SUBMANIFOLDS OF CODIMENSION 3 ADMITTING ALMOST CONTACT METRIC STRUCTURE IN A COMPLEX PROJECTIVE SPACE

U-Hang Ki*, Hyunjung Song and Ryoichi Takagi

Abstract

In this paper we prove the following : Let M be a semi-invariant submanifold with almost contact metric structure (ϕ, ξ, g) of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$. Suppose that the third fundamental form n satisfies $d n=2 \theta \omega$ for a certain scalar $\theta\left(<\frac{c}{2}\right)$, where $\omega(X, Y)=g(X, \phi Y)$ for any vectors X and Y on M. Then M has constant eigenvalues correponding the shape operator A in the direction of the distinguished normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous real hypersurface of $P_{n} \mathbb{C}$.

0. Introduction

A submanifold M is called a $C R$ submanifold of a Kaehlerian manifold \tilde{M} with complex structure J if there exists a differentiable distribution T : $p \rightarrow T_{p} \subset M_{p}$ on M such that T is J-invariant and the complementary orthogonal distribution T^{\perp} is totally real, where M_{p} denotes the tangent space to M at each point p in $M([1],[20])$. In particular, M is said to be a semi-invariant submanifold provided that $\operatorname{dim} T^{\perp}=1$. The unit normal vector field in $J T^{\perp}$ is called the distinguished normal to the semi-invariant submanifold ([18]). A semi-invariant submanifold admits an induced almost contact metric structure, and many results are known by using this structure ([4], [10], [15], etc.).

[^0]A typical example of a semi-invariant submanifold is real hypersurface. When the ambient manifold \tilde{M} is a complex projective space $P_{n} \mathbb{C}$, real hypersurfaces were investigated by many geometers in connection with the shape operator and the induced almost contact metric structure ($[3],[7]$, [9], [16], [17], etc.). One of them, the third named author asserts that the following :

Theorem $\mathbf{T}([17])$. Let M be a homogeneous real hyperspace of $P_{n} \mathbb{C}$. Then M is locally congruent to one of the followings:
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere (that is, a tube over a hyperplane $P_{n-1} \mathbb{C}$),
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic $P_{k} \mathbb{C}(1 \leq k \leq n-2)$,
(B) a tube over a complex quadric Q_{n-1},
(C) a tube over $P_{1} \mathbb{C} \times P_{(n-1) / 2} \mathbb{C}$ and $n(\geq 5)$ is odd,
(D) a tube over a complex Grassman $G_{2,5} \mathbb{C}$ and $n=9$,
(E) a tube over a Hermitian symmetric space $S O(10) / U(5)$ and $n=15$.

Cecil-Ryan ([3]) and Kimura ([9]) extensively investigated a real hypersurface which is realized as a tube of constant radius r over a complex submanifold of $P_{n} \mathbb{C}$ on which ξ is a principal curvature vector.

On the other hand, submanifolds of codimension 3 addmitting an almost contact metric structure in a complex space form have been studied in ([8], [19]) when the normal connection is L-flat or the distinguished normal is parallel in the normal bundle.

The main purpose of the present paper is to extend Theorem T under certain conditions on a semi-invariant submanifold of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$, and to give new examples of nontrivial semi-invariant submanifolds in $P_{n+1} \mathbb{C}$.

The first named author wishes to express his gratitude to Topology and Geometry Research Center who gave him the oppertunity to study at Chiba University.

1. Preliminaries

Let \tilde{M} be a real $2(\mathrm{n}+1)$-dimensional Kaehlerian manifold equipped with parallel almost complex structure J and a Riemannian metric tensor G, which J-Hermitian and covered by a system of coordinate neighborhoods $\left\{W ; y^{A}\right\}$.

Let M be a real ($2 \mathrm{n}-1$)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; x^{h}\right\}$ and immersed isometrically in \tilde{M} by the immersion $i: M \rightarrow \tilde{M}$.

