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JACOBI VECTOR FIELDS ALONG GEODESICS
IN GLUED RIEMANNIAN MANIFOLDS

NOBUHIRO INNAMI

ABSTRACT. Let $M_{\alpha},$ $\alpha\in\Lambda$ , be complete connected Riemannian manifolds which
are glued at their boundary. We call such a manifold $M=U_{\alpha\in\Lambda}M_{\alpha}$ a glued Rie-
mannian manifold. Geodesics in a glued Riemannian manifold $M$ are by definition
locally minimizing curves in $M$ . The variation vector fields through $g\infty de8ic8$ satisfy
the Jacobi equation in each component manifold. In this paper we find the equation
which show how Jacobi vector fields change in passing acros8 the boundary of a com-
ponent manifold into the neighboring component. As an application we characterize
glued Riemannian manifolds whose glued boundary separates conjugate points.

1. DEFINITIONS AND STATEMENTS

1.1. Glued Riemannian manifolds. Busemann and Phadke ([1]) have made
glued G-surfaces $M$ such that there exist points around which any geodesic circles
are not convex in $M$ . Glued surfaces are often used as intuitive examples in some
papers and literature on Riemannian geometry of geodesics. The two sides of
billiard tables and some collapsing Riemannian manifolds are considered to be a
kind of glued Riemannian manifolds. The surface of things are often made up of
smooth surfaces with boundary. Thinking those examples and ones in Section 4,
we give the definition of glued Riemannian manifolds.

A complete connected one-dimensional glued Riemannian manifold $M$ is by
definition a piecewise smooth Riemannian manifold which is, therefore, isometric
to a closed curve with suitable length or an interval in the real line.

We assume for the inductive method that complete glued Riemannian manifolds
$M$ with dimension $n-1$ are defined.

Let $M$ be a complete connected topological manifold with dimension $n$ and
boundary $B$ (possibly $ B=\emptyset$). We say that $(M,g)$ is a complete glued Riemannian
manifold with boundary $B$ having a decomposition $\Gamma$ : $M=\bigcup_{\alpha\in\Lambda}M_{\alpha}$ if the
decomposition $\Gamma$ satisfies the folowing.

(1) Each $(M_{\alpha},g_{\alpha}),$ $g_{\alpha}=g|M_{\alpha}$ , is a smooth complete Riemannian manifold
with boundary $B_{\alpha}$ and dimension $n$ .

1991 Mathematics Subject Classification. Primary $53C20;$ .
Key words and phrases. geodesic, Jacobi vector field, Riemannian manifold.
Partly supported by the Grants-in-Aid for Scientific Research, the Ministry of Education,

Science and Culture, Japan

–101–



(2) (Int $M_{\alpha}$ ) $\cap M_{\beta}=\emptyset$ for $\alpha\neq\beta\in\Lambda$ where Int $M_{\alpha}$ is tbe interior of $M_{\alpha}$ .
(3) Each connected component of the boundary $B_{\alpha}$ of $M_{\alpha}$ with Riemannian

metric $g_{\alpha}|B_{\alpha}$ is also a glued Riemannian manifold with dimension $n-1$

for any $\alpha\in\Lambda$ .
(4) If $M_{\alpha}$ and $ M\rho$ are glued at $ p\in B_{\alpha}\cap B\rho$ and there is a neighborhood

$U$ of $p$ in $M$ such that $U=(U\cap M_{\alpha})\cup(U\cap M_{\beta})$ , then both $B_{\alpha}$ and
$B_{\beta}$ are differentiable at $p$ as hypersurfases in $M_{\alpha}$ and $M_{\beta}$ , respectively.
$T_{p}B_{\alpha}=T_{p}B_{\beta}$ and $ g_{\alpha}=g\rho$ on $T_{p}B_{\alpha}$ .

1.2. The law of passage and reflection. Let $M$ be a glued Riemannian
manifold with boundary $B$ and the decomposition $M=\bigcup_{\alpha\in\Lambda}M_{\alpha}$ . Let $B^{t}=$

$\bigcup_{\alpha\in\Lambda}B_{\alpha}$ . Let $N_{\alpha}$ be the inward unit normal vector field to $B_{\alpha}$ in $M_{\alpha}$ for each
$\alpha\in\Lambda$ . Each $N_{\alpha}$ is defined on the set of points at which $B_{\alpha}$ is differentiable. For
any point $p\in B^{t}$ where $B^{t}$ is differentiable we are going to define the law $Q$ of
passage and reflection depending on whether $p\not\in B$ or $p\in B$ .

If $p\in B_{\alpha}\cap B_{\beta}$ for some $\alpha\neq\beta\in\Lambda$ , then the map $Q_{\alpha\beta}$ : $ T_{p}M_{\alpha}\rightarrow T_{p}M\rho$ is
defined as

$Q_{\alpha\beta}(X)=X-g_{\alpha}(X,N_{\alpha})N_{\alpha}-g_{\alpha}(X,N_{\alpha})N_{\beta}$

for any tangent vector $X\in T_{p}M_{\alpha}$ . We cal it the law of passage at $phomM_{\alpha}$ to
$M_{\beta}$ .

If $p\in B$ , and, hence, $p\in B_{\alpha}$ for a single $\alpha\in\Lambda$ , then the map $Q_{\alpha}$ : $ T_{p}M_{\alpha}\rightarrow$

$T_{p}M_{\alpha}$ is defined as
$Q_{\alpha}(X)=X-2g_{\alpha}(X, N_{\alpha})N_{\alpha}$

for any tangent vector $X\in T_{p}M_{\alpha}$ . We cal it the law of reflection at $p$ to $B$ . The
law $Q_{\alpha}$ of reflection is considered to be a special case of the law $Q_{\alpha\alpha}$ of passage.

