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THE CONDITIONS THAT THE TOEPLITZ
OPERATOR IS NORMAL OR ANALYTIC

Takashi YOSHINO

Abstract. P. R. Halmos [6; Problem 5] asked whether every subnormal
Toeplitz operators on H? was either analytic or normal. A negative example
was given by C. C. Cowen and J. J. Long [5; Theorem]. In this paper, we
shall give the conditions that the Toeplitz operator T, is normal or analytic and
show, as their applications, the following results: (1) If T, is hyponormal with
Nr,1,-1,1, ={f € H? : (T,*T, — T,T,*)f = o} as its invariant subspace
and if Ny, UNg, # {0}, then T, is normal or analytic ([1; Theorem]) and (2)
Every quasi-normal Toeplitz operator is only normal or a scalar multiple of an
isometry ([2; Theorem)]).

1. Preliminaries. A bounded measurable function ¢ € L on the
circle induces the multiplication operator on L? called the Laurent operator
L, given by L,f = ¢f for f € L?. And the Laurent operator induces in a
natural way twin operators on H? called Toeplitz operator T, givenby T, f =
PL,f for f € H?, where P is the orthogonal projection from L? onto H? and
Hankel operator H, given by H,f = J(I — P)L,f for f € H?, where J is
the unitary operator on L? defined by J(z™™") = 2", n = 0,+1,+2,---. The
following results are well known.

Proposition 1. ([3; Theorem IV]) If M is a non-zero invariant subspace
of T, then there exists an isometric Toeplitz operator Ty uniquely, up to a uni-
modular constant, such that M = T, H?2.
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Proposition 2. ([4; Theorems 6 and 7]) A € B(H?) is a Toeplitz operator if
and only if T,* AT, = A. And, in particular, A € B(H?) is an analytic Toeplitz
operator (i.e., A =T, for some ¢ € H*) if and only if T,A = AT,.

Proposition 3. ([4; Theorem 8]) T,T, is a Toeplitz operator if and only if
@ or Y € H*, where the bar denotes the complex conjugate. And, in this case,
T,Ty = T,y. In particular, T, is an analytic Toeplitz operator or a co-analytic
Toeplitz operator if and only if T, is a Toeplitz operator.

Proposition 4. ([7; Theorem 7, Corollary 6]) If ¢ is a non-constant function
in L°°, then 0,(T,,)Nop(T,*) = @ where 0,(T,,) denotes the point spectrum of T,.
And, as a special case, for a non-constant function ¢ in L*, if T,, is hyponormal
(i.e., T,*Ty, > T,T,*), then o,(T,) = 0.

Proposition 5. If ¢ and 1 are in H®, then T,H? C T, H? if and only if
there exists a g € H* uniquely such that T, = T,T, = T};4. And then ¢ = 1g.
Particularly, if ¢ and 1 are inner, then g is also inner.

Proposition 6. ([7; Theorem 5]) For a T, such as ||T,| = 1, if
{feH? : |T,”fll2=|fll2, n=0,1,2,---} # {0}, then T, is an isometry.

Proposition 7. ([8; Theorems 3 and 1, Corollary 2|) Hy*H, = Ty,—T5T,
and, in particular, we have Hz*H;—H,*H, =T,*T,-T,T,"*. For any ¥ € H*,
H, Ty = Hyy and Ty*H, = H,Ty» = H,y- where ¥*(2) = ¢P(2).

Proposition 8. ([8; Theorem 2]) The following assertions are equivalent.
(1) Nu, €{f€H?: H,f =0} + {0}
(2) [H H2~L* + H?
(3) ¢ = gh for some inner function g and h € H*® such that g and h have no
common non-constant inner factor and that Ny, = T,H?>.

Proposition 9. ([8; Corollary 3]) H,Hy = O if and only if H, = O or
Hy = O. In particular, there is no non-zero nilpotent Hankel operator.

2. Main results. A function in L*° is said to be of bounded type
or in the Nevanlina class if it can be written as the quotient of two functions
in H°°. The Nevanlina class function is characterized as follows.
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Proposition 10. ([1; Lemma 3]) ¢ € L* is of bounded type if and only if
NH¢ # {o}.

Proof. (+) It is clear by Proposition 8.
(—) Let ¢ = -% for some u and f in H*. Then
H,f =J(I—P)pf =J(I—-P)u=o0and Ny, # {o}. |

Lemma 1. ([1; Lemma 8]) If Ny, # {0}, then V{Ng,, T,Ng,} = H2.