Throughout the present paper the following convention on the range of indices are used, unless otherwise stated :

$$
A, B, \cdots=1,2, \cdots, 2 n+2 ; i, j, \cdots=1,2, \cdots, 2 n-1 .
$$

The summation convention will be used with respect to those system of indices. When the argument is local, M need not to be distinguished from $i(M)$.Thus, for simplicity, a point p in M may be identified with $i(p)$ and a tangent vector X at p may also be identified with the tangent vector $i_{*}(X)$ at $i(p)$ via the differential $i *$ of i. We represent the immersion i locally by $y^{A}=y^{A}\left(x^{h}\right)$ and $B_{j}=\left(B_{j}{ }^{A}\right)$ are also (2n-1)-linearly independent local tangent vectors of M, where $B_{j}{ }^{A}=\partial_{j} y^{A}$ and $\partial_{j}=\partial / \partial x^{j}$. Three mutually orthogonal unit normals C, D and E may then be chosen. The induced Riemannian metric tensor g with components $g_{j i}$ on M is given by $g_{j i}=G\left(B_{j}, B_{i}\right)$ because the immersion i is isometric.

Denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation with respect to the induced Riemannian metric, equations of the Gauss for M of \tilde{M} is obtained :

$$
\begin{equation*}
\nabla_{j} B_{i}=A_{j i} C+K_{j i} D+L_{j i} E, \tag{1.1}
\end{equation*}
$$

where $A_{j i}, K_{j i}$ and $L_{j i}$ are components of the second fundamental forms in the direction of normals C, D and E respectively.

Equations of the Weingarten are also given by

$$
\begin{align*}
\nabla_{j} C & =-A_{j}{ }^{h} B_{h}+l_{j} D+m_{j} E, \\
\nabla_{j} D & =-K_{j}^{h} B_{h}-l_{j} C+n_{j} E, \tag{1.2}\\
\nabla_{j} E & =-L_{j}{ }^{h} B_{h}-m_{j} C-n_{j} D,
\end{align*}
$$

where $A=\left(A_{j}{ }^{h}\right), A_{(2)}=\left(K_{j}{ }^{h}\right)$ and $A_{(3)}=\left(L_{j}{ }^{h}\right)$, which are related by $A_{j i}=A_{j}{ }^{r} g_{i r}, K_{j i}=K_{j}{ }^{r} g_{i r}$ and $L_{j i}=L_{j}{ }^{r} g_{i r}$ respectively, and l_{j}, m_{j} and n_{j} being components of the third fundamental forms.

In the sequel, we denote the normal components of $\nabla_{j} C$ by $\nabla_{j}{ }^{\perp} C$. The normal vector field C is said to be parallel in the normal bundle if we have $\nabla_{j}{ }^{\perp} C=0$, that is, l_{j} and m_{j} vanish identically.

On the other hand, a submanifold M is called a $C R$ submanifold of a Kaehlerian manifold \tilde{M} if there exists a differentiable distribution $T: p \rightarrow$
$T_{p} \subset M_{p}$ on M satisfying the following conditions, where M_{p} denotes the tangent space to M at each point p in M :
(1) T is invariant, that is, $J T_{p}=T_{p}$ for each p in M, (2) the complementary orthogonal distribution $T^{\perp}: p \rightarrow T_{p}{ }^{\perp} \subset M_{p}$ is totally real, that is, $J T_{p}{ }^{\perp} \subset M_{p} \perp$ for each p in M, where $M_{p}{ }^{\perp}$ denotes the normal space to M at $p \in M([1],[20],[21])$. In particular M is said to be a semi-invariant submanifold provided that $\operatorname{dim} T^{\perp}=1$. In this case the unit normal vector field in $J T^{\perp}$ is called a distinguished normal to the semi-invariant submanifold and denoted this by $C([2],[18])$. More precisely, we choose an orthonormal basis $e_{1}, \cdots, e_{n-1}, e_{n}$ of M_{p} in such a way that $e_{1}, \cdots, e_{n-1} \in T$. Then we see that

$$
G\left(J e_{n}, e_{i}\right)=-G\left(e_{n}, J e_{i}\right)=-G\left(e_{n}, \sum_{k=1}^{n-1} F_{i k} e_{k}\right)=0 \text { for } i=1, \cdots, n-1 .
$$