We may simply write $Q$ without confusion instead of $Q_{\alpha\beta}$ and $Q_{\alpha}$ . The law $Q$

comes from the condition of straightness and isometry, that is,

(1) $g_{\beta}(Q(X), Y)=g_{\alpha}(X,Y)$ , and $g_{\beta}(Q(X),N_{\beta})g_{\alpha}(X,N_{\alpha})\leq 0$ for any $Y\in$

$T_{p}B_{\alpha}=T_{p}B_{\beta}$ and $X\in T_{p}M_{\alpha}$ ,
(2) $g\rho(Q(X), Q(X))=g_{\alpha}(X,X)$ for any $X\in T_{p}M_{\alpha}$ .

We notice that $Q(N_{\alpha})=-N_{\beta}$ and $Q(Y)=Y$ for any $Y\in T_{p}B_{\alpha}$ .
1.3. Geodesics. Let $c$ : $[a, b]\rightarrow M$ be a curve (any interval is possible as a
domain) and $J_{c}=\{s\in[a, b]|c(s)\in B^{t}\}$ . We say that a curve $c$ is regular if $J_{c}$

has no accumulation point in $[a, b]$ . For a regular curve $c$ let a map $T:J_{c}\rightarrow J_{c}$

be given by
$T(s)=\min\{u\in P_{c}|s<u\}$

for any $s\in J_{c}$ . The map $T$ is like a ceiling function in the biUiard ball problems.
We say that a regular curve parametrized by arc-length $\gamma$ : $[a, b]\rightarrow M$ is a

geodesic curve in $M$ if the following are satisfied for any $s\in J_{\gamma}$ .
(1) $\gamma|[s, T(s)]$ is a geodesic curve in $M_{\alpha}$ in the usual sense for some $\alpha\in\Lambda$ .
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(2) If $\gamma(s)\in B_{\alpha}$ for some $\alpha\in\Lambda$ , then $B_{\alpha}$ is differentiable at $\gamma(s)$ and $\dot{\gamma}(s-0)\not\in$

$T_{\gamma(s)}B_{\alpha}$ .
(3) $\dot{\gamma}(s+0)=Q(\dot{\gamma}(s-0))$

1.4. Statements. Let $M^{n+1}$ be a complete glued Riemannian manifold with
$ B^{t}\neq\emptyset$ . A variation of a geodesic curve $\gamma$ through geodesic curves yields a Jacobi
vector field $Y$ along $\gamma$ in each component manifold $M_{\alpha}$ of $M$ where $\gamma$ is contained.
The Jacobi vector field $Y$ and its covariant derivative with respect to $\dot{\gamma}$ may not
be continuous at a point in $B^{t}$ . The purpose of the present note is to describe
what happens to $Y$ at those points. In Section 2 and 3 we prove some lemmas
which tel us how $Y$ changes when the geodesic $\gamma$ passes across $B^{t}$ into the neigh-
boring component. Although we can prove those results by simple modification of
notation in the corresponding proofs of theorems for biliard bal tables ([2]), we
write them for convenience and completeness because they are fundamental and
important formulas in the study of glued Riemannian manifolds. The formulas in
Lemma 2.3 suggests us that many properties for usual Jacobi vector fields along
geodesics in smooth Riemannian manifolds hold true in our case of glued Riemann-
ian manifolds. Indeed, we can bring many theorems for usual smooth Riemannian
manifolds in those ones. However, we introduce just one of them without proof,
because the proofs are simple modifications.

Let $T_{1}M$ be the unit tangent bundle of $M$ and $\pi$ : $T_{1}M\rightarrow M$ the natural
projection. For a vector $v\in T_{1}M$ let $\gamma_{v}$ be the geodesic with $\dot{\gamma}_{v}(0)=v$ . If
$\pi(v)\in B^{t}$ , then $\dot{\gamma}_{v}(0)$ is considered either $\dot{\gamma}_{v}(+0)$ or $\dot{\gamma}_{v}(-0)$ . The geodesics $\gamma_{v}$

are defined on the whole real line $(-\infty, \infty)$ for almost all $v\in T_{1}M$ . We denote
the set of all such vectors by $SM$ . We denote the set of al vectors $v\in SM$

with $q=\pi(v)\in B^{\ell}$ and $g_{\alpha}(v,N_{\alpha}(q))>0$ by $(B^{t})_{in}$ , assuming $v\in T_{q}M_{\alpha}$ . Let
$T$ be the ceiling function on $(B^{t})_{in}$ , i.e., $T(v)$ is the first parameter such that
$\gamma_{v}(T(v))\in B^{\ell},$ $T(v)>0(possibly+\infty)$ . Let $F:(B^{t})_{in}\rightarrow(B^{t})_{in}$ be a map given
by $F(v)=\dot{\gamma}_{v}(T(v)+0)$ for any $v\in(B^{t})_{in}$ .

We say that $\gamma(t_{1})$ is a conjugate point to $\gamma(t_{0}),$ $t_{0}\neq t_{1}$ , if there exists a
nontrivial Jacobi vector field $Y$ along $\gamma$ with $Y(t_{0})=Y(t_{1})=0$ such that $Y$

satisfies (1)$-(3)$ in Lemma 2.3. We will show a theorem in relation to the folowing
property.

$(P)$ We say that $M$ is with $B^{t}$ isolated by conjugate points if there exist positive
measurable functions $\nu$ and $\mu$ on $(B^{t})_{in}$ such that $\gamma_{v}(\nu(v))$ is the first conjugate
point to $\gamma_{v}(-\mu(v))$ along $\gamma_{v}$ and $T(v)\geq\nu(v)+\mu(F(v))$ for any $v\in(B^{t})_{in}$ .

