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ABSTRACT. We consider the group $G$ generated by automorphisms
belonging to Galois points of $S_{8}$ , which is the quartic surface with
the maximal number of Galois points. We obtain several exact
sequences of groups, from which we see that the order of $G$ is $2^{5}3^{2}$ .
Moreover, we show that $S_{8}$ has a structure of $C_{4^{-}}fiber$ space, where
$C_{4}$ is the quartic curve with the maximal number of Galois points.

1. INTRODUCTION

Let $k$ be an algebraically closed field of characteristic zero. We fix
it as the ground field of our discussion. Let $V$ be a smooth curve or
surface of degree $d$ in the projective plane $P^{2}$ or in the projective three
space $P^{3}$ respectively. Let $K=k(V)$ be the rational function field of $V$ .
For a point $P\in V$ , let $\pi_{P}$ : $V\cdots\rightarrow W$ be a projection of $V$ from $P$ to
a line or hyperplane $W$ . The rational map $\pi_{P}$ induces the extension of
fields $K/k(W)$ . The structure of this extension does not depend on the
choice of $W$ , but on $P$ , so that we write $K_{P}$ instead of $k(W)$ . We have
been studying the structure of this extension using geometrical methods
(cf. [4], [5], [10]). The point $P$ is called a Galois point if the extension
is Galois. The number of Galois points is finitely many if $d\geq 4$ (cf.
[4], [10]). Hence we denote it by $\delta(V)$ . An automorphism $\sigma$ of $V$ is
called the one belonging to Galois point $P$ if $\sigma$ is the automorphism

induced by an element of $Ga1(K/K_{P})$ . It is not only an automorphism

of $V$ over $W$ but also a projective transformation of $V$ (cf. [10]).
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Let (X: $Y:Z$) [resp. (X: $Y:Z:W)$ ] be homogeneous coordinates
on $P^{2}$ [resp. $P^{3}$ ]. Let $C_{4}$ [resp. $S_{8}$ ] be the curve [resp. surface] given
by the equation

$YZ^{3}+X^{4}+Y^{4}=0$ [resp. $F(X,$ $Y,$ $Z,$ $W)=XY^{3}+ZW^{3}+X^{4}+Z^{4}=0$].

These varieties have the following special properties, which characterize
them (cf. [4], [10]).

Theorem $0$ . Let $C$ [resp. $S$] be a smooth quartic curve [resp. sur-
face]. Then we have that $\delta(C)\leq 4$ [resp. $\delta(S)\leq 8$]. Moreover $\delta(C)=4$

[resp. $\delta(S)=8$] if and only if $C$ [resp. $S$] is projectively equivalent to
$C_{4}$ [resp. $S_{8}$].

Therefore $C_{4}$ and $S_{8}$ have the maximal number of automorphisms
belonging to Galois points. It seems interesting to study the structure
of the group generated by these automorphisms. The purpose of this
article is to study the group and the structure of $S_{8}$ . Especially we
will obtain a new example for a maximal finite groups of symplectic
automorphisms of $K3$ surfaces (cf. [6]).

We use the following notation:
$\bullet$ $\zeta$ : a primitive sixth root of unity
$\bullet$ $\langle\cdots\rangle$ : the group generated by the elements of the set $\{\cdots\}$

$\bullet$ $E$ : the elliptic curve with an automorphism of order three
$\bullet$ Aut(V) : the automorphism group of $V$

$\bullet$ $\mathcal{L}(S_{8})$ : the set of automorphisms of $S_{8}$ induced by projective
transformations

$\bullet$ Let $A_{i}$ be a square matrix of size two $(i=1,2)$ and $M$ be of size
four such that

$M=\left(\begin{array}{ll}A_{l} & 0\\0 & A_{2}\end{array}\right)$ .