Also we have $G\left(J e_{n}, e_{n}\right)=0$ because J is skew-symmetric. Therefore $J e_{n}$ is orthogonal to M_{p}. We put $C=-J e_{n}$. Then we can write

$$
\begin{equation*}
J B_{i}=\phi_{i}{ }^{h} B_{h}+\xi_{i} C, \quad J C=-\xi^{h} B_{h}, \quad J D=-E, \quad J E=D \tag{1.3}
\end{equation*}
$$

in each coordinate neighborhood, where we have put $\phi_{j i}=G\left(J B_{j}, B_{i}\right), \xi_{i}=$ $G\left(J B_{i}, C\right), \xi^{h}$ being associated component of ξ_{h}. By the property of the almost Hermitian structure J, it is clear that $\phi_{j i}$ is skew-symmetric. A tensor fied of type $(1,1)$ with components $\phi_{i}{ }^{h}$ will be denoted by ϕ. By properties of the almost complex structure J it follows that

$$
\begin{aligned}
& \phi_{i}{ }^{r} \phi_{r}^{h}=-\delta_{i}{ }^{h}+\xi_{i} \xi^{h}, \quad \xi^{r} \phi_{r}{ }^{h}=0, \quad \xi_{r} \phi_{i}^{r}=0, \\
& \xi_{r} \xi^{r}=1, \quad g_{r s} \phi_{j}^{r} \phi_{i}{ }^{s}=g_{j i}-\xi_{j} \xi_{i} .
\end{aligned}
$$

Since J is parallel, by differentiating the first equation of (1.3) covariantly along M and using (1.1), (1.2) and (1.3), and by comparing the tangential and normal parts, we find (see [19])

$$
\begin{equation*}
\nabla_{j} \phi_{i}{ }^{h}=-A_{j i} \xi^{h}+A_{j}{ }^{h} \xi_{i}, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} \xi_{i}=-A_{j r} \phi_{i}{ }^{r}, \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
K_{j i}=-L_{j r} \phi_{i}{ }^{r}-m_{j} \xi_{i}, \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
L_{j i}=K_{j r}{\phi_{i}}^{r}+l_{j} \xi_{i} . \tag{1.7}
\end{equation*}
$$

The last two relations give

$$
\begin{equation*}
K_{j t} \xi^{t}=-m_{j}, \quad L_{j t} \xi^{t}=l_{j}, \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
m_{t} \xi^{t}=-k, \quad l_{t} \xi^{t}=l \tag{1.9}
\end{equation*}
$$

where $k=T_{r} A_{(2)}, l=T_{r} A_{(3)}$.
Here we may assume that $l=0$. In fact, for a normal vector v of M we denote by A_{v} the second fundamental tensor of M in the direction of v. Then we have $A_{-v}=-A_{v}$. Hence there is a unit normal vector D^{\prime} of M in the plane spanned by two vectors D and E such that $T_{r} A_{D^{\prime}}=0$, which proves our assertion. Therefore we have by (1.9)

$$
\begin{equation*}
l_{t} \xi^{t}=0 \tag{1.10}
\end{equation*}
$$

Transforming (1.7) by $\phi_{k}{ }^{j}$ and using (1.6), we obtain

$$
-K_{i k}-m_{i} \xi_{k}=K_{s t} \phi_{i}{ }^{s} \phi_{k}{ }^{t}+\xi_{i} \phi_{k t} l^{t},
$$

which implies

$$
m_{k} \xi_{i}-m_{i} \xi_{k}=\xi_{i} \phi_{k t} l^{t}-\xi_{k} \phi_{i t} l^{t}
$$

or, using (1.9)

$$
\begin{equation*}
\phi_{i t} l^{t}=m_{i}+k \xi_{i} . \tag{1.11}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\phi_{i r} m^{r}=-l_{i} \tag{1.12}
\end{equation*}
$$

because of (1.10).
Transforming (1.6) and (1.7) by $L_{k}{ }^{i}$ and using (1.6), (1.7) and (1.8), we have respectively

$$
\begin{equation*}
K_{j r} L_{i}^{r}+K_{i r} L_{j}^{r}=-\left(l_{j} m_{i}+l_{i} m_{j}\right), \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
L_{j i}^{2}-K_{j i}{ }^{2}=l_{j} l_{i}-m_{j} m_{i} . \tag{1.14}
\end{equation*}
$$