In order to state our result we need a few terminologies more. Let $dM$ and $dB_{\alpha}$

be the volume forms on $M$ and $B_{\alpha}$ (resp.) induced $hom$ the Riemannian metric
and let $\alpha S$ be the second fundamental form of $B_{\alpha}$ at differentiable points with
respect to $N_{\alpha}$ for any $\alpha\in\Lambda$ .

Let $\lambda_{\alpha}s$ denote the maximal eigenvalue function of $\alpha S$ , i.e., $\lambda\propto s(q)$ is the max-
imal eigenvalue of $\alpha S$ at $q\in B^{\ell}$ if we think $q\in B_{\alpha}$ for some $\alpha\in\Lambda$ . In connection
to the condition $(P)$ and some theorems in [2] we introduce the following theorem
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as an application of our lemmas to be proved in this paper.
Theorem. If $M^{\mathfrak{n}+1}$ is compact, of nonpositive curvature and with $B^{t}$ isolated by
conjugate points, then

$\sum_{\alpha\in\Lambda}\int_{B_{\alpha}}\lambda_{\alpha}s^{dB_{\alpha}\geq}\frac{(\sum_{\alpha\in A}vo1(B_{\alpha}))^{2}}{(n+1)vo1(M)}$

and the equality sign is true only if all $M_{\alpha},$ $\alpha\in\Lambda$ , are isometric to a spherical
domain of radius $r$ unth flat metric where $r=(\lambda\propto s)^{-1}$ is constant.

The theorem is a generarization of Theorem $D$ in [2]. Example 4.4 shows that
the equality sign does not hold true in general even if $n=1$ .

2. VARIATION VECTOR FIELDS

Let $M$ be a glued Riemannian manifold with boundary $B$ and let $q\in B_{\alpha}\cap B_{\beta}$

(possibly $\alpha=\beta$) be a point $8atis\Psi ing$ the condition (4) in Subsection 1.1. Let
$X_{\beta}\in T_{q}M_{\beta}$ . We define a map $P_{\beta}$ : $X\rho^{\perp}\rightarrow T_{q}B_{\beta}$ as

$P_{\beta}(v)=v-\frac{g_{\beta}(v,N_{\beta})}{g_{\beta}(X_{\beta},N_{\beta})}X_{\beta}$ ,

where $X_{\beta}^{\perp}=\{w\in T_{q}M_{\beta}|g_{\beta}(w,X_{\beta})=0\}$ . Let $\epsilon s$ be the second fundamental
form with respect to the unit normal vector field $N_{\xi}$ to $B_{\xi}$ which satisfies by
definition that

$\epsilon_{\nabla_{Z}N_{\xi}=S_{q}(Z)}-\xi$

for any tangent vector $Z\in T_{q}B_{\alpha}$ where $\zeta=\alpha,\beta$ , and $\xi\nabla$ is the Levi-Civita
connection with respect to $g_{\xi}$ . Notice that $\epsilon s(Z)\in T_{q}B_{\xi}$ and $\epsilon s$ is a symmetric
$1\dot{i}$ear transformation of $T_{q}B_{\alpha}=T_{q}B_{\beta}$ . We define a map $A(X_{\beta})$ : $X\rho^{\perp}\rightarrow X_{\beta}^{\perp}$ as

$A(X_{\beta})(v)=g_{\beta}(X_{\beta},N_{\beta})(\alpha S+\beta S)\circ P_{\beta}(v)-g_{\beta}(X_{\beta}, (^{\alpha}S+\beta S)\circ P_{\beta}(v))N_{\beta}$

for any tangent vector $v\in X_{\beta}^{\perp}$ .
Lemma 2.1. The map $A(X_{\beta})\dot{u}$ symmetric.

Proof. Let $v,$ $w\in X_{\beta}^{\perp}$ . Then, we have that

$g\rho(A(X_{\beta})(v),w)$

$=g\rho(\alpha+\beta S)\circ P_{\beta}(v)-g_{\beta}(X_{\beta}, (^{\alpha}S+\beta S)\circ P_{\beta}(v))N\beta$ ,

$P_{\beta}(w)+\frac{g_{\beta}(w,N_{\beta})}{g_{\beta}(X_{\beta},N_{\beta})}x_{\beta})$

$=g_{\beta}(X_{\beta},N_{\beta})g_{\beta}((\alpha S+\beta S)\circ P_{\beta}(v),P_{\beta}(w))$

$=g_{\beta}(X_{\beta},N_{\beta})g_{\beta}(P_{\beta}(v), (^{\alpha}S+\beta S)\circ P_{\beta}(w))$

$=g_{\beta}(v,A(X_{\beta})(w))$

–104–



This completes the proof.

We will see the reason why A is defined as above. We first observe that the
difference between $\alpha\nabla$ and $\beta\nabla$ around $q\in B_{\alpha}\cap B_{\beta}$ .
Lemma 2.2. Let $Y\in T_{q}B_{\alpha}$ and $X$ a tangent vector field to $M_{\alpha}$ defined around
$q$ in $B_{\alpha}$ . Then, we get the equation

$\beta\nabla_{Y}Q(X)-Q(\alpha\nabla_{Y}X)$

$=g_{\beta}(Q(X), (^{\alpha}S+\beta S)(Y))N_{\beta}-g_{\beta}(Q(X), N_{\beta})(\alpha S+\beta S)(Y)$ .