Then we denote $M$ by $A_{1}\oplus A_{2}$ . Moreover, we denote $A_{2}\oplus A_{1}$ by
$M^{\star}$ , i.e.,

$M^{\star}=\left(\begin{array}{ll}A_{2} & 0\\0 & A_{l}\end{array}\right)$ .
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2. STATEMENT OF RESULTS

Let $G(V)$ denote the group generated by the automorphisms belong-
ing to the Galois points on $V=C_{4}$ or $S_{8}$ . Since $G(V)$ has an injective
representation in $PGL(n, k)$ ($n=3$ or 4), we use the same notation of
an element of $G(V)$ as the projective transformation induced by it.

2.1. THE CASE OF $C_{4}$

From [9, Proposition 5 and Lemma 11], we see easily that the
coordinates of four Galois points of $C_{4}$ are $P_{1}$ $=$ $(0$ : $0$ : 1 $)$ ,
$P_{2}=$ $(0$ : $\zeta$ : 1 $)$ , $P_{3}=(0$ : $\zeta^{3}$ : 1 $)$ and $P_{4}=(0$ : $\zeta^{5}$ : 1 $)$ . We have
the following assertion.

Lemmp 1. If $\sigma_{i}$ ( $\neq$ id) is an automorphism belonging to the Galois
point $P_{1}$ $(i=1, \ldots , 4)$ , then $\sigma_{i}$ (or $\sigma_{i^{2}}$ ) has the following representation:

$\sigma_{3}=\sigma_{1}=\{$$000011\frac{0^{2}01-4\frac{2(-10\zeta 00}{2\zeta+3}}{3})\frac{-\zeta+20}{\simeq_{3}^{3}+1})$

,

$\sigma_{4}=\sigma_{2}=\left\{\begin{array}{ll}001 & \frac{\frac{2\zeta-10}{4\zeta-23}}{3} \frac{-(-10}{\zeta_{\frac{+13}{3}}}),\\001 & \frac{-2\frac{2\zeta-10}{2\zeta-3}}{3} \frac{2\zeta-10}{L\underline{+1},33}).\end{array}\right.$

We put

$\tau=\left(\begin{array}{lll}1 & 0 & 0\\ & 0-1 & 0\\ & 00 & -1\end{array}\right)$ , $\rho=(0\sqrt{-1}0001010)$ .

Of course $\tau=\rho^{2}$ (in $PGL(3,$ $k)$ ). Let $ G(C)=G(C_{4})=\langle\sigma_{1}, \ldots\sigma_{4}\rangle$

and let $l$ be the line $X=0$ . Then each element of $G(C)$ induces an
automorphism on $l$ , hence we put $G(l)=\{\sigma|_{l}|\sigma\in G(C)\}$ .

Theorem 1. The group $G(l)$ is isomorphic to the altemating group on
four letters and there exist exact sequences of groups

$1\rightarrow\langle\tau\rangle\rightarrow G(C)\frac{r_{1_{t}}}{\prime}G(l)\rightarrow 1$

and

$1\rightarrow\langle\rho\rangle\rightarrow Aut(C_{4})\rightarrow^{r_{2}}G(l)\rightarrow 1$ ,

where the map $r_{i}$ is defined as $r_{i}(\sigma)=\sigma|_{l}(i=1,2)$ .
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2.2. THE CASE OF $S_{8}$

From [10, Proposition 2.4 and Theorem 3], we see easily that
the coordinates of eight Galois points are $P_{1}=$ $(0$ : $0$ : $0$ : 1 $)$ ,
$P_{2}=$ $(0$ : $0$ : $\zeta$ : 1 $)$ , $P_{3}=(0$ : $0$ : $\zeta^{3}$ : 1 $)$ , $P_{4}=(0$ : $0$ : $\zeta^{5}$ : 1 $)$ ,
$P_{5}=$ $(0$ : 1 : $0$ : $0),$ $ P_{6}=(\zeta$ : 1 : $0$ : $0),$ $P_{7}=(\zeta^{3}$ : 1 : $0$ : $0)$ and
$P_{8}=(\zeta^{5}$ : 1 : $0$ : $0)$ .

We have the following assertion.

