = H_{\varphi\bar{g}}T_gH^2 \subseteq H_{\varphi\bar{g}}H^2$ and $T_{g^*}^*[H_{\varphi}H^2]^{\sim L^2} \subseteq [T_{g^*}^*H_{\varphi}H^2]^{\sim L^2} = [H_{\varphi g}H^2]^{\sim L^2}$ and hence we have the conclusion by Proposition 8 because g^* is also inner.

If T_{φ} is hyponormal, then, by Lemma 4, $\mathcal{N}_{H_{\varphi}} \subseteq \mathcal{N}_{H_{\varphi}}$. Moreover, if $\varphi \notin H^{\infty}$, then we have the following.

Lemma 6. ([1; Lemma 6]) If T_{φ} is hyponormal and if $\varphi \notin H^{\infty}$, then $\mathcal{N}_{H_{\varphi}} \neq \{o\} \rightleftharpoons \mathcal{N}_{H_{\varphi}} \neq \{o\}$.

Proof. By the above inclusion, we may show that $\mathcal{N}_{H_{\varphi}} \neq \{o\}$ implies $\mathcal{N}_{H_{\bar{\varphi}}} \neq \{o\}$. Then, by Proposition 8, $\varphi = \bar{g}h$ for some inner function g and some $h \in H^{\infty}$ such that g and h have no common non-constant inner factor and that $\mathcal{N}_{H_{\varphi}} = T_g H^2$. Furthermore, since $\varphi \notin H^{\infty}$, g is not constant. Therefore there is a non-zero vector $u \in H^2$ such that $\langle u, T_g H^2 \rangle = 0$. Let $\mathcal{M} = H_{\bar{\varphi}} T_g H^2$ and let $y = H_{\bar{\varphi}} u$.

If $\mathcal{N}_{H_{\bar{\varphi}}} = \{o\}$, then $\mathcal{N}_{H_{\bar{\varphi}g}} = \{o\}$ by Lemma 5 and $\mathcal{M} = H_{\bar{\varphi}g}H^2$ is dense in H^2 by Proposition 8. And $H_{\varphi}u \neq o$ because u is orthogonal to $T_gH^2 = \mathcal{N}_{H_{\varphi}}$.

Now we need the following:

Claim. If \mathcal{M} is a dense linear manifold of a non-zero Hilbert space \mathcal{H} and if $y \in \mathcal{H}$, then $(0, \infty) \subseteq \{||y + x|| : o \neq x \in \mathcal{M}\}.$

(In fact, for $\epsilon > 0$, find $o \neq x \in \mathcal{M}$ such that $||y + x|| \leq \epsilon$. The function $\alpha : [1, \infty) \to \mathbb{R}$ defined by $\alpha(t) = ||y + tx||$ is continuous and $\lim_{t \to \infty} \alpha(t) = \infty$. It follows that $[\epsilon, \infty) \subseteq \alpha([1, \infty)) \subseteq \{||y + x|| : o \neq x \in \mathcal{M}\}$.)

It follows from Claim that there is a non-zero $u_1 \in H^2$ such that $\|H_{\bar{\varphi}}(u+T_gu_1)\|_2 = \|y+H_{\bar{\varphi}}T_gu_1\|_2 = \|H_{\varphi}u\|_2$. Let $v_1=u+T_gu_1$. Since $\mathcal{N}_{H_{\varphi}}=T_gH^2$, $\|H_{\varphi}v_1\|_2 = \|H_{\varphi}u\|_2 = \|H_{\bar{\varphi}}(u+T_gu_1)\|_2 = \|H_{\bar{\varphi}}v_1\|_2$ and $v_1 \in \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$. Since $o \neq u_1 \in H^2$, there exists a positive integer n such that $\langle u_1, z^{n-1} \rangle \neq 0$. Let $\mathcal{M}_1 = H_{\bar{\varphi}}T_{gz^n}H^2$. Then \mathcal{M}_1 is dense in H^2 by