The ambient Kaehlerian manifold \tilde{M} is assumed to be of constant holomorphic sectional curvature c , which is called a complex space form and denoted by $M_{n+1}(c)$. Then equations of the Gauss and Codazzi are given by

$$
\begin{align*}
R_{k j i h}= & \frac{c}{4}\left(g_{k h} g_{j i}-g_{j h} g_{k i}+\phi_{k h} \phi_{j i}-\phi_{j h} \phi_{k i}-2 \phi_{k j} \phi_{i h}\right) \\
& +A_{k h} A_{j i}-A_{j h} A_{k i}+K_{k h} K_{j i}-K_{j h} K_{k i} \tag{1.15}\\
& +L_{k h} L_{j i}-L_{j h} L_{k i},
\end{align*}
$$

$$
\begin{align*}
\nabla_{k} A_{j i} & -\nabla_{j} A_{k i}-l_{k} K_{j i}+l_{j} K_{k i}-m_{k} L_{j i}+m_{j} L_{k i} \\
& =\frac{c}{4}\left(\xi_{k} \phi_{j i}-\xi_{j} \phi_{k i}-2 \xi_{i} \phi_{k j}\right), \tag{1.16}
\end{align*}
$$

$$
\begin{equation*}
\nabla_{k} K_{j i}-\nabla_{j} K_{k i}+l_{k} A_{j i}-l_{j} A_{k i}-n_{k} L_{j i}+n_{j} L_{k i}=0 \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} L_{j i}-\nabla_{j} L_{k i}+m_{k} A_{j i}-m_{j} A_{k i}+n_{k} K_{j i}-n_{j} K_{k i}=0, \tag{1.18}
\end{equation*}
$$

where $R_{k j i h}$ is covariant components of the Riemann-Christoffel curvature tensor of M, and those of the Ricci by

$$
\begin{equation*}
\nabla_{k} l_{j}-\nabla_{j} l_{k}+A_{k r} K_{j}^{r}-A_{j r} K_{k}^{r}+m_{k} n_{j}-m_{j} n_{k}=0, \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} m_{j}-\nabla_{j} m_{k}+A_{k r} L_{j}^{r}-A_{j r} L_{k}^{r}+n_{k} l_{j}-n_{j} l_{k}=0, \tag{1.20}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} n_{j}-\nabla_{j} n_{k}+K_{k r} L_{j}^{r}-K_{j r} L_{k}^{r}+l_{k} m_{j}-l_{j} m_{k}=\frac{c}{2} \phi_{k j} . \tag{1.21}
\end{equation*}
$$

In the following we need the following definition. The normal connection of a semi-invariant submanifold M of codimension 3 in a complex space form is said to be L-flat if it satisfies $d n=\frac{c}{2} \omega$, that is, $\nabla_{j} n_{i}-\nabla_{i} n_{j}=\frac{c}{2} \phi_{j i}$, where $\omega(X, Y)=g(X, \phi Y)$ for any vectors X and Y on M (p514, [13]).

Differentiating $A \xi=\alpha \xi$ covariantly along M, and using (1.5), we find

$$
\begin{equation*}
\xi^{r} \nabla_{k} A_{j r}=A_{j r} A_{k s} \phi^{r s}-\alpha A_{k r} \phi_{j}^{r}+\left(\nabla_{k} \alpha\right) \xi_{j}, \tag{1.22}
\end{equation*}
$$

which together with (1.8) and (1.16) yields

$$
\begin{align*}
2 A_{j r} A_{k s} \phi^{r s} & -\alpha\left(A_{k r} \phi_{j}^{r}-A_{j r} \phi_{k}^{r}\right)+\frac{c}{2} \phi_{k j} \tag{1.23}\\
& =\xi_{k} \nabla_{j} \alpha-\xi_{j} \nabla_{k} \alpha+2\left(m_{k} l_{j}-m_{j} l_{k}\right) .
\end{align*}
$$

Transvecting ξ^{k} to this and using $A \xi=\alpha \xi,(1.8)$ and (1.10), we obtain

$$
\begin{equation*}
\nabla_{j} \alpha-\left(\xi^{t} \nabla_{t} \alpha\right) \xi_{j}=2 k l_{j} . \tag{1.24}
\end{equation*}
$$

2. The third fundamental forms of semi-invariant submanifolds

In the rest of this paper we shall suppose that M is a real $(2 n-1)$ dimensional semi-invariant submanifold of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$ and that the third fundamental form n satisfies $d n=2 \theta \omega$ for a certain scalar θ on M, that is,

$$
\begin{equation*}
\nabla_{j} n_{i}-\nabla_{i} n_{j}=2 \theta \phi_{j i} . \tag{2.1}
\end{equation*}
$$

