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Abstract: In this paper we establish sufficient conditions for the controllability
of quasilinear delay integrodifferential systems in Banach spaces. The results are
obtained using the theory of semigroup of operators and the Schauder-Tychonov
theorem. The results generalize the results of [6].
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l.Introduction

Controllability of nonlinear systems represented by ordinary differential equa-
tions in infinite dimensional spaces has been studied by several authors. bggiani
[20] studied the controllability problem in Banach space$s$ with bounded operators.
The importance of the question of controllability with control constraints in abstract
space $s$ is established in [1,11,12,19]. Using an implicit function theorem, Chukwu
and Lenhart [8] showed that the nonlinear system

$x^{\prime}(t)=f(t,x(t),$ $u(t))$ , $x(t_{0})=x_{0}$ (1)

is locally approximate null controllable provided that the linear operator of the sys-
tem is approximately invertible and the linear approximation to (1) is locally null
controllable. Naito [13-15] established the approximate controllability of semilinear
control systems under simple and fundamental assumptions on the systems compo-
nents. Naito and Park [16] discussed the same problem for delay Volterra control
systems by using the Leray-Schauder degree theorem. Yamamoto and Park [21] es-
tablished necessary and sufficient conditions for the approximate controllability of
parabolic equations in a Banach space with unifomly bounded nonlinear term with
the help of estimates of solutions to the nonlinear parabolic systems. Kwun et al
[9] investigated the controllability and approximate controllability of delay Volterra
systems by using a fixed point $th\infty rem$ . Balachandran et al [3-5] studied the prob-
lem for semilinear evolution systems and nonlinear integrodifferential systems in
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Banach spaces. ${\rm Re} cently$ Balachandran and Dauer [2] discussed the controllability
of Sobolev-type integrodifferential systems in Banach spaces. In this paper we shall
study the controllability of quasilinear delay integrodifferential systems by using
the Schauder-Tychonov theorem. Motivation for this type of systems are found in
$[17,18]$ .

2.Preliminaries

Let $L(X,Y)$ be the Banach space of all bounded linear operators from $X$ into
Y. The symbol $||.\Vert$ denotes the norm of all the spaces and bounded linear operators
considered in this paper. It also denotes the sup-nom of any bounded continuous
function. Let $J\subset R=(-\infty, \infty)$ be a bounded interval and let the operator
$A:J\times X\rightarrow Y$ be defined; then $A(., x)$ is continuous tX-uniformly in $x$ if for every
bounded subset $M$ of $X$ we have

$\lim_{\ell\epsilon J;\ell\rightarrow\ell_{0}}\sup_{x\in M}\Vert A(t, x)-A(t_{0},x)\Vert=0$ for every $t_{0}\in J$. (2)

We denote by $C(J,X)$ the space of all continuous functions $bomJ$ into $X$ with the
supnorm. Let $C=C([-r, 0], X)$ .

Consider the quasilinear delay integrodifferential equation

$x^{\prime}(t)+A(t,x(t))x(t)=B(t,x(t))u(t)$

$+f(t, x(t),x(t-r),\int_{0}^{t}\eta(t, s,x(s))ds),$ $t,$ $\epsilon\in J=[0,T]$

$x(t)=\phi(t),$ $t\in[-r,0]$ (3)

where the state $x(t)$ takes the values in the Banach space $X$ and the control fUnction
$u$ is given in $L^{2}(J, U)$ , a Banach space of admissible control functions with $U$ as
a Banach space. The operators $A$ and $B$ are such that $A(t, x)\in L(X,X)$ and
$B(t, x)\in L(U,X)$ for every $(t, x)\in JxX$ and that $A$ and $B$ are compact and
continuous in $x$ . Further, the nonlinear operators $f:J\times X^{3}\rightarrow X$ and $\eta:J\times J\times$

$X\rightarrow X$ are compact and $co$ntinuous in $(x, y, w)$ . For fixed $z\in C([-r,T],X)$ we let
$X_{z}(t)$ , $t\in J=J$, $X_{z}(0)=I$ , denote the fundamental operator of the equation
[10]