Lemma 2. If $\overline{\sigma_{i}}$ ( $\neq$ id) is an automorphism belonging to the Galois
point $P_{i}(i=1, \ldots 8)$ , then $\sigma_{i}\sim$ (or $\overline{\sigma_{i^{2}}}$ ) has the following representation:

$\sigma_{1}^{\sim}=\left(\begin{array}{llll}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & \zeta^{2}\end{array}\right)$ , $\sigma_{2}^{\sim}=(00010001$
$\frac{2\zeta}{\underline 4\mathcal{L}_{\frac{003^{-1}-2}{3}}}$ $\frac{-\zeta-100}{L\underline{+1}3,3}$ ),

$\overline{\sigma_{3}}=($ $0001$ $0001$
$\frac{-4\frac{2(-100}{2\zeta+3}}{3}$ $\frac{-(+200}{\simeq_{3}^{3}+1}$ ), $\overline{\sigma_{4}}=(00010001$

$\frac{-2\frac{2\zeta-100}{2\zeta-3}}{3}$
$\frac{2\zeta-100}{\zeta_{\frac{+13}{3}}})$ ,

and
$\overline{\sigma_{j+4}}=(\sigma_{j}\sim)^{\star}(j=1, \ldots 4)$ .

We put $\sim\tau=I\oplus(-I)$ , where $I$ is the unit matrix of size two and put
$(\tilde{\tau})^{o}=(\tilde{\tau},\tilde{\tau})$ in $PGL(4, k)\times PGL(4, k)$ .

Let $ G(S)=G(S_{8})=\langle\overline{\sigma_{1}}, \ldots , \sigma_{8}^{\sim}\rangle$ and let $l_{1}$ [resp. $l_{2}$ ] be the line
given by the equations $X=Y=0$ [resp. $Z=W=0$]. Then each
element of $G(S)$ induces an automorphism on $l_{i}\underline{(}i=1,2$). Hence we
put $G(l_{i})=\{\sigma|_{l_{i}}|\sigma\in G(S)\}$ . Moreover we put $ G_{1}=\langle\sigma_{1}^{\sim}, \ldots , \sigma_{4}^{\sim}\rangle$ and
$\overline{G_{2}}=\langle\overline{\sigma_{5}}, \ldots \overline{\sigma_{8}}\rangle$ . It is clear that $G(C)\cong\overline{G_{1}}\cong\overline{G_{2}}$ . Our main results

are stated as follows.

Theorem 2. There erist exact sequences of groups

$1\rightarrow\langle\tau\gamma\rightarrow G(S)\frac{s_{1_{\iota}}}{}G(l_{1})\times G(l_{2})\rightarrow 1$
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and

$1\rightarrow\langle(\tau\sim)^{o}\rangle\rightarrow\overline{G_{1}}\times\overline{G_{2}}\rightarrow^{s_{2}}G(S)\rightarrow 1$ ,

where $S1(\sigma)=(\sigma|l_{1}, \sigma|_{\iota_{2}})$ and $s_{2}((\alpha_{1}, \alpha_{2}))=\alpha_{1}\cdot\alpha_{2}$ . Especially the order
of $G(S)$ is $2^{5}3^{2}$ .

We put

$\Xi=\left(\begin{array}{llll}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & l & 0 & 0\end{array}\right)$ and $\prime r=(0001$ $0001$

$\frac{}{\sqrt{}}\frac{001}{2\sqrt{3},3\zeta}2$ $-\zeta-\frac{\tau_{1}^{1}003}{\sqrt{3}}$ ).
It is clear that $\Xi$ and $\prime r$ are elements of $\mathcal{L}(S_{8})$ and $\Xi^{2}=\prime r^{2}=id$ .

Theorem 3. The order of $\mathcal{L}(S_{8})$ is $2^{7}3^{2}$ , hence it is a solvable group.
Moreover, there exists an exact sequence of groups

$1\rightarrow G(S)\rightarrow \mathcal{L}(S_{8})\rightarrow H\rightarrow 1$ ,

where $H$ is the group generated by the cosets $\Xi G(S)$ and $TG(S)$ , that
is, $H$ is isomorphic to the Klein’s four group.