Then we have by (1.21)

$$
K_{j r} L_{i}^{r}-K_{i r} L_{j}^{r}+l_{j} m_{i}-l_{i} m_{j}=-2\left(\theta-\frac{c}{4}\right) \phi_{j i},
$$

or, using (1.13)

$$
\begin{equation*}
K_{j r} L_{i}^{r}+l_{j} m_{i}=-\left(\theta-\frac{c}{4}\right) \phi_{j i}, \tag{2.2}
\end{equation*}
$$

which together with (1.8), (1.9) and (1.10) yields

$$
\begin{equation*}
K_{j r} l^{r}=k l_{j}, \quad L_{j r} m^{r}=0 \tag{2.3}
\end{equation*}
$$

Remark 2.1. To write our formulas in a convention form, in the sequel we denote by $h_{(2)}=A_{j i} A^{j i}, h=g^{j i} A_{j i}, \alpha=A_{j i} \xi^{j} \xi^{i}, K_{(2)}=K_{j i} K^{j i}$ and $L_{(2)}=L_{j i} L^{j i}$.

Multiplying (2.2) with $\phi^{j i}$ and summing for j and i, and using (1.6), (1.8) and (1.11), we find

$$
K_{(2)}-k^{2}=2(n-1)\left(\theta-\frac{c}{4}\right),
$$

which together with (1.8) implies that

$$
\begin{equation*}
\left\|K_{j i}-k \xi_{j} \xi_{i}\right\|^{2}=2(n-1)\left(\theta-\frac{c}{4}\right) \tag{2.4}
\end{equation*}
$$

where $\|F\|^{2}=g(F, F)$ for any tensor field F on M.
In the same way, we have from (1.7), (1.10), (1.12) and (2.2)

$$
\begin{equation*}
L_{(2)}=2(n-1)\left(\theta-\frac{c}{4}\right) . \tag{2.5}
\end{equation*}
$$

Differentiating (2.1) covariantly along M and using (1.4), we obtain

$$
\nabla_{k}\left(\nabla_{j} n_{i}-\nabla_{i} n_{j}\right)=2\left(\nabla_{k} \theta\right) \phi_{j i}+2 \theta\left(A_{k i} \xi_{j}-A_{k j} \xi_{i}\right),
$$

or, using the first Bianchi identity,

$$
\left(\nabla_{k} \theta\right) \phi_{j i}+\left(\nabla_{j} \theta\right) \phi_{i k}+\left(\nabla_{i} \theta\right) \phi_{k j}=0,
$$

which implies $(n-2) \nabla_{k} \theta=0$. Thus $\theta\left(\geq \frac{c}{4}\right)$ is constant if $n>2$.

Lemma 2.1. Let M be a semi-invariant submanifold of codimension 3 with L-flat normal connection in a complex projective space $P_{n+1} \mathbb{C}$. If the structure vector ξ is an eigenvector of the shape operator A in the direction of the distinguished normal, then we have $A_{(2)}=A_{(3)}=0$ and $\nabla_{j}^{\frac{1}{j}} C=0$.
Remark 2.2. This lemma was proved in [8]. But we give a simpler proof of it here.

Proof. By the hypotheses we have $\theta=\frac{c}{4}$. Thus (2.4) and (2.5) are reduce respectively to

$$
K_{j i}=k \xi_{j} \xi_{i}, L_{j i}=0
$$

and hence $m_{j}=-k \xi_{j}$ and $l_{j}=0$ because of (1.8). It sufficies to show that $k=0$. In this case (1.19) turns out to be

$$
k\left(\xi_{j} A_{k r} \xi^{r}-\xi_{k} A_{j r} \xi^{r}\right)=k\left(\xi_{k} n_{j}-\xi_{j} n_{k}\right)
$$

which together with $A \xi=\alpha \xi$ gives

$$
k\left(n_{j}-x \xi_{j}\right)=0,
$$

where $x=n_{t} \xi^{t}$.
We also have by (1.18)

$$
k\left\{\xi_{k}\left(A_{j i}+n_{j} \xi_{i}\right)-\xi_{j}\left(A_{k i}+n_{k} \xi_{i}\right)\right\}=0,
$$

which implies

$$
k(h-\alpha)=0 .
$$

Now, let Ω_{0} be a set of points such that $k \neq 0$ on M and suppose that Ω_{0} be non void. Then we have

$$
h-\alpha=0, \quad n_{j}=x \xi_{j}
$$

on Ω_{0}. Differentiating the last equation covariantly along Ω_{0} and using (1.5), we find

$$
\nabla_{k} n_{j}=\left(\nabla_{k} x\right) \xi_{j}-x A_{k r} \phi_{j}{ }^{r} .
$$