Proposition 8 because $\mathcal{N}_{H_{\bar{\varphi}gz^n}}=\{o\}$ by Lemma 5 and, by Claim, there is a non-zero $u_2\in H^2$ such that $\|H_{\bar{\varphi}}(u+T_{gz^n}u_2)\|_2=\|y+H_{\bar{\varphi}}T_{gz^n}u_2\|_2=\|H_{\varphi}u\|_2$. Let $v_2=u+T_{gz^n}u_2$. Then, by the same reason as above, $\|H_{\varphi}v_2\|_2=\|H_{\bar{\varphi}}v_2\|_2$ and $v_2\in \mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$. Thus v_1-v_2 belongs to both $T_gH^2=\mathcal{N}_{H_{\varphi}}$ and $\mathcal{N}_{H_{\bar{\varphi}}^*H_{\bar{\varphi}}-H_{\varphi}^*H_{\varphi}}$ and is non-zero by the following reason.

If $o = v_1 - v_2 = T_g(u_1 - T_z^n u_2)$, then $u_1 = T_z^n u_2$ and $\langle u_1, z^{n-1} \rangle = \langle T_z^n u_2, z^{n-1} \rangle = \langle u_2, T_z^{*1} \rangle = 0$ which is a contradiction.

Therefore $o \neq v_1 - v_2 \in \mathcal{N}_{H_{\bar{\varphi}}}$ by Lemma 4. This contradicts the assumption that $\mathcal{N}_{H_{\bar{\varphi}}} = \{o\}$.

Corollary 1. ([1; Theorem]) If T_{φ} is hyponormal with $\mathcal{N}_{T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*}$ as its invariant subspace and if $\mathcal{N}_{H_{\varphi}} \cup \mathcal{N}_{H_{\varphi}} \neq \{o\}$, then T_{φ} is normal or analytic.

Proof. By Lemma 4, $\mathcal{N}_{H_{\bar{\varphi}}} = \mathcal{N}_{H_{\varphi}} \cap \mathcal{N}_{H_{\bar{\varphi}}^* H_{\bar{\varphi}} - H_{\varphi}^* H_{\varphi}}$. Moreover, in the case where $\varphi \notin H^{\infty}$, $\mathcal{N}_{H_{\bar{\varphi}}} \neq \{o\}$ by Lemma 6. Since, by Proposition 7, $H_{\bar{\varphi}}^* H_{\bar{\varphi}} - H_{\varphi}^* H_{\varphi} = T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*$, the conclusion follows from Theorem 1. \square

It is clear that every subnormal operator A on \mathcal{H} (i.e., A has a normal extension N on $\mathcal{K} \supseteq \mathcal{H}$) has $\mathcal{N}_{A^*A-AA^*}$ as its invariant subspace. In fact, let Q be the projection from \mathcal{K} on \mathcal{H} . Then, for each $x \in \mathcal{N}_{A^*A-AA^*}$,

 $||Nx|| = ||Ax|| = ||A^*x|| = ||QN^*x|| \le ||N^*x|| = ||Nx||$ and $QN^*x = N^*x$ and hence

 $||A^*Ax|| = ||AA^*x|| = ||NQN^*x|| = ||NN^*x|| = ||N^*Nx|| = ||N^2x|| = ||A^2x||.$ This implies that $\mathcal{N}_{A^*A-AA^*}$ is invariant under A and we have the following.

Corollary 2. ([1; Corollary A]) If T_{φ} is subnormal and if $\mathcal{N}_{H_{\varphi}} \cup \mathcal{N}_{H_{\bar{\varphi}}} \neq \{o\}$, then T_{φ} is normal or analytic.

Lemma 7. A is quasi-normal (i.e., A commutes with A^*A) if and only if A is hyponormal and $(A^*A)^2 = A^{*2}A^2$.

Proof. If A is hyponormal and if $(A^*A)^2 = A^{*2}A^2$, then $A^*(A^*A - AA^*)A = O$ and, by the hyponormality, $(A^*A - AA^*)^{\frac{1}{2}}A = O$ and hence $(A^*A - AA^*)A = O$. Therefore A commutes with A^*A . The converse assertion is clear.