$x^{\prime}(t)+A(t, z(t)))x(t)=0$ , $x(O)=\phi(O)$ .
Then $X_{z}\in C(J, L(X, X))$ and $X_{z}$ is the unique continuously differentiable solution
which satisfies

$\dot{X}_{z}+A(t,z(t))X_{z}=0$ , $t\in J,$ $X_{z}(0)=I$ (4)

Moreover, $X_{z}^{-1}\in C(J, L(X,X))$ and $X_{z}^{-1}$ is the unique continuously differentiable
solution of

$\dot{X}_{z}^{-1}-X_{z}^{-1}A(t, z(t))=0$ , $t\in J$, $X_{z}^{-1}(O)=I$ . (5)
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Definition: The system (3) is said to be controllable on the interval $J$ if for every
continuous initial function $\phi$ defined on $[-r, 0]$ and every $v\in X$ there exists a con-
trol $u\in L^{2}(J, U)$ such that the solution $x(t)$ of (3) satisfies $x(T)=v$ .

Now for each fixed $z\in C(J, X)$ , consider the system

$x^{\prime}(t)+A(t, z(t))x(t)=B(t, z(t))u(t)$

$+f(t, z(t),$ $z(t-r),$ $\int_{0}^{\ell}\eta(t, s, z(s))ds),$ $s,t\in J$

$x(t)=\phi(t)$ , $t\in[-r, 0]$ ,

where the operators $A(t, x)$ and $B(t, x)$ are continuous on $JxX$ and $f(t, x, y, w)$ is
(ontinuous on $J\times X^{3}$ .

Thcrefore for each controller $u(t)\in L^{2}(J, U)$ this equation has a unique solution
$x_{z}(t)$ such that

$x_{z}(t)$ $=$ $X_{z}(t)\phi(0)+\int_{0}^{\ell}X_{z}(t)X_{z}^{-1}(s)B(s, z(s))u(s)ds$

$+$ $\int_{0}^{t}X_{z}(t)X_{z}^{-1}(s)f(s, z(s),$ $z(s-r),$ $\int_{0}^{*}\eta(s, \tau, z(\tau))d\tau)ds,$ $t\in J$ (6)

$x_{z}(t)$ $=$ $\phi(t)$ , $t\in[-r, 0]$ .

We will assume the following hypotheses.

(i) There is a positive constant $K$ such that the fundamental operator solution $X_{z}$

satisfies $\Vert X_{z}(t)\Vert\leq K$ and $\Vert X_{z}^{-1}(t)\Vert\leq K$.

(ii) The operators $A(t, x)$ and $B(t, x)$ are compact, continuous tX-uniformly in $x$

and satisfy equation (2) with $||A(t, z(t))||\leq K_{1},$ $\Vert B(t, z(t))\Vert\leq K_{2}$ and the
operator $f(t, x, y, w)$ is compact, continuous tX-uniformly in $(x, y, z)$ and sat-
isfy equation(2) with 11 $f(t, z(t),$ $z(t-r),$ $\int_{0^{\ell}}\eta(t, s, z(s)ds))$ Il $\leq K_{3}$ where $K_{1},$ $K_{2}$

and $K_{3}$ are positive constants.

(iii) The linear operator $W$ from $L^{2}(J, U)$ onto $X$ defined by

$Wu=\int_{0}^{T}X_{z}(T)X_{z}^{-1}(s)B(s, z(s))u(s)ds$

has an invertible operator $W^{-1}$ which takes values in $L^{2}(J, U)\backslash kerW$ .
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3. Main Result

Theorem: If hypotheses $(i)-(iii)$ are satisfied then the system (3) is controllable on
$J$ .