Since it is assumed to be $A \xi=\alpha \xi$ and (2.1) with $\theta=\frac{c}{4}$, we verified that

$$
\frac{c}{2} \phi_{k j}+x\left(A_{k r} \phi_{j}^{r}-A_{j r} \phi_{k}^{r}\right)=0,
$$

a contradiction because of $h-\alpha=0$. This completes the proof.
Transforming (2.2) by $\phi_{k}{ }^{i}$ and taking account of (1.6) and (1.12), we have

$$
\begin{equation*}
K_{j k}^{2}+\xi_{j}\left(K_{k r} m^{r}\right)+l_{j} l_{k}=\left(\theta-\frac{c}{4}\right)\left(g_{j k}-\xi_{j} \xi_{k}\right), \tag{2.6}
\end{equation*}
$$

which enable us to obtain

$$
\xi_{j}\left(K_{k r} m^{r}\right)-\xi_{k}\left(K_{j r} m^{r}\right)=0
$$

Therefore we have

$$
\begin{equation*}
K_{k r} m^{r}=-\left(m_{r} m^{r}\right) \xi_{k}, \tag{2.7}
\end{equation*}
$$

because of (1.8). Thus it follows that

$$
\begin{equation*}
K_{j i}^{2}+l_{j} l_{i}-\left(m_{r} m^{r}\right) \xi_{j} \xi_{i}=\left(\theta-\frac{c}{4}\right)\left(g_{j i}-\xi_{j} \xi_{i}\right) . \tag{2.8}
\end{equation*}
$$

In the same way, we have from (2.2)

$$
\begin{equation*}
L_{j r} l^{r}=k m_{j}+\left(l_{t} l^{t}+k^{2}\right) \xi_{j} . \tag{2.9}
\end{equation*}
$$

Transvecting (2.2) with m^{i} and making use of (1.11) and (2.3), we obtain

$$
\left(\theta-\frac{c}{4}-m_{r} m^{r}\right) l_{j}=0
$$

Similary, we verify, using (2.2) and (2.9), that

$$
\left(\theta-\frac{c}{4}-l_{r} l^{r}-k^{2}\right)\left(m_{t} m^{t}-k^{2}\right)=0 .
$$

Now, let Ω be a set of points such that $l_{t} l^{t} \neq 0$ on M and suppose that Ω be non-empty. Then we have

$$
\begin{equation*}
m_{r} m^{r}=\theta-\frac{c}{4}, \quad l_{r} l^{r}+k^{2}=\theta-\frac{c}{4} \tag{2.10}
\end{equation*}
$$

on Ω. From now on, we discuss our arguments on the open subset Ω of M. Then (2.8) turns out to be

$$
\begin{equation*}
K_{j i}^{2}=\left(\theta-\frac{c}{4}\right) g_{j i}-l_{j} l_{i} . \tag{2.11}
\end{equation*}
$$

Differentiating this covariantly along Ω, we find

$$
\begin{equation*}
K_{j}^{r} \nabla_{k} K_{i r}+K_{i}^{r} \nabla_{k} K_{j r}+l_{j} \nabla_{k} l_{i}+l_{i} \nabla_{k} l_{j}=0, \tag{2.12}
\end{equation*}
$$

from which, taking the skew-symmetric part with respect to indices k and j and making use of (1.17) and (1.19),

$$
\begin{gathered}
K_{j}{ }^{r} \nabla_{k} K_{i r}-K_{k}{ }^{r} \nabla_{j} K_{i r}+l_{j} \nabla_{k} l_{i}-l_{k} \nabla_{j} l_{i}+K_{i}{ }^{r}\left(l_{j} A_{k r}-l_{k} A_{j r}\right. \\
\left.+n_{k} L_{j r}-n_{j} L_{k r}\right)+l_{i}\left(A_{j}{ }^{r} K_{k r}-A_{k}{ }^{r} K_{j r}+n_{k} m_{j}-n_{j} m_{k}\right)=0
\end{gathered}
$$

for any indices k, j and i. Thus, interchanging indices k and i, we have

$$
\begin{aligned}
& K_{j}^{r} \nabla_{i} K_{k r}-K_{i}{ }^{r} \nabla_{j} K_{k r}+l_{j} \nabla_{i} l_{k}-l_{i} \nabla_{j} l_{k}+l_{j} A_{i r} K_{k}^{r}-l_{i} A_{j r} K_{k}^{r} \\
& +n_{i} K_{k}{ }^{r} L_{j r}-n_{j} K_{k}^{r} L_{i r}+l_{k}\left(K_{i}^{r}{ }^{r} A_{j r}-K_{j}^{r} A_{i r}+n_{i} m_{j}-n_{j} m_{i}\right)=0 .
\end{aligned}
$$