Lemma 8. For $\varphi \in H^{\infty}$, if $(T_{\varphi}^*T_{\varphi})^2 = T_{\varphi}^{*2}T_{\varphi}^2$, then φ is a scalar multiple of an inner function.

Proof. By Proposition 3 and by the assumption, $T_{\bar{\varphi}\varphi}^2 = (T_{\varphi}^*T_{\varphi})^2 = T_{\varphi}^{*2}T_{\varphi}^2 = T_{\bar{\varphi}^2}T_{\varphi^2} = T_{\bar{\varphi}^2\varphi^2} = T_{|\varphi|^4}$ and $\bar{\varphi}\varphi \in H^{\infty}$ and hence $|\varphi|$ is constant. Therefore φ is a scalar multiple of an inner function.

For
$$\varphi \in L^{\infty}$$
, let $X_{\varphi} = T_{\varphi}T_z - T_zT_{\varphi}$ and let $Y_{\varphi} = T_z^*T_{\varphi}^*T_{\varphi}T_z - T_{\varphi}^*T_{\varphi}$.

Then
$$X_{\varphi} = O \implies \varphi \in H^{\infty}$$
 by Proposition 2,
 $Y_{\varphi} = O \implies T_{\varphi}^* T_{\varphi}$ is a Toeplitz operator by Proposition 2
 $\implies \varphi \in H^{\infty}$ by Proposition 3,
and $Y_{\varphi} = T_z^* T_{\varphi}^* (T_z T_{\varphi} + X_{\varphi}) - T_{\varphi}^* T_{\varphi} = T_z^* T_{\varphi}^* X_{\varphi}$.

Since $Y_{\varphi} = T_z^* T_{\varphi}^* (I - T_z T_z^*) T_{\varphi} T_z$ and $(I - T_z T_z^*) H^2 = \vee \{1\}$, Y_{φ} is an at most rank one positive operator and $Y_{\varphi} T_z^* T_{\varphi}^* 1 = \|Y_{\varphi}\| T_z^* T_{\varphi}^* 1$. And since, for any $f \in H^2$, $\|X_{\varphi} f\|_2^2 = \|(I - T_z T_z^*) T_{\varphi} T_z f\|_2^2 = \langle Y_{\varphi} f, f \rangle = \|Y_{\varphi}^{\frac{1}{2}} f\|_2^2$, we have $\mathcal{N}_{X_{\varphi}} = \mathcal{N}_{Y_{\varphi}}$ and $X_{\varphi}^* H^2 = Y_{\varphi} H^2 = \vee \{T_z^* T_{\varphi}^* 1\}$ and hence

$$H^{2} = \{ f \in H^{2} : Y_{\varphi}f = o \} \oplus \{ f \in H^{2} : Y_{\varphi}f = ||Y_{\varphi}||f \}$$

$$= \mathcal{N}_{X_{\varphi}} \oplus \vee \{ T_{z}^{*}T_{\varphi}^{*}1 \}$$

$$(\sharp)$$

and also we have $X_{\varphi}H^2 \subseteq \mathcal{N}_{T_{\bullet^*}} = \vee \{1\}.$

Lemma 9. If $\{o\} \neq \mathcal{N}_{T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*} \neq H^2$, then $Y_{\varphi} - Y_{\bar{\varphi}} \neq O$ and $(Y_{\varphi} - Y_{\bar{\varphi}})H^2 = \vee \{T_z^*T_{\varphi}^*1, \ T_z^*T_{\varphi}1\}.$