Proof: Using hypothesis (iii), define the control
$u(t)=W^{-1}[v-X_{z}(T)\phi(0)$

$-\int_{0}^{T}X_{z}(T)X_{z}^{-1}(s)f(s, z(s),z(s-r),$ $\int_{0}\eta(s,\tau,z(\tau))d\tau)ds$] $(t)$ .
Using this control we will show that the operator defined by

$\Phi x_{\sim},(t)$ $=$ $\phi(t)$ , for $t\in[-r, 0]$ .
$\Phi x_{z}(t)$ $=X_{z}(t)\phi(0)$

$+\int_{0}^{\ell}X_{z}(t)X_{z}^{-1}(s)f(s,z(s),$ $z(s-r),\int_{0}\eta(s,\tau,z(\tau))d\tau)ds$

$+\int_{0}^{\ell}X_{z}(t)X_{z}^{-1}(s)B(s,z(s))W^{-1}[v-X_{z}(T)\phi(0)$

$-\int_{0}^{T}X_{z}(T)X_{z}^{-1}(\theta)f(\theta, z(\theta),$ $ z(\theta-r),\int_{0}^{\theta}\eta(\theta,\tau, z(\tau))d\tau)d\theta$] $(s)ds$ .

has a fixed point. This fixed point is then a solution of the equation (6).
Let $M=\{z\in C([-r,T], X)$ : $z(t)=\phi(t),$ $t\in[-r, 0]$ , $||z\Vert\leq\alpha$ and

$||z(t)-z(t)||\leq N|t-f|,$ $t,f\in J$}
where

$\alpha=K\Vert\phi\Vert+K^{2}K_{3}T+LT$, $N=KK_{1}\Vert\phi\Vert+K^{2}K_{1}K_{3}T+K^{2}K_{3}+(1+KlT)L$ ,
$L=K^{2}K_{2}\Vert W^{-1}||\{\Vert v\Vert+K||\phi||+K^{2}K_{3}T\}$ .

Then $M$ is non-empty, because the function $z:[-r,T]\rightarrow X$ with $ z(t)=\phi(t),t\in$

$[-r, 0]$ , and $z(t)=\phi(0),t\in J$, belongs to $M$ . Let $\Phi$ : $M\rightarrow C([-r,T],X)$ be the
operator that maps $z\in M$ to $x_{z}$ . In order to apply the Schauder-Tychonov theorem
on $M$ , we first show that $\Phi M\subset M$. In fact, given $z\in M$ , we have

$\Vert x_{z}(t)||\leq\phi(t),$ $t\in[-r, 0]$

and for $t\in J$

11 $x_{z}(t)||$
$\leq\Vert X_{z}(t)$ II II $\phi\Vert+\int_{0}\Vert X_{z}(t)\Vert||X_{z}^{-1}(s)\Vert$ Il $f(s,z(s),z(s-r),\int_{0}\eta(s,\tau,z(\tau))d\tau)||ds$

$+\int_{0}^{\ell}\Vert X_{z}(t)\Vert\Vert X_{z}^{-1}(s)||\Vert B(s,z(s))\Vert||W^{-1}\Vert$

$x[\Vert v||+\Vert X_{z}(T)\Vert\Vert\phi\Vert+||X_{z}(T)\Vert\int_{0}^{T}\Vert X_{z}^{-1}(\theta)\Vert$

$\Vert f(\theta,z(\theta),z(\theta-r),$ $\int_{0}^{\theta}\eta(\theta,\tau,z(\tau))d\tau||d\theta$] $(s)ds$

$\leq K||\phi||+K^{2}K_{3}T+K^{2}K_{2}||W^{-1}||[||v||+K||\phi||+K^{2}K_{3}T]T$.
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It $f()1lows$ that $\Vert x_{z}(t)||\leq\alpha$ . Since $X_{z}(t)$ satisfies equation (4), we have

$\Vert X_{z}(t)-X_{z}(t^{\prime})\Vert$ $\leq$
$\int_{\ell}^{t^{\prime}}\Vert A(s, z(s))\Vert\Vert X_{z}(s)\Vert ds$

$\leq$ $KK_{1}|t-t^{\prime}|$ .