Here we remark that there exists automorphisms of $S_{8}$ not belonging
to $\mathcal{L}(S_{8})$ . Indeed the following fact holds true.

Remark 3. Since $S_{8}$ is a singular $K3$ surface, the order of $Aut(S_{8})$ is
infinite (cf. [8]).

2.3. GEOMETRY OF $S_{8}$

First we note that $C_{4}/\langle\sigma_{i}\rangle\cong P^{1}$ , $(i=1, \ldots , 4)$ and $C_{4}/\langle\tau\rangle\cong E$ .
There exists a close relation between $C_{4}$ and $S_{8}$ as we see below. The
surface $S_{8}$ has the structure of E-fiber space (cf.[10]), in addition to
this structure it has also a structure of $C_{4^{-}}fiber$ space. Let $H_{a,b}$ be the
hyperplane given by the equation $aX+bY=0$ , which contains the line
$l_{1}$ . Then the set $\{S_{8}\cap H_{a,b}\}$ forms a linear system $\Lambda$ on $S_{8}$ . The base
points of $\Lambda$ are just $\{P_{1}, \ldots , P_{4}\}$ . Let $f$ be the rational map associated
to $\Lambda$ . Then, by blowing up these points, we obtain the surface $\tilde{S_{8}}$ and
the morphism $f:\tilde{S}_{8}\sim\rightarrow P^{1}$ .

–93 –



Theorem 4. The fibration $f:\tilde{S}_{8}\sim\rightarrow P^{1}$ has the following properties:

(1) There exist four singular fibers, each of which consists of four
smooth rational curves meeting at one point with distinct tangents.

(2) Except the singular fibers, each fiber is isomorphic to $C_{4}$ .

Moreover $S_{8}$ has the following structure. The automorphism $\sim\tau$ has
eight fixed points that are just Galois points. Blowing up these points,
we obtain the surface $\hat{S_{8}}$ and the automorphism $\tau\wedge$ induced by $\tau\sim$. The
surface $ T=\hat{S_{8}}/\wedge\tau$ is a Kummer surface Km $(E\times E)$ (cf. [2]). Clearly
$T$ has an elliptic fibration $\overline{f}:T\rightarrow P^{1}$ with four singular fibers, which
are of type $I_{0}^{*}$ in the sense of Kodaira’s classification table in [3]. Except
the singular fibers, each fiber is isomorphic to $E$ .

Finally we mention one more special property of $S_{8}$ .

Remark 4. It is known that there exist at most 64 lines on smooth
quartic surfaces (see, [7]). Moreover, an example of quartic surface
with 64 lines is given in [1, p. 33], which coincides with our $S_{8}$ .

3. PROOFS

A generator of $Ga1(K/K_{P_{1}})$ is easily found, which coincides with $\sigma_{1}$

in Lemma 1 or $\sigma_{1}^{\sim}$ in Lemma 2, corresponding to the case of the curve
or the surface. However, it is little difficult to find generators for the
other Galois points, so that we use the following lemma. The proof of
it may be clear from the definition.

Lemma 5. A projective transformation $M$ belongs to some Galois
point $P_{1}$ if and only if $M$ satisfies the following three conditions:

(1) $M(P_{i})=P_{i}$ .
(2) $M(l)=l$ , for each line $l$ passing through $P_{i}$ .
(3) $M\in \mathcal{L}(V)$ , where $V=C_{4}$ or $S_{8}$ .