Proof. If $Y_{\varphi} - Y_{\bar{\varphi}} = O$, then $T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*$ is a Hermitian Toeplitz operator by Proposition 2 because $Y_{\varphi} - Y_{\bar{\varphi}} = T_z^* (T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*) T_z - (T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*)$. Let $T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^* = T_{\psi}$. Then the assumption $\{o\} \neq \mathcal{N}_{T_{\psi}} \neq H^2$ implies $\psi \neq o$ and $0 \in \sigma_p(T_{\psi})$. This contradicts Proposition 4. And since, for any $f \in H^2$,

$$\begin{split} (Y_{\varphi} - Y_{\bar{\varphi}})f &= \langle f, \ T_z^* T_{\varphi}^* 1 \rangle \left(\frac{\|Y_{\varphi}\|}{\|T_z^* T_{\varphi}^* 1\|_2^2} \right) T_z^* T_{\varphi}^* 1 \\ &- \langle f, \ T_z^* T_{\varphi} 1 \rangle \left(\frac{\|Y_{\varphi}\|}{\|T_z^* T_{\varphi} 1\|_2^2} \right) T_z^* T_{\varphi} 1, \end{split}$$

we have $(Y_{\varphi} - Y_{\bar{\varphi}})H^2 = \bigvee \{T_z^*T_{\varphi}^*1, T_z^*T_{\varphi}1\}$ because it is clear in the case where $T_z^*T_{\varphi}^*1$ and $T_z^*T_{\varphi}1$ are linearly dependent and, in the other case, we can select $f \in H^2$ such as $\langle f, T_z^*T_{\varphi}^*1 \rangle = 0 \neq \langle f, T_z^*T_{\varphi}1 \rangle$ and also $\langle f, T_z^*T_{\varphi}^*1 \rangle \neq 0 = \langle f, T_z^*T_{\varphi}1 \rangle$.

Theorem 2. If T_{φ} satisfies the following conditions:

(i) $(T_{\varphi}^*T_{\varphi})^2 = T_{\varphi}^{*2}T_{\varphi}^2$, (ii) $\{o\} \neq \mathcal{N}_{T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*}$, (iii) Every eigen-space of $T_{\varphi}^*T_{\varphi}$ is invariant under T_{φ}^* and (iv) $T_{\varphi}^*T_z^*T_{\varphi}^*1$ and $T_{\varphi}^*T_z^*T_{\varphi}1$ are linearly dependent, then T_{φ} is normal or a scalar multiple of an isometry.

Proof. By Lemma 8, we have only to prove that there is no non-normal, non-analytic Toeplitz operator which satisfies the above conditions (i), (ii), (iii) and (iv). Let T_{φ} be non-normal and non-analytic. Since $T_{\varphi}^{*}(T_{\varphi}^{*}T_{\varphi}-T_{\varphi}T_{\varphi}^{*})T_{\varphi}=O$ by the condition (i),

$$T_{\varphi}^{*}(Y_{\varphi} - Y_{\bar{\varphi}})T_{\varphi} = T_{\varphi}^{*}T_{z}^{*}(T_{\varphi}^{*}T_{\varphi} - T_{\varphi}T_{\varphi}^{*})T_{z}T_{\varphi}$$

$$= (T_{z}^{*}T_{\varphi}^{*} - X_{\varphi}^{*})(T_{\varphi}^{*}T_{\varphi} - T_{\varphi}T_{\varphi}^{*})(T_{\varphi}T_{z} - X_{\varphi})$$

$$= -T_{z}^{*}T_{\varphi}^{*}(T_{\varphi}^{*}T_{\varphi} - T_{\varphi}T_{\varphi}^{*})X_{\varphi}$$

$$- X_{\varphi}^{*}(T_{\varphi}^{*}T_{\varphi} - T_{\varphi}T_{\varphi}^{*})(T_{\varphi}T_{z} - X_{\varphi})$$
(1)

and $T_z^*T_{\varphi}^*(T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^*)X_{\varphi}H^2 \subseteq X_{\varphi}^*H^2 + T_{\varphi}^*(Y_{\varphi} - Y_{\bar{\varphi}})H^2$ and hence, by Lemma 9,

$$T_z^*T_\varphi^*(T_\varphi^*T_\varphi-T_\varphi T_\varphi^*)1$$

$$= \alpha T_z^* T_{\varphi}^* 1 + \beta T_{\varphi}^* T_z^* T_{\varphi}^* 1 + \gamma T_{\varphi}^* T_z^* T_{\varphi} 1 \quad \text{for some} \quad \alpha, \beta, \ \gamma \in \mathbb{C}$$
 (2)