Using this and given $t,t^{\prime}\in J$ we have

11 $ x_{z}(t)-x_{z}(t^{\prime})\Vert$

$\leq\Vert X_{z}(t)-X_{z}(t^{\prime})\Vert\Vert\phi\Vert$

$+\Vert X_{z}(t)-X_{z}(t^{\prime})\Vert\int_{0}^{\ell}||X_{z}^{-1}(s)\Vert$

$||f(s,z(s),z(s-r),\int_{0}\eta(s,\tau,z(\tau))d\tau)||ds$

$+\Vert X_{z}(t^{\prime})\Vert\int_{\ell}^{t}\Vert X_{z}^{-1}(s)\Vert$

11 $f(s,z(s),z(s-r),\int_{0}^{\epsilon}\eta(s,\tau,z(\tau))d\tau)\Vert ds$

$+\Vert X_{z}(t)-X_{z}(t^{\prime})\Vert\int_{0}^{\ell}\Vert X_{z}^{-1}(s)\Vert||B(s,z(s))\Vert\Vert W^{-1}||$

[ $\Vert v\Vert+\Vert X_{z}(T)$ II $\Vert\phi\Vert+\int_{0}^{T}\Vert X_{z}(T)$ Il $\Vert X_{z}^{-1}(\theta)\Vert$

$\Vert f(\theta,z(\theta),z(\theta-r),\int_{0}^{\theta}\eta(\theta,\tau,z(\tau))d\tau)\Vert d\theta](s)ds$

$+||X_{z}(t^{\prime})||\int_{\ell}^{\ell}\Vert X_{z}^{-1}(s)\Vert||B(s,z(s))\Vert\Vert W^{-1}\Vert$

$+[\Vert v\Vert+\Vert X_{z}(T)$ il $\Vert\phi\Vert+\int_{0}^{T}\Vert X_{z}(t)\Vert\Vert X_{z}^{-1}(\theta)\Vert$

$\Vert f(\theta,z(\theta),z(\theta-r),\int_{0}^{\theta}\eta(\theta,\tau,z(\tau))d\tau)$ Il $ d\theta$] $(s)ds$

$\leq KK_{1}|t-t^{\prime}|\Vert\phi\Vert+KK_{1}|t-t^{\prime}|KK_{1}T+K^{2}K_{3}|t-t^{\prime}|$

$+KK_{1}|t-t^{\prime}|KK_{2}||W^{-1}||[||v\Vert+K||\phi\Vert+K^{2}K_{3}T]T$

$+K^{2}K_{2}\Vert W^{-1}\Vert[||v||+K\Vert\phi\Vert K^{2}K_{3}T]|t-t^{\prime}|$

$\leq N|t-t^{\prime}|$

Hence $\Vert x_{z}(t)-x_{z}(t^{\prime})\Vert\leq N|t-t^{\prime}|$ . It follows that $\Phi M\subset M$ . To show that $\Phi$ is
continuous, let $z_{n},$ $z\in M$ be given with $\Vert z_{n}-z\Vert\rightarrow 0$ as $ n\rightarrow\infty$ . Then, using
assumption (ii) with

$\Vert X_{z_{\mathfrak{n}}}(t)-X_{z}(t)\Vert$

$\leq$ $\int_{0}^{\ell}||A(s, z_{n}(s))X_{z_{n}}(s)-A(s, z(s)))X_{z}(s)\Vert ds$

$\leq$ $\int_{0}^{\ell}\Vert A(s, z_{\iota}(s))-A(s, z(s))\Vert\Vert X_{z_{\mathfrak{n}}}(s)\Vert ds$

$+\int_{0}^{\ell}\Vert A(s,z(s))\Vert\Vert X_{z_{n}}(s)-X_{z}(s)\Vert ds$
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and Gronwall’s inequality, we obtain

$\Vert X_{z_{\mathfrak{n}}}(t)-X_{z}(t)\Vert\leq Ke^{kT}\int_{0}^{T}\Vert A(s, z_{n}(s))-A(s, z(s))\Vert ds$