Proof. If Ny, # {o}, then, by Proposition 8, ¢ = gh for some inner
function g and h € H* such that g and h have no commom non-constant in-
ner factor and that Ny, = TyH?. Then T,Nu, = Tg*ThT,H? = T,H? and
{o} # V{Nu,, ToNu,} = V{T,H?, TpH?} is invariant under T, and hence,
by Proposition 1, there exists an inner function ¢ uniquely, up to a unimodular
constant, such that V{T,H?, T,H?} = T,H?. Hence T,H?UT,H? C T,H? and,
by Proposition 5, there exist u and v in H* such that g = qu and h = qu. Since
g and h have no common non-constant inner factor, q is constant and we have

the conclusion. O

Lemma 2. ([1; Lemma 10]) For inner functions g and g, if T,H? C
NHg+Hs-H,+H, and if ToH? C Ny, then either TgH? or T¢H? is contained
in NV, Hg-

Proof. For any u and v in H2, we have, by Proposition 7,
0= (Tqu, (Hp"Hp — H,"H,)Tyv) = (HpTqu, HpTgv) — (Hp,Tqu, H,Tgv)
= (HpTqu, HpTgv) = (Hpqu, Hpgv) = (Hpg"Hpqu, v)
and Hpy*Hpq = O and hence, by Proposition 9, Hzg = O or Hgq = O. Therefore
T,H? C Ny, or T,H? C Ny,. O

Lemma 3. For any ¢ ¢ H*>, T, has no such type of invariant subspace
as T,H? for some non-constant inner function g.

Proof. If T,T;H? C T,H? for some non-constant inner function g, then
there exists a C € B(H?) such that T,,, = T,C because T,,T, = T, by Proposi-
tion 3. Since g is inner, C = T*T,q = T5T,g = Tgpg = T, and T, = T,T,, and
hence ¢ € H* by Proposition 3 because g ¢ H°. O
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Theorem 1. If {0} # NH¢ - NH‘p ﬁNH¢*H¢—H‘,*H¢ and ifNH¢~H¢_H¢~H¢
is invariant under T, then T, is normal or analytic.

Proof. Since {0} # Nu, € N, , we have, by Proposition 8, ¢ = gh, ¢ = gk
for some inner functions g and ¢ and some h, k € H*™ such that each pair (g, h)
and (g, k) has no common non-constant inner factor and that Ny, = T, H?,

Nu, = T,H?. And then Ny, C Ny, implies that
T,H? C T,H? (1)

and, by Proposition 5, there exists an inner function u uniquely, up to a unimod-

ular constant, such that

q = gu. (2)

Since T,H? = T,,T,H? by (2) and since, by Proposition 3,
T,T,H? = Tyn Ty H? = Th T H? = T,TjnT,H? = T, T,T,H?,

v{T,H?, T,T,H?} = T,[V{T,H?, T,T,H?}] =T,H? (3)

by Lemma 1 and
T.H? C Nu,-H,—H,*H, (4)

because V{T,H?, T, T,H*} C Ny,~H,-H,~H, by the assumption and hence, by
Lemma 2, either T, H? or TyH? is contained in Np,. '
If T,H? C Ny, = T,H?, then T,T,H? C T,H? by (3) and ¢ € H™ by
Lemma 3.
I TyH? C Ny, = T,H?, then TgH? = T,H? by (1) and u in (2) is a constant
inner function and hence Ny, ~g,-H +H, = H 2 by (4). Therefore T, is normal
because Hy;*Hy; — H,*Hy, = T,*T, — T,T,* by Proposition 7. O

Since, for any f € H2, |Haflla? = |H,fll2? + (Hp"Hp — H,"Hp)f, ),
any two intersection of the following three sets N} Hg,» N, H, and Ny, +H,—H,-H, IS
contained in the rest set. Hence the condition Ny, € Ny, " Nu,+H,—H,*H, in
Theorem 1 is equivalent to Ny, = Ny, "Ny, +H,-H,-H,. And if T, is hyponor-
mal, then ((Hz*Hy — H,*H,) f, f) = \(T,*T, — T,T,,*)? fl|2® by Proposition 7
and we have easily the following.
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Lemma 4. ([1; Lemma 2]) If T, is hyponormal, then Ny, = Ny, N

NH *H,~H,"H,-

Lemma 5. For any ¢ € L* such as Ny, = {0} and for any inner function

9, Nu,, = {0} and Ny, = {o}.

Proof. By Proposition 7, H,H? = H,;,H? = H,;T,H? C H,;H? and
Ty-*[H H2|~Y C [T,-*H,H?|~Y" = [H,,H?]~L" and hence we have the conclu-
sion by Proposition 8 because g* is also inner. O

If T, is hyponormal, then, by Lemma 4, Ny, C Ny,. Moreover, if ¢ ¢ H®,
then we have the following.