because the conditions of Lemma 9 are satisfied by the condition (ii) and by the non-normality of T_{ω} . And since

$$T_z^* (T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*) 1 = (T_{\varphi}^* T_z^* + X_{\varphi}^*) T_{\varphi} 1 - (T_{\varphi} T_z^* + X_{\bar{\varphi}}^*) T_{\varphi}^* 1$$

$$= T_{\varphi}^* T_z^* T_{\varphi} 1 + a T_z^* T_{\varphi}^* 1 - T_{\varphi} T_z^* T_{\varphi}^* 1 + b T_z^* T_{\varphi} 1 \quad \text{for some} \quad a, \ b \in \mathbb{C},$$

$$\begin{split} &T_z^*T_{\varphi}^*(T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)1=(T_{\varphi}^*T_z^*+X_{\varphi}^*)(T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)1\\ =&T_{\varphi}^*T_z^*(T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)1+X_{\varphi}^*(T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)1\\ =&T_{\varphi}^*T_z^*(T_{\varphi}^*T_{\varphi}-T_{\varphi}T_{\varphi}^*)1+cT_z^*T_{\varphi}^*1\quad\text{for some}\quad c\in\mathbb{C}\\ =&T_{\varphi}^*(T_{\varphi}^*T_z^*T_{\varphi}1+aT_z^*T_{\varphi}^*1-T_{\varphi}T_z^*T_{\varphi}^*1+bT_z^*T_{\varphi}1)+cT_z^*T_{\varphi}^*1\\ =&T_{\varphi}^{*2}T_z^*T_{\varphi}1+aT_{\varphi}^*T_z^*T_{\varphi}^*1-T_{\varphi}^*T_z^*T_{\varphi}^*1+bT_{\varphi}^*T_z^*T_{\varphi}1+cT_z^*T_{\varphi}^*1\end{split}$$

and, by (2),

$$T_{\varphi}^* T_{\varphi} T_z^* T_{\varphi}^* 1 = T_{\varphi}^{*2} T_z^* T_{\varphi} 1 + (c - \alpha) T_z^* T_{\varphi}^* 1 + (a - \beta) T_{\varphi}^* T_z^* T_{\varphi}^* 1 + (b - \gamma) T_{\varphi}^* T_z^* T_{\varphi} 1.$$
(3)

Since, by (1),

$$T_{\varphi}^{*}(Y_{\varphi} - Y_{\bar{\varphi}})T_{\varphi}H^{2} \subseteq T_{z}^{*}T_{\varphi}^{*}(T_{\varphi}^{*}T_{\varphi} - T_{\varphi}T_{\varphi}^{*})X_{\varphi}H^{2} + X_{\varphi}^{*}H^{2}$$
(4)

and since $T_{\varphi}^*(Y_{\varphi} - Y_{\bar{\varphi}})T_{\varphi}H^2 \subseteq T_{\varphi}^*(Y_{\varphi} - Y_{\bar{\varphi}})H^2$,

$$T_{\varphi}^* T_z^* T_{\varphi}^* 1 = \lambda_1 T_z^* T_{\varphi}^* 1$$
and
$$T_{\varphi}^* T_z^* T_{\varphi} 1 = \lambda_2 T_z^* T_{\varphi}^* 1 \quad \text{for some} \quad \lambda_1, \ \lambda_2 \in \mathbb{C}$$
(5)

by the condition (iv), Lemma 9 and (2) and hence, by (3),

$$T_{\varphi}^* T_{\varphi} (T_z^* T_{\varphi}^* 1) = \{ \lambda_2 \lambda_1 + (c - \alpha) + (a - \beta) \lambda_1 + (b - \gamma) \lambda_2 \} T_z^* T_{\varphi}^* 1.$$
 (6)