$f()\iota$. every $t\in J$ . This shows that $\Vert X_{z_{\mathfrak{n}}}-X_{z}\Vert\rightarrow 0$ as $ n\rightarrow\infty$ . Similarly, using (5), we
can prove that 11 $X_{z_{n}}^{-l}-X_{z}^{-1}\Vert\rightarrow 0$ as $ n\rightarrow\infty$ . Erom the continuity of $B$ and $f,$

$\eta$ we
see that $B(t, z_{\iota}(t))$ and $f(t, z_{\iota}(t),$ $z,$ $(t-r),$ $\int_{0}^{t}\eta(t, s, z_{\iota}(s))ds)$ converge ulliformly to
$B(t, x(t))$ and $f(t, z(t),$ $z(t-r),$ $\int_{0^{\ell}}\eta(t, s, z(s))ds)$ respectively. Using these facts, it
is easily seen that $||x_{z_{\mathfrak{n}}}-x_{l}\Vert\rightarrow 0$ as $ n\rightarrow\infty$ . Consequently, $\Phi$ is continuous on $M$ .
Before we show that $M$ is relatively compact set, we first prove that the operators

$A_{1}$ : $M\rightarrow C(J, L(X, X))$ defined by $(A_{1}z)(t)=A(t, z(t))$

$B_{l}$ : $M\rightarrow C(J, L(U, X))$ defined by $(B_{1}z)(t)=B(t, z(t))$

$f_{1}$ : $M\rightarrow C(J, X)$ defined by

$(f_{1}z)(t)=f(t, z(t),$ $z(t-r),$ $\int_{0}^{\ell}\eta(t, s, z(s))ds)$

are compact. For this let $\{z_{\iota}\}$ be a sequence in $M$ . We first observe that

$\Vert A(t, z_{\mathfrak{n}}(t))||\leq K_{1}$ , $t\in J,$ $n=1,2,$ $\ldots$

Given $t,$ $t_{0}\in J$ , we find

$\Vert A(t, z_{n}(t))-A(t_{0}, z_{n}(t_{0}))\Vert$

$\leq\Vert A(t, z_{n}(t))-A(t_{0}, z_{n}(t))\Vert+\Vert A(t_{0}, z_{n}(t))-A(t_{0},z_{\iota}(t_{0}))\Vert$

$\leq\sup_{||x||\underline{<}\alpha}$

’

$||A(t, x)-A(t_{0},x)\Vert+\Vert A(t_{0}, z_{l}(t))-A(t_{0}, z_{\iota}(t_{0}))||$ .

Hypothesis (ii) and the uniform Lipschitz continuity of the functions $z_{n}$ on $[-r,T]$

imply the equicontinuity of the functions $A_{n}(t)=A(t, z_{n}(t)),$ $t\in J,$ $n=1,2,$ $\ldots.$ .
Now let $t_{0}\in J$ be given. Then, since $\{z_{n}(t_{0})\}$ is a bounded sequence, the compact-
ness of $A(t_{0}, x)$ in $x$ implies the relative compactness of the set $\{A(t_{0}, z_{\mathfrak{n}}(t_{0}))\}$ . Con-
sequently, the operator $A_{1}$ is compact. A similar argument proves the compactness
of $B_{1}$ and $f_{1}$ . Thus $A\in C(J,L(X, X)),$ $B\in C(J, L(U,X))$ and $f\in C(J,X)$ . There-
fore, given a sequence $\{z_{n}\}\subset M$, there exists a subsequence $\{z_{n_{k}}\}$ of $\{z_{\iota}\}$ such that
$A(t, z_{\iota_{k}}(t))\rightarrow A(t),$ $B(t, z_{4}(t))\rightarrow B(t),$ $f(t, z_{n_{l}}(t),$ $a_{4}(t-r),$ $\int_{0}^{\ell}\eta(t, s, z_{n\iota}(s))ds)\rightarrow$

$f(t)$ uniformly on $J$ as $ k\rightarrow\infty$ . Let $X(t)$ denote the fundamental operator for the
problem

$x^{\prime}(t)+A(t)x(t)=0,$ $x(O)=\phi(O)$

Then,

$x(t)=X(t)\phi(0)+\int_{0}^{\ell}X(t)X^{-1}(s)[B(s)u(s)+f(s)]ds,$ $t\in J$.
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is the unique solution of the problem

$x^{\prime}(t)+A(t)x(t)=B(t)u(t)+f(t),$ $t\in J,$ $x(O)=\phi(O)$ .