Hence, if we use (1.13), (1.17), (1.19) and (2.2), then we get

$$
\begin{aligned}
& K_{j}^{r} \nabla_{k} K_{i r}-K_{i}^{r} \nabla_{k} K_{j r}+l_{j} \nabla_{k} l_{i}-l_{i} \nabla_{k} l_{j} \\
& +2 l_{j} A_{k r} K_{i}^{r}-2 l_{i} A_{k r} K_{j}^{r}+2\left(\theta-\frac{c}{4}\right) n_{k} \phi_{j i}=0 .
\end{aligned}
$$

Adding this to (2.12), we obtain

$$
\begin{equation*}
K_{j}^{r} \nabla_{k} K_{i r}+l_{j}\left(\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)-l_{i} A_{k r} K_{j}^{r}+\left(\theta-\frac{c}{4}\right) n_{k} \phi_{j i}=0 . \tag{2.13}
\end{equation*}
$$

Since we have (1.7), (2.3) and (2.11), by transforming $K_{h}{ }^{j}$, we have

$$
\begin{align*}
& \left(\theta-\frac{c}{4}\right)\left(\nabla_{k} K_{h i}-n_{k} L_{h i}+n_{k} l_{h} \xi_{i}-l_{i} A_{h k}\right)-l_{h}\left(l^{r} \nabla_{k} K_{i r}\right) \tag{2.14}\\
& +k l_{h}\left(\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)+\left(A_{k r} l^{r}\right) l_{h} l_{i}=0
\end{align*}
$$

On the other hand, differentiating the first equation of (2.3) covariantly along Ω, we find

$$
l^{r} \nabla_{k} K_{j r}+K_{j}^{r} \nabla_{k} l_{r}=k \nabla_{k} l_{j}+\left(\nabla_{k} k\right) l_{j}
$$

which, transvecting l^{j} and using (2.10),

$$
\left(\nabla_{k} K_{j i}\right) l^{j} l^{i}=\left(\theta-\frac{c}{4}-k^{2}\right) \nabla_{k} k
$$

Thus, if we transvect l^{i} to (2.14) and use (2.9) and (2.10), then we obtain

$$
\begin{align*}
\left(\nabla_{k} K_{j r}\right) l^{r}= & l_{j} \nabla_{k} k-l_{j} A_{k r} l^{r}+\left(\theta-\frac{c}{4}-k^{2}\right) A_{j k} \tag{2.15}\\
& +n_{k}\left\{k m_{j}+\left(\theta-\frac{c}{4}\right) \xi_{j}\right\}
\end{align*}
$$

because $\theta-\frac{c}{4} \neq 0$ on Ω, from which, taking the skew-symmetric part and making use of (2.9),

$$
\begin{equation*}
l_{j}\left(2 A_{k r} l^{r}-\nabla_{k} k\right)=l_{k}\left(2 A_{j r} l^{r}-\nabla_{j} k\right) \tag{2.16}
\end{equation*}
$$

Therefore it follows that

$$
\begin{equation*}
2 A_{j r} l^{r}-\nabla_{j} k=\sigma l_{j} \tag{2.17}
\end{equation*}
$$

for some function σ on Ω. By means of (2.15) and (2.17), the equation (2.14) turns out to be

$$
\begin{align*}
& \left(\theta-\frac{c}{4}\right)\left(\nabla_{k} K_{j i}-n_{k} L_{j i}-l_{i} A_{j k}-l_{j} A_{i k}\right)+\sigma l_{k} l_{j} l_{i} \tag{2.18}\\
& -k l_{j} n_{k} m_{i}+k^{2} l_{j} A_{i k}+k l_{j}\left(\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)=0
\end{align*}
$$

from which, taking the skew-symmetric part with respect to j and i,
$k l_{j}\left(k A_{i k}-n_{k} m_{i}+\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)=k l_{i}\left(k A_{j k}-n_{k} m_{j}+\nabla_{k} l_{j}+A_{k r} K_{j}^{r}\right)$.
If we transvect l^{j} to this and make use of (2.17), we get

$$
k\left(l_{t} l^{t}\right)\left(k A_{i k}-n_{k} m_{i}+\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)=k^{2} \sigma l_{i} l_{k}
$$