Let $r = \lambda_2 \lambda_1 + (c - \alpha) + (a - \beta)\lambda_1 + (b - \gamma)\lambda_2$ and let $\mathcal{M} = \{ f \in H^2 : T_{\varphi}^* T_{\varphi} f = rf \}$. Since, for any $f \in \mathcal{M}$,

$$(T_{\varphi}^* T_{\varphi} - rI)T_z^* f = T_{\varphi}^* (T_z^* T_{\varphi} - X_{\bar{\varphi}}^*) f - rT_z^* f$$

$$= (T_z^* T_{\varphi}^* - X_{\varphi}^*) T_{\varphi} f - T_{\varphi}^* X_{\bar{\varphi}}^* f - rT_z^* f$$

$$= -X_{\varphi}^* T_{\varphi} f - T_{\varphi}^* X_{\bar{\varphi}}^* f$$

$$= -a_1 T_z^* T_{\varphi}^* 1 - T_{\varphi}^* (b_1 T_z^* T_{\varphi} 1) \quad \text{for some} \quad a_1, \ b_1 \in \mathbb{C}$$

$$= -(a_1 + b_1 \lambda_2) T_z^* T_{\varphi}^* 1 \quad \text{by (5)}$$

and since $T_z^*T_{\varphi}^*1 \in \mathcal{M}$ by (6), $(T_{\varphi}^*T_{\varphi}-rI)^2T_z^*f=o$ and $(T_{\varphi}^*T_{\varphi}-rI)T_z^*f=o$ because $\|(T_{\varphi}^*T_{\varphi}-rI)T_z^*f\|_2^2=\langle (T_{\varphi}^*T_{\varphi}-rI)^2T_z^*f,\ T_z^*f\rangle=0$ and hence \mathcal{M} is invariant under T_z^* . Since T_{φ} is non-analytic by the assumption, $T_z^*T_{\varphi}^*1\neq o$ by (\sharp) and by Proposition 2 and $\mathcal{M}\neq H^2$ by Proposition 3 and hence \mathcal{M} is non-trivial. Therefore $\mathcal{M}^\perp=T_gH^2$ for some non-constant inner function g by Proposition 1. Since \mathcal{M} is invariant under T_{φ}^* by the condition (iii), T_gH^2 is invariant under T_{φ} and $\varphi\in H^{\infty}$ by Lemma 3. This contradicts the assumption that T_{φ} is non-analytic.

Corollary 3. ([2; Theorem]) Every quasi-normal Toeplitz operator is only normal or a scalar multiple of an isometry.

Proof. It is clear that every quasi-normal T_{φ} satisfies the conditions (i), (ii) and (iii). And, by Theorem 2, we have only to show that quasi-normal T_{φ} satisfies the condition (iv).

If $T_{\varphi}^*T_z^*T_{\varphi}^*1$ and $T_{\varphi}^*T_z^*T_{\varphi}1$ are linearly independent, then $(Y_{\varphi} - Y_{\bar{\varphi}})T_{\varphi}H^2 = \bigvee \{T_z^*T_{\varphi}^*1, \ T_z^*T_{\varphi}1\}$ because, for any $f \in H^2$,

$$\begin{split} (Y_{\varphi} - Y_{\bar{\varphi}}) T_{\varphi} f &= \langle T_{\varphi} f, \ T_{z}^{*} T_{\varphi}^{*} 1 \rangle \left(\frac{\|Y_{\varphi}\|}{\|T_{z}^{*} T_{\varphi}^{*} 1\|_{2}^{2}} \right) T_{z}^{*} T_{\varphi}^{*} 1 \\ &- \langle T_{\varphi} f, \ T_{z}^{*} T_{\varphi} 1 \rangle \left(\frac{\|Y_{\bar{\varphi}}\|}{\|T_{z}^{*} T_{\varphi} 1\|_{2}^{2}} \right) T_{z}^{*} T_{\varphi} 1 \\ &= \langle f, \ T_{\varphi}^{*} T_{z}^{*} T_{\varphi}^{*} 1 \rangle \left(\frac{\|Y_{\varphi}\|}{\|T_{z}^{*} T_{\varphi}^{*} 1\|_{2}^{2}} \right) T_{z}^{*} T_{\varphi}^{*} 1 \\ &- \langle f, \ T_{\varphi}^{*} T_{z}^{*} T_{\varphi} 1 \rangle \left(\frac{\|Y_{\bar{\varphi}}\|}{\|T_{z}^{*} T_{\varphi} 1\|_{2}^{2}} \right) T_{z}^{*} T_{\varphi} 1. \end{split}$$