First, we prove Theorem 1. Since $\sigma\in G(C)$ maps a Galois point to
a Galois one, it induces a permutation of the four points. Hence we get
the injective representation $\phi:G(l)\mapsto 6_{4}$ , where $\mathfrak{S}_{4}$ is the symmetric
group on four letters. Indeed we have that $\phi(r_{1}(\sigma_{1}))=(243)$ and
$\phi(r_{1}(\sigma_{3}))=(142)$ . Since we have
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$\sigma_{1}^{-1}\sigma_{3}\sigma_{1}=\sigma_{1}^{2}\sigma_{3}\sigma_{1}=\sigma_{4}$ and $\sigma_{3}^{-1}\sigma_{1}\sigma_{3}=\sigma_{3}^{2}\sigma_{1}\sigma_{3}=\sigma_{2}$ ,

the group $G(C)$ is generated by $\sigma_{1}$ and $\sigma_{3}$ .
Moreover, we have the following relations:

$(\sigma_{1})^{3}=(\sigma_{3})^{3}=$ id and
$(\sigma_{1}\sigma_{3})^{3}=(\sigma_{1}\sigma_{3}^{2})^{2}=(\sigma_{1}^{2}\sigma_{3})^{2}=(\sigma_{1}^{2}\sigma_{3}^{2})^{3}=(\sigma_{3}\sigma_{1})^{3}=(\sigma_{3}\sigma_{1}^{2})^{2}=$

$(\sigma_{3}^{2}\sigma_{1})^{2}=(\sigma_{3}^{2}\sigma_{1}^{2})^{3}=\tau$ .

We notice that $\tau$ is commutable with each element of $G(C)$ , therefore
we have that

$G(C)/\langle\tau\rangle=\{id,$ $\sigma_{1},$ $\sigma_{3},$
$\sigma_{1}^{2},$ $\sigma_{3}^{2},$

$\sigma_{1}\sigma_{3},$
$\sigma_{1}\sigma_{3}^{2},$ $\sigma_{1}^{2}\sigma_{3},$ $\sigma_{1}^{2}\sigma_{3}^{2}$ ,

$\sigma_{3}\sigma_{1}$ , $\sigma_{3}\sigma_{1}^{2}$ , $\sigma_{3}^{2}\sigma_{1}$ , $\sigma_{3}^{2}\sigma_{1}^{2}$ , $\sigma_{1}\sigma_{3}\sigma_{1)}$
$\sigma_{3}\sigma_{1}\sigma_{3}\}$ .

Computing the products of matrices, we obtain that

$\sigma_{3}\sigma_{1}^{2}=\tau\sigma_{1}\sigma_{3}^{2}$ , $\sigma_{3}^{2}\sigma_{1}=\tau\sigma_{1}^{2}\sigma_{3}$ , $\sigma_{1}\sigma_{3}\sigma_{1}=\sigma_{3}\sigma_{1}\sigma_{3}$ .

Therefore, we conclude that

$G(C)/\langle\tau\rangle=\{id,$ $\sigma_{1},$ $\sigma_{3},$
$\sigma_{1}^{2},$ $\sigma_{3}^{2},$

$\sigma_{1}\sigma_{3},$
$\sigma_{1}\sigma_{3}^{2},$ $\sigma_{1}^{2}\sigma_{3},$ $\sigma_{1}^{2}\sigma_{3}^{2}$ ,

$\sigma_{3}\sigma_{1},$
$\sigma_{3}^{2}\sigma_{1}^{2},$

$\sigma_{1}\sigma_{3}\sigma_{1}$ }.

Thus, we obtain the first exact sequence. Since each automorphism $\sigma$

of the curve $C_{4}$ is the restriction of some projective transformation, $\sigma$

maps a Galois point to some Galois one. If $\sigma$ is in the kernel of the
restriction map $r_{2}$ , then it fixes each Galois point. Since $\sigma(C_{4})=C_{4}$ ,
$\sigma$ has the representation as $\rho^{i}(i=0, \ldots 3)$ . Thus, we complete the
proof of Theorem 1.