Lemma 6. ([1; Lemma 6]) If T, is hyponormal and if ¢ ¢ H*, then
NH¢ # {O} # NH¢ # {O}‘

Proof. By the above inclusion, we may show that Ny, # {o} implies
N, # {0}. Then, by Proposition 8, ¢ = gh for some inner function g and some
h € H* such that g and h have no common non-constant inner factor and that
Nu, = ToH?. Furthermore, since ¢ ¢ H™, g is not constant. Therefore there is
a non-zero vector u € H? such that (u, T,H?) = 0. Let M = HzT,H? and let
y = Hpu.

If Ng, = {0}, then Ny,, = {0} by Lemma 5 and M = HyzoH? is dense in
H? by Proposition 8. And H,u # o because u is orthogonal to TgH 2 =N, H,-

Now we need the following :

Claim. If M is a dense linear manifold of a non-zero Hilbert space # and if
y € H, then (0, 00) C {|ly + | : 0o # x € M}.

(In fact, for € > 0, find 0 # z € M such that ||y + z|| < e. The function
a : [1, oo) — R defined by a(t) = ||y + tz|| is continuous and tl_igloa(t) = o0o. It
follows that [e, 00) C a([1, o)) C {|ly +=z| : o# = € M}.)

It follows from Claim that there is a non-zero u; € H? such that
|Hp(u + Tyui)llz = |ly + HpTpuall2 = ||Hpullz. Let vi = u + Tguy. Since
Nu, = T,H?, |Hovill2 = [|Hpullz = |Hp(u + Tywa)llz = ||Hpvill2 and v €
NH¢— Hy—H,*H,- Since 0 # u; € H?, there exists a positive integer n such
that (u1, 2"71) # 0. Let My = HzTg,»nH?. Then M; is dense in H? by
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Proposition 8 because Ny, .. = {0} by Lemma 5 and, by Claim, there is a
non-zero uz € H? such that ||Hg(u + Tyonuz)|lz = |ly + HpTgznuz|l2 = | Hpull2-
Let v2 = u + Ty,nuz. Then, by the same reason as above, ||H,yvz|l2 = ||Hpv2||2
and v € Nu,+H,—H,*H,- Thus v; — vz belongs to both T,H?> = Ny, and
N, Hs*Hyz—H,*H, and is non-zero by the following reason.
If 0 = vy — v2 = Ty(uy — T;uz), then u; = T,"uy and
(ug, 2" 1) = (T,"ug, 2" 1) = (uz, T,*1) = 0 which is a contradiction.
Therefore 0 # vy — vy € N H, by Lemma 4. This contradicts the assumption
that Mg, = {o}. ' u

Corollary 1. ([1; Theorem]) If T, is hyponormal with N1, -1, _T,T,~ 8s
its invariant subspace and if Ny, UNg, # {0}, then T, is normal or analytic.

Proof. By Lemma 4, Ny, = Ny, "\Nu,+u,-H,-H,- Moreover, in the case
where ¢ ¢ H>®, Ny, # {0} by Lemma 6. Since, by Proposition 7,
Hp*Hy — Hy*Hy, = Tp* T, ~ ToT,*, the conclusion follows from Theorem 1. [

It is clear that every subnormal operator A on H (i.e., A has a normal
extension N on K D H) has Mg-4_44- as its invariant subspace. In fact, let Q
be the projection from X on H. Then, for each £ € Na-a_a4+,
|Nz|| = ||Az|| = |A*z|| = |@N*z|| < [|[N*z|| = |[Nz|| and QN*z = N*z and
hence
|A*Az|| = ||AA*z|| = |[INQN*z|| = |[NN*z|| = ||[N*Nz|| = [|[N?z|| = [|A%z||.
This implies that Ms+4_ a4+ is invariant under A and we have the following.

Corollary 2. ([1; Corollary A]) If T,, is subnormal and if Ny, UNg, # {0},
then T, is normal or analytic.

Lemma 7. A is quasi-normal (i.e., A commutes with A*A) if and only if
A is hyponormal and (A*A)? = A*2A2.

Proof. If A is hyponormal and if (4*A)2 = A*2A2, then
A*(A*A — AA*)A = O and, by the hyponormality, (A*A — AA*)*A = O and
hence (A*A — AA*)A = O. Therefore A commutes with A*A. The converse
assertion is clear. _ |
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Lemma 8. For ¢ € H®, if (T,*T,)? = T,,*?>T,2, then ¢ is a scalar multiple

of an inner function.