Proof. If $Z$ is a tangent vector field to $B_{\alpha}$ , then we have that

$\beta\nabla_{Y}Z=\alpha\nabla_{Y}Z+g_{\beta}(Z^{\beta}S(Y))N_{\beta}-g_{\alpha}(Z^{\alpha}S(Y))N_{\alpha}$ ,

because the induced connection from $\alpha\nabla$ is the same as the one from $\beta\nabla$ around
$q$ in $B_{\alpha}\cap B_{\beta}$ . Since $X-g_{\alpha}(X, N_{\alpha})N_{\alpha}$ is tangent to $B_{\alpha}$ , we get the eqation

$\beta\nabla_{Y}Q(X)=^{\beta}\nabla_{Y}(X-g_{\alpha}(X, N_{\alpha})N_{\alpha})-\beta\nabla_{Y}(g_{\alpha}(X, N_{\alpha})N_{\beta})$

$=Q(\alpha\nabla_{Y}X)+g_{\alpha}(X, (^{\alpha}S+\beta S)(Y))N_{\beta}+g_{\alpha}(X,N_{\alpha})(\alpha S+\beta S)(Y)$

$=Q(a\nabla_{Y}X)+g_{\beta}(Q(X), (\alpha S+\beta S)(Y))N_{\beta}-g_{\beta}(Q(X), N_{\beta})(\alpha S+\beta S)(Y)$

This completes the proof.

Let $\gamma$ : $[a, b]\rightarrow M$ be a geodesic curve with $\gamma(t_{0})=q,$ $\gamma([a, t_{0}-0])\subset M_{\alpha}$ ,
$\gamma([t_{0}+0, b])\subset M_{\beta}$ . We write $X_{\alpha}(t)=\dot{\gamma}(t)$ for $a\leq t\leq t_{0}-0$ and $X_{\beta}(t)=\dot{\gamma}(t)$

for $t_{0}+0\leq t\leq b$ . Consider a variation $\varphi$ : $[a, b]\times(-\epsilon, \epsilon)\rightarrow M_{\alpha}\cup M_{\beta}$ such that
$\varphi(t, O)=\gamma(t)$ and $\varphi_{\epsilon}=\varphi(\cdot, s)$ is a geodesic curve for each $s$ and the function $t_{0}(s)$

of the parameters at which the geodesic curves pass across or reflect is smooth
for $s$ . Let $Y_{\alpha}(t)$ be the variation vector field for $a\leq t\leq t_{0}-0$ and $Y\rho(t)$ for
$t_{0}+0\leq t\leq b$ . Then, we prove the folowing.

Lemma 2.3.

(1) $\epsilon_{\nabla x_{\epsilon^{\xi}}\nabla_{X_{\xi}}Y_{\xi}+R_{\xi}(Y_{\xi},X_{\xi})X_{\xi}=0}$ ,

(2) $Q(Y_{\alpha}(t_{0}))=Y_{\beta}(t_{0})$ ,

(3) $Q(\alpha\nabla_{X_{\alpha}}Y_{\alpha}(t_{0}))-\beta\nabla_{X_{\beta}}Y_{\beta}(t_{0})=A(X_{\beta}(t_{0}))(Y_{\beta^{O}}(t_{0}))$ ,

where $\xi=\alpha,$ $\beta$ and $R_{\xi}$ is the Riemannian curvature tensor and $Y_{\beta^{O}}$ is the perpen-
dicular component of $Y_{\beta}$ to $X_{\beta}(t_{0})$ . Further, if $g_{\alpha}(Y_{\alpha}(a), X_{\alpha}(a))=0$ , then

$X_{\xi}\perp Y_{\xi}$ for $\xi=\alpha,$ $\beta$ .
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Proof. (1): Since $\varphi$ is a variation through geodesic curves, $Y_{\xi}$ is a Jacobi vector
field along $\gamma$ , and, hence, satisfies (1).

(2): Differentiating both sides of $\varphi(t_{0}(s)-0, s)=\varphi(t_{0}(s)+0, s)$ at $s=0$ , we
have

$t_{0^{j}}(0)X_{\alpha}(t_{0})+Y_{\alpha}(t_{0})=t_{0^{\prime}}(0)X_{\beta}(t_{0})+Y_{\beta}(t_{0})$ ,

and, hence,

$Y_{\beta}(t_{0})=Y_{\alpha}(t_{0})+t_{0^{\prime}}(0)(X_{\alpha}(t_{0})-X_{\beta}(t_{0}))$

$=Y_{\alpha}(t_{0})+t_{0^{\prime}}(0)(g_{\alpha}(X_{\alpha}(t_{0}), N_{\alpha})N_{\alpha}+g_{\alpha}(X_{\alpha}(t_{0}), N_{\alpha})N_{\beta})$ ,

since $ Q(X_{\alpha})=X\rho$ . We also have

$t_{0^{\prime}}(0)=-\frac{g_{\alpha}(Y_{\alpha}(t_{0}),N_{\alpha})}{g_{\alpha}(X_{a}(t_{0}),N_{\alpha})}$ ,

since $t_{0^{\prime}}(0)X_{a}(t_{0})+Y_{\alpha}(t_{0})\in T_{\gamma(\ell 0)}B_{\alpha}$ . Therefore, we get the equation

$Y_{\beta}(t_{0})=Y_{\alpha}(t_{0})-(g_{\alpha}(Y_{\alpha}(t_{0}), N_{\alpha})N_{\alpha}+g_{\alpha}(Y_{\alpha}(t_{0}),N_{\alpha})N_{\beta})=Q(Y_{\alpha}(t_{0}))$ .
(3): Let $\psi$ : $[a, b]\times(-\epsilon, \epsilon)\rightarrow M$ be a reparametrization of $\varphi$ such that