And since $T_{\varphi}^*(Y_{\varphi} - Y_{\bar{\varphi}})T_{\varphi}H^2 \subseteq X_{\varphi}^*H^2$ by (4) in the proof of Theorem 2 because $T_{\varphi}^*(T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^*) = O$ by the quasi-normality of T_{φ} ,

$$T_{\varphi}^*T_z^*T_{\varphi}^*1 = \lambda_1 T_z^*T_{\varphi}^*1$$

and $T_{\varphi}^*T_z^*T_{\varphi}1 = \lambda_2 T_z^*T_{\varphi}^*1$ for some $\lambda_1, \ \lambda_2 \in \mathbb{C}$

and this contradicts the assumption that $T_{\varphi}^*T_z^*T_{\varphi}^*1$ and $T_{\varphi}^*T_z^*T_{\varphi}1$ are linearly independent.

Theorem 3. If T_{φ} is paranormal (i.e., $||T_{\varphi}f||_2^2 \leq ||T_{\varphi}^2f||_2 ||f||_2$ for all $f \in H^2$) and if $\varphi = \bar{q}g$ for some inner functions q and g, then T_{φ} is an isometry.

Proof. By the assumption, $||T_{\varphi}|| = 1$. Since $||T_{\varphi}q||_2 = ||P\bar{q}gq||_2 = ||Pg||_2 = ||g||_2 = 1 = ||q||_2$,

$$\mathcal{M} = \{ f \in H^2 : \|T_{\varphi}f\|_2 = \|f\|_2 \} \neq \{o\}.$$

And, by the paranormality, we have $T_{\varphi}\mathcal{M}\subseteq\mathcal{M}$. In fact, if $f\in\mathcal{M}$, then

$$\|f\|_2{}^2 \geq \|f\|_2 \ \|T_\varphi{}^2 f\|_2 \geq \|T_\varphi f\|_2{}^2 = \|f\|_2 \ \|T_\varphi f\|_2 = \|f\|_2{}^2$$

and $||T_{\varphi}^2 f||_2 = ||T_{\varphi} f||_2$ and hence $T_{\varphi} f \in \mathcal{M}$. Therefore

$$\mathcal{M} = \{ f \in H^2 : ||T_{\varphi}^n f||_2 = ||f||_2, \ n = 0, 1, 2, \dots \} \neq \{o\}$$

and T_{φ} is an isometry by Proposition 6.

Acknowledgement The author would like to express his gratitude to the referee for some helpful comments and suggestions.

References

- [1] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. Journ., 43(1976), 597-604.
- [2] I. Amemiya, T. Ito and T. K. Wong, On quasinormal Toeplitz operators, Proc. Amer. Math. Soc., 50(1975), 254–258.
- [3] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81(1949), 239-255.
- [4] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213(1964), 89-102.
- [5] C. C. Cowen and J. J. Long, Some subnormal Toeplitz operators, J. für reine und angéwandte Math., 351(1984), 216–220.
- [6] P. R. Halmos, Ten problems in Hilbert space, Bull. A. M. S., 76(1970), 887-933.
- [7] T. Yoshino, Note on Toeplitz operators, Tohoku Math. Journ., 26(1974), 535-540.
- [8] T.Yoshino, The condition that the product of Hankel operators is also a Hankel operator, Arch. Math., 73(1999), 146-153.

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan E-mail: yoshino@math.tohoku.ac.jp

Received April 16, 2002 Revised September 17, 2002