Proof. By Proposition 3 and by the assumption,
T@pz = (T¢*T¢)2 = TS(,"‘zT‘F,2 = T¢,2T<P2 = dg2p2 = Ti¢|4 and ¢y € H* and hence
lo| is constant. Therefore ¢ is a scalar multiple of an inner function. (]

For ¢ € L*°, let Xo =TT, —T,T, and let Y, =T,"T,"T,T, —T,*T,.

Then X,=0 = ¢ € H* by Proposition 2,
Y, =0 = T,"T, is a Toeplitz operator by Proposition 2
= ¢ € H* by Proposition 3,

and Y, = T,"T,*(T,T, + X,) ~ T,*T, = T,*T,* X,.

Since Y, = T,*T,*(I — T,T,*)T, T, and (I — T,T,*)H? = V{1}, Y, is an at
most rank one positive operator and Y, T,*T,*1 = ||Y,||T.*T,*1. And since, for
any f € H?, || X, f||2? = (I - T )TT. fll2? = (Yo f, f) = ”Ytpéf”227 we have
Nx, =Ny, and X,*H? =Y, ,H? = V{T,*T,,*1} and hence

H>={feH?: Y,f=0}®{f€H?: Y,f =|Y,|f}
= Nx, ® V{T,*T,*1} )

and also we have X, H? C Nr . = V{1}.

Lemma 9. If {0} # Nr,-1,-7,7,~ # H?, then Y, — Y5 # O and
(Y, — Yp)H? = V{T,*T,*1, T,*T,1}.

Proof. 1fY,~Y; = O, then T,,*T,,—T,T,* is a Hermitian Toeplitz operator
by Proposition 2 because Y,, — Y5 = T,*(T,*T, — T, T,*)T, — (T,*T, — T, T,*).
Let T,"T, — T,T,* = Ty. Then the assumption {0} # N7, # H? implies ¢ # o
and 0 € 0,(Ty). This contradicts Proposition 4. And since, for any f € H?,

—_— — * ‘ * ”Y(P” * *
(Yo = Y)f =(f, T.*T,*1) (m T,"T,"1

I¥, |
6 2T (g ) 7T
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we have (Y, —Y;)H? = V{T,*T,*1, T,*T,1} because it is clear in the case where
T,*T,*1 and T,*T,1 are linearly dependent and, in the other case, we can select
f € H? such as (f, T.*T,*1) = 0 # (f, T.*T,1) and also (f, T,*T,*1) £ 0 =
(f, T*T,1). O

Theorem 2. If T, satisfies the following conditions :
(1) (T,*T,)? = T,**T,2, (ii) {o} # N1, -T,-T,T,*, (iii) Every eigen-space of
T,*T, is invariant under T,,* and (iv) T,*T.*T,*1 and T,*T,*T,1 are linearly

dependent, then T, is normal or a scalar multiple of an isometry.

Proof. By Lemma 8, we have only to prove that there is no nbn—normal, non-
analytic Toeplitz operator which satisfies the above conditions (i), (ii), (iii) and
(iv). Let T, be non-normal and non-analytic. Since T,*(T,*T, — T,T,*)T, = O
by the condition (i),

T," (Yo — Y¢)T¢ = Tw*Tz*(Tw*Tcp - T«PTvt)szp

= (T"Ty" — X)L Tp — T Ty )(T,Ts — Xop)
= -T"T," (T Ty — T Ty ) X,

- X¢*(T¢*T¢ - T¢T¢*)(T¢Tz - Xv) (1)
and T,*T,* (T,* Ty, — T, Tp*) X, H? C X,*H? + T,* (Y, — Yz)H? and hence, by
Lemma 9,

T,*T,*(T,*T, — T,T,*)1

=aT,*T,*1 + BT,* T, T,*1 +4T,*T,*T,1 for some a,B, vy€C (2)
because the conditions of Lemma 9 are satisfied by the condition (ii) and by the
non-normality of T,,. And since

T,*(T,*Tp — T,T,*)1 = (T,*To* + X,*) Tl — (T,T.* + X5*)T,*1

=T,*T,*T,1 + aT,*T,*1 — T,T,*T,*1 + bT,*T,1 for some a, beC,

T, * T, (T,* T, — T,T,*)1 = (T, Ty* + X,*)(Ty* T, — ToTp*)1
=T,"T:" (T, Ty, — T, T,")1 + Xo™ (T " Ty — T, T,p7)1
=T,"T," (To*Ty — T, T,*)1 4+ cT,*T,*1 forsome ce€C
=T, (T,*T,* Tl + aT,*Tp*1 — T,To* Tp* 1 + 6T, Tp1) + T T,* 1
=T,"*T,*T,1 + aT,*T,*T,*1 — T,* T, To*T,* 1 + 6T, T,* T, 1 + T3 * T, "1
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and, by (2),