$\psi(\overline{t}(t, 8),$ $s$) $=\varphi(t, s),\overline{t}(t_{0}(8), s)=t_{0}$ and $||\overline{X}_{\alpha}(t_{0}, s)||_{\alpha}=||\overline{X}_{\beta}(t_{0}, s)||_{\beta}$ where
$\overline{X}_{\xi}(\overline{t}, s)=\frac{\partial\psi}{\partial\overline{t}}(\overline{t}, s)$ for $a\leq\overline{t}\leq t_{0}-0$ if $\xi=\alpha$ and $t_{0}+0\leq\overline{t}\leq b$ if $\xi=\beta$ .
Let $\overline{Y}_{\xi}(\overline{t}, 8)=\frac{\partial\psi}{\partial s}(\overline{t}, s)$ be the variation vector field for $\xi=\alpha,\beta$ as before. Then,
$\overline{Y}_{\alpha}(t_{0}, s)=\overline{Y}_{\beta}(t_{0}, s)$ for al $s$ . We see $hom$ Lemma 2.2 that

$(^{\beta}\nabla_{X_{\beta}}\overline{Y}_{\beta})(t_{0})=(\rho\nabla_{Y_{\beta}}\overline{X}_{\beta})(t_{0})=^{\beta}\nabla_{Y_{\alpha}}(Q(\overline{X}_{\alpha}))$

$=Q(^{\alpha}\nabla_{\overline{X}_{\alpha}}\overline{Y}_{\alpha}(t_{0}))+g_{\beta}(\overline{X}_{\beta}, (^{\alpha}S+\beta S)(\overline{Y}_{\beta}))N_{\beta}-g_{\beta}(\overline{X}_{\beta},N_{\beta})(\alpha S+\beta S)(\overline{Y}_{\beta})$ .
It should be noted that

$g_{\beta}(\overline{X}_{\beta}, (^{\alpha}S+\beta S)(\overline{Y}_{\beta}))N_{\beta}-g_{\beta}(\overline{X}_{\beta},N_{\beta})(\alpha S+\beta S)(\overline{Y}_{\beta})\in X_{\beta}(t_{0})^{\perp}$ ,

$\overline{X}_{\xi}$ can change to $X_{\xi}$ because of the linear property of $\xi\nabla$ , and

$Y_{\xi}^{o}$ $:=Y_{\xi}-g_{\xi}(Y_{\xi},X_{\xi})X_{\xi}=\overline{Y}_{\xi}-g_{\xi}(\overline{Y}_{\xi},X_{\xi})X_{\xi}$

for $\xi=\alpha,\beta$ . Since $\varphi$ is the variation through unit speed geodesics, we can see
that $g_{\xi}(Y_{\xi}, X_{\xi})=const.$ , and, hence, $\xi\nabla x_{\epsilon}Y_{\xi}=\xi\nabla_{X_{\xi}}Y_{\xi}^{o}$ . Moreover, we have

$\beta 0\beta$

$=Q(\alpha\nabla_{X_{\alpha}}\overline{Y}_{\alpha})+g_{\beta}(X_{\beta}, (^{\alpha}S+\beta S)(\overline{Y}_{\beta}))N_{\beta}-g_{\beta}(X_{\beta},N_{\beta})(\alpha S+\beta S)(\overline{Y}_{\beta})$

$-g_{\beta}(Q(\alpha\nabla_{X_{\alpha}}\overline{Y}_{\alpha}),X_{\beta})X_{\beta}$ .
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Since $P_{\beta}(Y_{\beta^{O}}(t_{0}))=\overline{Y}_{\beta}(t_{0})$ and

$g_{\beta}(Q(\alpha\nabla_{X_{\alpha}}\overline{Y}_{\alpha}), X_{\beta})X_{\beta}=Q(\alpha\nabla_{X_{\alpha}}g_{\alpha}(\overline{Y}_{\alpha}, X_{\alpha})X_{\alpha})$ ,

we see that
$\rho\nabla_{X_{\beta}}Y_{\beta^{O}}=Q(\alpha\nabla_{X_{\alpha}}Y_{\alpha}^{O})-A(X_{\beta}(t_{0}))(Y_{\beta^{O}}(t_{0}))$

and, therefore, (3) is proved.
(4): Since $\varphi$ is a variation through unit speed geodesic curves, the length of

each geodesic curve is
$t-a=\int_{a}^{t}\Vert X_{\alpha}(t, s)||_{\alpha}dt$ ,

if $t\in[a, t_{0}(s)-O]$ . Differentiating at $s=0$ , we have

$0=g_{\alpha}(Y_{\alpha}(t),X_{\alpha}(t))-g_{\alpha}(Y_{\alpha}(a), X_{\alpha}(a))$

if $a\leq t\leq t_{0}-0$ . If $t\in[t_{0}(s)+O, b]$ , then we have that

$t-a=\int_{a}^{\ell o(s)}\Vert X_{\alpha}(t, s)\Vert_{\alpha}dt+\int_{\ell_{O}(s)}^{t}||X_{\beta}(t, s)||_{\beta}dt$ .

Differentiating at $s=0$ , we get the equation

$0=g_{\alpha}(Y_{\alpha}(t_{0}),X_{\alpha}(t_{0}))-g_{\alpha}(Y_{\alpha}(a), X_{\alpha}(a))$

$+g_{\beta}(Y_{\beta}(t),X_{\beta}(t))-g_{\beta}(Y_{\beta}(t_{0}), X_{\beta}(t_{0}))$

$+t_{0}^{\prime}(0)(||X_{\alpha}(t_{0})\Vert_{\alpha}-||X_{\beta}(t_{0})\Vert_{\beta})$

if $t_{0}+0\leq t\leq b$ . It follows from the first equation and the assumption that
$g_{\alpha}(Y_{\alpha}(t),X_{\alpha}(t))=0$ for $a\leq t\leq t_{0}-0$ . Since $Y_{\beta}(t_{0})=Q(Y_{\alpha}(t_{0})),$ $X_{\beta}(t_{0})=$

$Q(X_{\alpha}(t_{0}))$ and $||X_{\alpha}(t_{0})\Vert_{\alpha}=\Vert X_{\beta}(t_{0})||_{\beta}=1$ , we also have that $g_{\beta}(Y_{\beta}(t), X_{\beta}(t))=$

$0$ for $t_{0}+0\leq t\leq b$ . This completes the proof of Lemma 2.3.