Before proceeding with the proof of Theorem 2, we prove Lemma 2.
To find a generator of $Ga1(K/K_{P_{1}})(i=2,3,4)$ , we observe the following
projective transformation:

$T_{i}=$ ( $0001$ $0001$

$\frac{2}{\sqrt{3}}\frac{001}{\sqrt{3},\zeta^{4}}i-6$ $-\frac{1}{\sqrt{3}}-\frac{0_{1}0\zeta^{2}}{\sqrt{3}}i-3$ ), $(i=2,3,4)$ .
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The transformation $T_{i}$ has the following properties: $T_{i}^{-1}=T_{i}$ ,
$T_{i}(P_{1})=P$ and $T_{i}\in \mathcal{L}(S_{8})$ . Hence we have that $\overline{\sigma_{i}}=T_{i}^{-1}\overline{\sigma_{1}}T_{i}$ .
By the similar way we obtain $\overline{\sigma_{i}}(i=5,6,7,8)$ .

Now we prove Theorem 2. Clearly $s_{1}$ is surjective, so it is sufficient to
prove that ker $ s_{1}=\langle\tau\gamma$ . If $s_{1}(\sigma)=id$ , then $\sigma|_{l_{1}}$ and $\sigma|_{l_{2}}$ are identities.
Then, by Theorem 1, we conclude that $\sigma\in\langle\tau\gamma$ . By definition $s_{2}$ is
surjective, so we prove that ker $ s_{2}=\langle(\tau\sim)^{o}\rangle$ . Since each element of $G_{1}$

and $\overline{G_{2}}$ is commutative in $G(C)$ , any element of $G(C)$ can be expressed
as a product $\alpha_{1}\cdot\alpha_{2}$ , where $\alpha_{i}\in\overline{G_{2}}(i=1,2)$ . By the same reasoning
above we conclude that $(\alpha_{1}, \alpha_{2})\in\langle(\tau\sim)^{o}\rangle$ .

Next we prove Theorem 3. First, we prove the former part. Let $L_{1}$ ,
$L_{2}$ and $L$ be the sets defined by

$\{\alpha\left(\begin{array}{ll}1 & \beta\gamma\\ 2\beta^{2} & \gamma\end{array}\right)|\alpha^{4}=1/9,$ $\beta^{3}=-1$ and $\gamma^{3}=-1\}$ ,

$\{\alpha^{\prime}\left(\begin{array}{ll}1 & 0\\0 & \beta’\end{array}\right)|\alpha^{\prime 4}=1$ and $\beta^{\prime 3}=1\}$ and

$\{A_{1}\oplus A_{2}, \Xi(A_{1}\oplus A_{2})|A_{1}, A_{2}\in L_{1}\cup L_{2}\}$ , respectively.

Then we see $L\subset \mathcal{L}(S_{8})$ and $\# L=2^{7}3^{2}$ . Especially, we have
$\#\mathcal{L}(S_{8})\geq 2^{7}3^{2}$ . On the other hand, we can prove $\#\mathcal{L}(S_{8})\leq 2^{7}3^{2}$

as follows. If $\sigma\in \mathcal{L}(S_{8})$ , then, for a Galois point $P_{1}$ , we have that
$\sigma(P_{i})=P_{j}$ for some $j$ . Hence $\sigma$ has one of the following properties:
(a) $\sigma(l_{1})=l_{1}$ and $\sigma(l_{2})=l_{2}$ .
(b) $\sigma(l_{1})=l_{2}$ and $\sigma(l_{2})=l_{1}$ .

Now let $L_{a}$ [resp. $L_{b}$] denote the subset of $\mathcal{L}(S_{8})$ consisting of elements
with the property (a) [resp. $(b)$ ]. Let $H_{1}$ [resp. $H_{2}$ ] be the hyperplane
given by the equation $Y=0$ [resp. $W=0$]. Then, noting that
$D_{i}$ $:=S_{8}\cap H_{1}(i=1,2)$ is isomorphic to the curve $C_{4}$ , we infer that
if $\sigma\in L_{a}$ , then $\sigma|_{l}$. $\in G(l_{i})(i=1,2)$ , since $\sigma|_{D_{i}}\in Aut(D_{i})$ and from
Theorem 1. Thus, noting $\Xi L_{b}=L_{a}$ , we can define the homomorphism
$r:\mathcal{L}(S_{8})\rightarrow \mathbb{Z}/2\mathbb{Z}\times G(l_{1})\times G(l_{2})$ as follows:

$r(\sigma)=\left\{\begin{array}{ll}(0+2\mathbb{Z}, \sigma|_{l_{1}}, \sigma|_{l_{2}}), & when \sigma\in L_{a}\\(1+2Z, (\Xi\sigma)|_{l_{1}}, (\Xi\sigma)|_{l_{2}}), & when \sigma\in L_{b}\end{array}\right.$
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By Theorem 1 we have the following exact sequence:

$1\rightarrow\langle\rho^{\prime}\rangle\rightarrow \mathcal{L}(S_{8})\rightarrow^{r}\mathbb{Z}/2\mathbb{Z}\times G(l_{1})\times G(l_{2})$ ,

where $\rho^{\prime}=(\sqrt{-1}I)\oplus I$ (I is the unit matrix of size two). Therefore
noting that $G(l_{i})(i=1,2)$ is isomorphic to the alternating group on
four letters, we conclude $\#\mathcal{L}(S_{8})\leq 2^{7}3^{2}$ , and we obtain the former
assertion. The proof of the latter one is done as follows. First we
recall that $\Xi$ and $\wedge f$ have order two, and note that $\Xi G(S)\Xi=G(S)$

and $TG(S)T=G(S)$ . Looking at the components of matrices, we see
that $\Xi\not\in G(S)$ . We now prove that $\wedge f\not\in\langle\overline{\sigma_{1}}, \cdots\sigma_{8}^{\sim}, \Xi\rangle$ . Suppose the
contrary. Then we have a relation that $\lambda^{\prime}r=\prod\beta_{i}$ in $GL(4, k)$ , where
$\beta_{i}$ is $\sigma_{1}^{\sim},$ $\cdots$ , $\sigma_{8}^{\sim}$ or $\Xi$ and $\lambda\in k\backslash O$ . Comparing the $(i,j)$ component of
both sides, where $1\leq i,j\leq 2$ , we infer that $\lambda=\pm 1$ , since $\lambda I$ (I is the
unit matrix of size two) is expressed as the product of the following
matrices

$\left(\begin{array}{ll}1 & 0\\0 & \zeta^{2}\end{array}\right)$ and ( $\frac{-4\frac{2\zeta-1}{2\zeta+3}}{3}$ $\frac{-\zeta+2}{\simeq_{3}^{3}+1}$).
Then, taking the determinant of both sides of the relation $\lambda^{\prime}r=\prod\beta_{i}$ ,
we get the equality $-1=(\zeta^{2})^{m}$ for some integer $m$ . This is a contra-
diction, hence we get the exact sequence.

The proof of Theorem 4 is clear. We mention the proof of Remark 4.
Choosing three lines from $S_{8}\cap\{Z=0\}$ and forming a divisor $D$ , for
example let $D$ be given by the equations $Z=0$ and $X^{3}+Y^{3}=0$ . There
are four possibilities of the choices. Let 9 be the morphism $S\rightarrow P^{1}$

associated to the complete linear system $|D|$ . The singular fibers of $g$

are $D$ and the curves given by the equations

$\left\{\begin{array}{ll}X & =0\\Z^{3}+W^{3} & =0\end{array}\right.$

and

$\left\{\begin{array}{ll}X-\lambda Z & = 0\\\lambda Y^{3}+W^{3} & = 0 where \lambda^{4}+1=0.\end{array}\right.$
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Similarly, we consider the morphism defined by the other choice of
the four lines $S_{8}\cap\{Z=0\}$ and observe the singular fibers. Counting
the number of the components of singular fibers, we $ca\acute{n}$ find 64 lines
on $S_{8}$ . Since the maximum number of lines lying on a quartic surface
is 64 (cf. [1] or [7]), the proof of the remark is complete.
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