It is easy to see now that $X_{z_{n_{k}}}(t)\rightarrow X(t)$ and $X_{z_{1}}^{-1}(t)\rightarrow X^{-1}(t)$ uniformly on $J$ . It
follows that $x_{z_{\mathfrak{n}_{k}}}(t)\rightarrow x(t)$ uniformly on $J$ . Since $x_{z_{\mathfrak{n}_{k}}}(t)=\phi(t)$ for $t\in[-r, 0]$ , we
have proved the compactness of $\Phi M$ . Hence by Schauder-Tychonov theorem there
exists a fixed point $x(t)$ in $M$ such that $\Phi x(t)=x(t)=x_{z}(t)$ and which satisfies
the condition $x(T)=x_{z}(T)=v$ .

4. Application

Consider the Sobolev-type system of the form

$\frac{d}{dt}(E(t)z(t))+A(t, z(t))z(t)$

$=B(t, z(t))u(t)+f(t, z(t),$ $z(t-r),$ $\int_{0}^{\ell}\eta(t, s, z(s))ds)$ ,

$E(t)z(t)=\phi(t)$ on $[-r, 0]$ . (7)

For motivation of the above system one can refer [7]. Assume the following addi-
tional conditions:

(i) For each $t\in[-r, T]$ , $E(t)$ is linear, closed and densely defined with do-
main $D(E)$ (independent of t) in $D(A)$ and range Y. Moreover, for each
$t\in[-r,T],$ $E^{-1}(t)$ : $Y\rightarrow X$ exists and is compact while $E^{-1}(t)z$ is continu-
ous in $t$ for each $z\in Y$.

(ii) For each $(t, z)\in J\times X,$ $A(t, E^{-1}(t)z)E^{-1}(t)\in L(X,X)$ is continuous in $(t, z)$

with its continuity $tX$-unifom in $z$ .

(iii) For each $(t, z)\in JxX$ , $B(t, E^{-1}(t)z)\in X$, is continuous in $(t, z)$ with its
continuity $tX$-uniform in $z$ .

(iv) For each $(t, s, z)\in J\times J\times X,$ $\eta(t, s,E^{-1}(s)z)\in X$ , is continuous in $(t, s, z)$

with its continuity $t^{2}X$-uniform in $z$ .

(v) For each $(t, z, y, w)\in J\times X^{3}$ ,

$f(t, E^{-1}(t)z,E^{-1}(t-r)y,$ $\int_{0}^{t}\eta(t, s, E^{-1}(s)w)ds)\in X$,

is continuous in $(t, z,y,w)$ with its continuity $tX^{3_{-}}$ uniform in $(z, y, w)$ ;
$\phi$ : $[-r, O]\rightarrow X$ is a Lipschitz continuous function.
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For this consider the problem

$\frac{d}{dt}y(t)+A(t,E^{-1}(t)y(t))E^{-1}(t)y(t)$

$=$ $B(t, E^{-1}(t)y(t))u(t)$ (8)

$+f(t,E^{-1}(t)y(t),$ $E^{-1}(t-r)y(t-r),\int_{0}^{\ell}\eta(t, s,E^{-1}(s)y(s))ds)$

$y(t)$ $=$ $\phi(t)$ on $[-r, 0]$ .
If $y(t)$ is a solution of (8), then $z(t)=E^{-1}(t)y(t)$ satisfies equation (7). Therefore
the controllability problem of (7) is equivalent to that of (8). Hence by the appli-
cation of the above theorem the system (8) is controllable.
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