We can show many properties of perpendicular Jacobi vector fields along a
geodesic curve as were proved for ordinary ones.

3. THE PASSAGE AND MIRROR EQUATION

Let $\gamma:[a, b]\rightarrow M$ be a geodesic curve and $Y$ a vector field along $\gamma$ . We cal $Y$

a $Ja\omega bi$ vector field along $\gamma$ if it satisfies (1) $-(3)$ in Lemma 2.3. Let $t_{1}\in[a, b]$ .
We say that $\gamma(t_{2})$ is a conjugate point to $\gamma(t_{1})$ along $\gamma$ if there is a nontrivial
Jacobi vector field along $\gamma$ with $Y(t_{1})=0$ and $Y(t_{2})=0$ .

In this section we prove the passage and mirror equation and make the relation
between $S=\alpha S+\beta S$ and $A$ clear. Let $\lambda_{H}$ denote the maximal eigenvalue of a
symmetric linear transformation $H$ .
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Lemma 3.1 (The passage and mirror equation). Let $M_{\alpha}$ and $M_{\beta}$ be flat
Riemannian manifolds with boundary $B_{\alpha}$ and $B_{\beta}$ , respectively, such that $M_{\alpha}$ is
glued to $M_{\beta}$ amund $q\in B_{\alpha}\cap B_{\beta}$ in $B_{\alpha}\cap B_{\beta}$ . Let $\gamma$ : $[0, t_{0}]\rightarrow M_{\alpha}\cup M\rho$ be a
geodesic curv $e$ passing across $B_{\alpha}\cap B_{\beta}$ at only one point $q=\gamma(a)$ . Suppose $\gamma$ meets
at the angle $\theta$ to the tangent space $T_{q}B_{\alpha}$ . If $\gamma(t_{0})$ is the first conjugate point to
$\gamma(0)$ along $\gamma$ and $b=t_{0}-a$ , then we get

$\frac{\lambda_{S_{q}}}{\sin\theta}\geq\lambda_{A(\dot{\gamma}(a+0))}=\frac{1}{a}+\frac{1}{b}$ ,

where $S_{q}=\alpha S_{q}+\beta S_{q}$ . The equality sign is true in the first inequality if and only
if there are the eigenvectors of $A(\dot{\gamma}(a+O))$ and $S_{q}$ with eigenvalues $\lambda_{A(\dot{\gamma}(a+0))}$ and
$\lambda_{S_{q}}$ in the subspace spanned by $\{N_{\beta},\dot{\gamma}(a+O)\}$ . In particular, the equality sign is
always true if $n=1$ .

Proof. Let $X=\dot{\gamma}(a+O)$ . Let $P(w)=w-\frac{g_{\beta}(w,N_{\beta})}{g_{\beta}(X,N_{\beta})}X$ for any $w\in X^{\perp}$ . Then,

$g\rho(A(X)(w),w)=g_{\beta}(X,N_{\beta})g_{\beta}(S_{q}\circ P(w),P(w))$

$\leq\frac{1}{\sin\theta}||w||_{\beta^{2}}g_{\beta}(S_{q}(\frac{P(w)}{\Vert P(w)\Vert_{\beta}}I\frac{P(w)}{\Vert P(w)\Vert_{\beta}})$

for any $w\in X^{\perp}$ , since
$||P(w)||_{\beta}\leq\frac{1}{8in\theta}||w||_{\beta}$ .

This proves the first inequality. In a flat glued Riemannian manifold $M=M_{\alpha}\cup M_{\beta}$

the matrix Jacobi field $D$ along $\gamma$ with $D(O)=0$ , and $D^{\prime}(0)=I$ is written

$D(t)=(t-a)(I-aA(X))+aI$

for $t\in[a,t_{0}]$ where $I$ is the identity map. Hence, $D(t)$ is symmetric, $D(t_{0})\geq 0$

and det $D(t_{0})=0$ since $\gamma(t_{0})$ is the first conjugate point to $\gamma(0)$ . We see that

$A(X)\leq(\frac{1}{a}+\frac{1}{b})I$

and
$\lambda_{A(X)}=\frac{1}{a}+\frac{1}{b}$ .

This completes the proof.

We can also show the folowing lemmas which are straightforward modifications
of Lemma 3.1.
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Lemma 3.2. If the flat Riemannian manifolds in Lemma 3.1 are replaced by the
manifolds of constant curvature $k^{2}(k>0)$ , then the $a$ and $b$ in Lemma 3.1 change
to $\frac{1}{k}$ tan $ka$ and $\frac{1}{k}$ tan $kb$ , respectively.

Lemma 3.3. If the flat Riemannian manifolds in Lemma 3.1 are replaced by the
manifolds of constant curvature $-k^{2}(k>0)$ , then the $a$ and $b$ in Lemma 3.1
change to $\frac{1}{k}$ tanh $ka$ and $\frac{1}{k}$ tanh $kb$ , respectively.

We show the relation between $S_{q}=\alpha S_{q}+\beta S_{q}$ and $A(X)$ .
Lemma 3.4. Let $M_{\alpha}$ and $M_{\beta}$ be $(n+1)$-dimensional Riemannian manifolds with
boundary $B_{\alpha}$ and $B_{\beta}$ , respectively, such that $M_{\alpha}$ is glued to $M_{\beta}$ amund $ q\in B_{\alpha}\cap$

$B_{\beta}$ . Let $X\in T_{q}M_{\beta}$ and let $X$ meet at the angle $\theta$ to $T_{q}B_{\beta}$ . Then, the following
are true.