T, T T, * Ty 1 = T,*?T,* Tyl + (¢ — a)T,* T,* 1
+(a— BT, * T *T,* 1 + (b — Y)T,* T, * T, 1. (3)

Since, by (1),
T,* (Yo — Y3)T,H? C T,* T, (T,* T, — T,T,") X, H? + X ,* H? (4)
and since T,* (Y, — Y;)T,H? C T,*(Y,, — Y5)H?,

T, *T,*T,*1 = \T,"T,*1
and T,"T,"T,1 = XT,*T,*1 for some M;, Ay €C (5)

by the condition (iv), Lemma 9 and (2) and hence, by (3),
T,"To(T."T,*1) = {Med1 + (c— a) + (@ — B)A1 + (b— 7)A}T*T,*1. (6)

Let 7 = A A1 + (c— a) + (a — B)A1 + (b— v¥) A2 and let
M={feH? : T,*T,f =rf}. Since, for any f € M,

(T,*T, — rD)T,* f =T, (T,*T, — X3*)f — rT,* f
=(T.*"T," — X" )Tof —T,* X f —rT" f
==X, Tof —To" X" f
=—a1T,*T,"1 —T,*(,T,*T,1) for some a;, b €C
=— (a1 + 0122)T,"T,*1 by (5)

and since T;*T,*1 € M by (6), (T,*T,—rI)?>T,*f = oand (T,*T,—rI)T,*f =o
because ||(T,*T, — rI)T,* f||2® = (T,*T, — rI)?T,* f, T.* f) = 0 and hence M
is invariant under 7T,*. Since T, is non-analytic by the assumption, T,*T,*1 # o
by (f) and by Proposition 2 and M # H? by Proposition 3 and hence M is non-
trivial. Therefore M1 = T, H? for some non-constant inner function g by Propo-
sition 1. Since M is invariant under T,* by the condition (iii), T, H? is invariant
under T, and ¢ € H* by Lemma 3. This contradicts the assumption that T, is
non-analytic. O
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Corollary 3. ([2; Theorem]) Every quasi-normal Toeplitz operator is only
normal or a scalar multiple of an isometry.

Proof. It is clear that every quasi-normal T, satisfies the conditions (i),
(ii) and (iii). And, by Theorem 2, we have only to show that quasi-normal T,
satisfies the condition (iv).

IfT,*T.*T,*1 and T,*T,*T,1 are linearly independent, then
(Y, —Y3)T,H? = V{T,*T,*1, T,*T,1} because, for any f € H?,

. 7 — * * ”YSP“ * *
(Y<P Y‘P)T‘Pf - (Ttpf’ Tz T‘P 1) (IITz*TLp*1”22 TZ T‘P 1

. Yl )
—T,f, T,*T,1 —_— |1 T,*T,1
Tof, LT, )(llrz*muzz v

— * * * ”Y<P” * *
- <f’ T‘P Tz T‘,, 1) ("Tz*Tw*1”22 Tz T‘P 1

> % “Y¢” *
(f, T, "T,*T,1) (lsz*Tq,lllf T,*T,1.

And since T,*(Y, — Y3)T,H?> C X,*H? by (4) in the proof of Theorem 2
because T,,*(T,*T, — T,T,*) = O by the quasi-normality of T,

T,*T*"T,*1 = M\ T, T,*1
and T,*T.,"T,1 = AT,"T,"1 forsome A;, A €C

and this contradicts the assumption that T,,*T,*T,*1 and T,*T,*T,1 are linearly
independent. O

Theorem 3. If T, is paranormal (i.e., || T, f|l2? < |T,2fll2 || f]l2 for all
f € H?) and if ¢ = gg for some inner functions ¢ and g, then T, is an isometry.

Proof. By the assumption, ||T,|| = 1. Since ||T,q||2 = ||Pdgqllz = ||Pgll2 =
llgllz = 1= llql|2,

M= {f € H* : |[T,fll2 = lIfll2} # {o}-
And, by the paranormality, we have T,M C M. In fact, if f € M, then

£l 2 I fll2 1T fll2 > 1T fll2® = I fllz 1T £l = N1 £1l2°
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and ||T,2f|l2 = ||T, f|l2 and hence T, f € M. Therefore
M={feH? : [T, flla=lfll2, n=0,1,2,---} # {0}
and T, is an isometry by Proposition 6. A O
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