(1) If the dimension of $M$ is two, then $A(X)=\frac{\kappa_{\alpha}+\kappa_{\beta}}{\sin\theta}$ where $\kappa_{\xi}$ is the
geodesic curvature of $B_{\xi}$ at $q$ for $\xi=\alpha,$ $\beta$ .

(2) $S_{q}=0$ if and only if $A(X)=0$ .

$(4)(3)IfS_{q}\geq 0IfS_{q}\leq 0,$ $ thenA(X)\geq 0thenA(X)\leq 0andtrA(X)\leq andtrA(X)\geq\frac{}{\sin\theta}trS_{q}\frac{1}{\sin\theta,1}trS_{q}.\cdot$

(5) If $S_{q}=\lambda I$ , then trA(X) $=\frac{\lambda}{\sin\theta}$ ($1+(n-1)$ sin2 $\theta$).

Here tr $S_{q}$ is by definition the trace of $S_{q}$ .
Proof. Let $w_{1},$

$w_{2}\in X^{\perp}$ . We have that

$g_{\beta}(A(X)(w_{1}), w_{2})=g\rho(X, N_{\beta})g_{\beta}(S\circ P(w_{1}),P(w_{2}))$

Since $P$ is surjective, the statement (2) and the first parts of (3) and (4) are clear.
In order to prove others we extend $S_{q},$ $A(X)$ and $P$ linearly on $T_{q}M$ by setting

$S_{q}(N_{\beta})=0,$ $A(X)(X)=0$ and $P(X)=0$ . The traces of $S_{q}$ and $A(X)$ do
not change. Take an orthonormal basis $\{e_{k}\}$ such that $e_{1},$ $\cdots$ , $e_{n}\in T_{q}B$ are
eigenvectors of $S_{q}$ with eigenvalues $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ , respectively, and $e_{n+1}=N_{\beta}$ . Then,
we get

trA(X) $=\sum_{k=1}^{\mathfrak{n}+1}g_{\beta}(A(X)(e_{k}), e_{k})=g_{\beta}(X, N_{\beta})\sum_{k=1}^{n+1}g_{\beta}(S_{qk}\circ P(e_{k}),P(e))$

$=g\beta(X, N_{\beta})\{\sum_{k=1}^{n}g\rho(S_{q}(e_{k}),e_{k})-\frac{1}{g_{\beta}(X,N_{\beta})}g_{\beta}(S_{q}(X),$ $N\rho-\frac{X}{g_{\beta}(X,N_{\beta})})\}$

$=\sin\theta\{\sum_{k=1}^{n}\lambda_{k}+\frac{1}{\sin^{2}\theta}g_{\beta}(S_{q}(X),X)\}$ .
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Since $S_{q}(X)=\sum_{k=1}^{n}\lambda_{k}g_{\beta}(X, e_{k})e_{k}$ , we have that

trA(X) $=\frac{1}{\sin\theta}\sum_{k=1}^{n}\lambda_{k}(\sin^{2}\theta+g_{\beta}(X,e_{k})^{2})$ .

Since sin $\theta=g_{\beta}(X, e_{\mathfrak{n}+1})$ , we see that sin2 $\theta+g_{\beta}(X, e_{k})^{2}\leq 1$ for each $k$ , and the
equality sign is true if $n=1$ . This completes the proof of (1), and

trA(X) $\geq\frac{1}{\sin\theta}trS_{q}$ if $S_{q}\leq 0$ ,

trA(X) $\leq\frac{1}{\sin\theta}trS_{q}$ if $S_{q}\geq 0$ ,

and

trA(X) $=\frac{\lambda}{\sin\theta}$ ($1+(n-1)$ sin2 $\theta$) if $S=\lambda I$ .

This completes the proof

Let both $M_{\alpha}$ and $M_{\beta}$ be submanifolds in a Riemannian manifold $\tilde{M}$ of class
$ c\infty$ . It is natural to ask what happens to $S=\alpha S+\rho S$ if $T_{q}M_{\alpha}=T_{q}M_{\beta}$ as the
tangent spaces of submanifolds in $\tilde{M}$ . The folowing lemma answers this question.

Lemma 3.5. Let $\tilde{M}$ be a Riemannian manifold of class $ c\infty$ . Suppose a glued Rie-
mannian manifold $M=\bigcup_{\alpha\in\Lambda}M_{\alpha}$ is immersed in $\tilde{M}$ and its component manifolds
are of dass $ c\infty$ in $\tilde{M}$ as submanifolds. If $T_{q}M_{\alpha}=T_{q}M_{\beta}$ at any point $q\in B_{\alpha}\cap B_{\beta}$

at which $B_{\alpha}$ and $ B\rho$ are differentiable, then we get the equation

$\alpha_{S_{q}+S_{q}=0}\beta$ .

Therefore, $A(X)=0$ for any tangent vector $X\in T_{q}M_{\beta}$ with $ X\not\in T_{q}B\rho$ .

Proof. From the assumption it folows that $N_{\alpha}+N_{\beta}=0$ . Let $\tilde{\nabla}$ be the Levi-Civita
connection in $\tilde{M}$ . We notice that the second fundamental form $h_{\alpha}$ is equal to $h_{\beta}$ .
Thus, we have that for any $Y\in T_{q}(B_{\alpha}\cap B_{\beta})$ ,

$0=\tilde{\nabla}_{Y}(N_{\alpha}+N_{\beta})$

$=\alpha\nabla_{Y}N_{\alpha}+\beta\nabla_{Y}N_{\beta}+h_{\alpha}(N_{\alpha}+N_{\beta}, Y)$

$=-(\alpha S+\beta S)(Y)$ ,

This completes the proof.
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4. EXAMPLES

In this section we give some examples which help us in having the notion of
glued Riemannian manifolds.

4.1. Surfaces of cylinders. Let $M=M_{1}\cup M_{2}\cup M_{3}$ be a union of the following
three surfaces in the Euclidean space $E^{3}$ :

$M_{1}=\{(x, y, 0)|x^{2}+y^{2}\leq 1\}$ ,
$M_{2}=\{(x, y, z)|x^{2}+y^{2}=1,0\leq z\leq 1\}$ ,
$M_{3}=\{(x, y, 1)|x^{2}+y^{2}\leq 1\}$ ,

and $g_{\alpha},$ $\alpha=1,2,3$ , are induced Riemannian metrics $hom$ the natural Euclidean
metric of $E^{3}$ . Then, we see that

$B_{1}=\{(x,y,0)|x^{2}+y^{2}=1\}$ ,
$B_{3}=\{(x, y, 1)|x^{2}+y^{2}=1\}$ ,
$B_{2}=B_{1}\cup B_{3}$ ,

and, hence, $B=\emptyset,$ $B^{\ell}=B_{1}\cup B_{3}=B^{0}$ . For any point $p\in B_{1}\cap B_{2}$ we see that
$T_{p}M_{1}$ is the xy-plane, $T_{p}M_{2}$ is the hyperplane through $p$ and perpendicular to the
vector from $0$ to $p,$ $N_{1}(p)=-p,$ $N_{2}(p)=(0,0,1)$ which may be considered as a
vector at $p$ , and $T_{p}(B_{1}\cap B_{2})=T_{p}B_{1}$ is the tangent line to $B_{1}$ through $p$ .

Let a unit vector $X_{1}\in T_{p}M_{1}$ with $g_{1}(X_{1}, -N_{1})=\sin\theta>0$ , Then, $Q(X_{1})$ is
a unit vector $X_{2}$ in $T_{p}M_{2}$ with $g_{2}(X_{2}, N_{2})=$ sin $\theta>0$ . Since $B_{1}$ and $B_{3}$ are
unit circles, we see that $1S_{p}=I$ and $3S_{q}=I$ for any point $p\in B_{1}$ and $q\in B_{3}$ ,

respectively. Concerning $B_{2}$ we also see that $2S=0$ . lfurther, $A(X_{2})=\frac{1}{\sin\theta}I$ ,

and $A(X_{1})=\frac{1}{\sin\theta}I$ where $I$ is the identity map.

4.2. Surfaces of cones. Let $c$ be a positive and

$M_{1}=\{(x,y, 0)|x^{2}+y^{2}\leq 1\}$

$M_{2}=$ { $(x,$ $y,$ $z)|x=t$ cos $\theta,$ $y=t$ sin $\theta,$ $z=(1-t)c,$ $ 0\leq t\leq 1,0\leq\theta\leq\pi$ }
$M_{3}=$ { $(x,y,$ $z)|x=t$ cos $\theta,$ $y=t$ sin $\theta,$ $z=(1-t)c,$ $0\leq t\leq 1,$ $\pi\leq\theta\leq 2\pi$ }.

with induced Riemannian metrics from the natural Euclidean metric of $E^{3}$ . Then,
$B_{1}$ is a unit circle, each of $B_{2}$ and $B_{3}$ consists of a half circle and two segments.
$M_{2}$ is glued to $M_{3}$ at two segments of their boundary, and to $M_{1}$ at a half circle.
$M_{1}$ is glued to $M_{2}$ and $M_{3}$ at their half circles.

Let $p=(0,0, c)\in B_{2}\cap B_{3}$ . Both $B_{2}$ and $B_{3}$ are not differentiable at the vertex
$p$ , so $t$hat $p$ mus $t$ not be in $t$he interior point of any geodesic curve.
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If $p\in B_{2}\cap B_{3}$ and $B_{2}\cap B_{3}$ is differentiable at $p$ , then $2S_{p}=3S_{p}=0$ . Hence,
$A(X)=0$ for any vector $X\in T_{p}M_{2}$ (and $T_{p}M_{3}$ ).

If $p\in B_{1}\cap B_{2}$ and $B_{1}\cap B_{2}$ is differentiable at $p$ , then $1S_{p}=I$ , and $2S_{p}=$

$\frac{1}{\sqrt{1+c^{2}}}I$ . Hence, $A(X)=(\frac{1}{\sqrt{1+c^{2}}}+1)\frac{1}{\sin\theta}I$ where $X$ meets at the angle $\theta$

to $T_{p}B_{1}$ .
4.3. Tubular hypersurfaces. Let $K$ be an imbedded 8ubmanifold in the Eu-
clidean space $E^{\mathfrak{n}+1}$ with boundary $\partial K\neq\emptyset$ . Then, r-tubular hypersurfaces around
$K$ are considered to be glued hypersurfaces in $E^{n+1}$ in which $A(X)=0$ for any
$t$angent vector $at$ any point in glued boundary if $r>0$ are sufficiently small.

4.4. Abstract glued surfaces. Let $M_{1}$ and $M_{2}$ be plane disks with $r$adius $3r/2$

and $M_{3},$ $M_{4},$ $M_{5}$ with radius $r$ . We glue $M_{1}$ to $M_{3},$ $M_{4},$ $M_{5}$ at three half circles
of their boundary, and $M_{2}$ to them $at$ the remainder part of $t$heir boundary. The
glued surface is without boundary. By construction we know that $\alpha S_{p}+\beta S_{p}=kI$

for any point $p\in B^{\ell}$ where $k=2/3r+1/r$ .
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