From this and (2.18), we have

$$
\begin{equation*}
\nabla_{k} K_{j i}=n_{k} L_{j i}+l_{i} A_{j k}+l_{j} A_{i k}+\tau l_{j} l_{k} l_{i} \tag{2.19}
\end{equation*}
$$

for some function τ on Ω. Multiplying $g^{j i}$ to (2.19) and summing for j and i, and using (2.17) we have

$$
\begin{equation*}
\left(l_{t} l^{t}\right) \tau=-\sigma \tag{2.20}
\end{equation*}
$$

Differentiating the first equation of (1.8) covariantly and taking account of (1.5), (1.6) and (2.19), we obtain

$$
\begin{equation*}
\nabla_{k} m_{j}=-n_{k} l_{j}-A_{k r} L_{j}^{r} \tag{2.21}
\end{equation*}
$$

Differentiating the first equation of (1.9) covariantly and using (1.11) and (2.21), we find

$$
\begin{equation*}
\nabla_{j} k=2 A_{j r} l^{r} \tag{2.22}
\end{equation*}
$$

which together with (2.17) implies that $\tau l^{2}=-\sigma$. This means that $\sigma=\tau=0$ on Ω by virtue of (2.20). Therefore (2.19) reduces to

$$
\begin{equation*}
\nabla_{k} K_{j i}=n_{k} L_{j i}+l_{i} A_{j k}+l_{j} A_{i k} \tag{2.23}
\end{equation*}
$$

Substituting (2.23) into (2.13), we obtain

$$
n_{k} K_{j r} L_{i}^{r}+k l_{j} A_{k i}+l_{j}\left(\nabla_{k} l_{i}+A_{k r} K_{i}^{r}\right)+\left(\theta-\frac{c}{4}\right) n_{k} \phi_{j i}=0
$$

which transvect l^{j} and using (1.11), (2.9) and (2.10),

$$
\begin{equation*}
\nabla_{k} l_{j}=n_{k} m_{j}-A_{k r} K_{j}^{r}-k A_{j k} \tag{2.24}
\end{equation*}
$$

Differentiating (1.7) covariantly and using (1.4), (1.5), (1.11) and (2.24), we also find

$$
\begin{equation*}
\nabla_{k} L_{j i}=-n_{k} K_{j i}+m_{j} A_{i k}+m_{i} A_{j k} \tag{2.27}
\end{equation*}
$$

Differentiating (2.22) covariantly along Ω and taking account of (2.24), we get

$$
\begin{aligned}
\nabla_{k} \nabla_{j} k= & 2\left(\nabla_{k} A_{j r}\right) l^{r}+2 A_{j}^{r}\left(n_{k} m_{r}-A_{k s} K_{r}^{s}-k A_{k r}\right) \\
& +n_{j}\left(2 A_{k r} m^{r}-k n_{k}\right)
\end{aligned}
$$

from which, taking the skew-symmetric part and making use of (1.11), (1.16), (2.3) and (2.9),

$$
\left(\theta-\frac{c}{2}\right)\left(m_{k} \xi_{j}-m_{j} \xi_{k}\right)=0
$$

Therefore it follows that $\left(\theta-\frac{c}{2}\right)\left(m_{j}+k \xi_{j}\right)=0$ and hence $\theta=\frac{c}{2}$ on Ω because of (2.10). Thus we have by the first equation of (1.2)

Lemma 2.2. Let M be a semi-invariant submanifold of codimension 3 in $P_{n+1} \mathbb{C}$ satisfying (2.1). If $\theta \neq \frac{c}{2}$, then we have $\nabla_{j} \perp C=-k \xi_{j} E$ on M.

3. Further properties of the third fundamental forms

We continue now, our arguments under the same hypotheses (2.1) as in section 2. Furthermore suppose, throughout this section, that $\theta \neq \frac{c}{2}$ holds and that the structure vector ξ satisfies $A_{j r} \xi^{r}=\alpha \xi_{j}$. Then we have by Lemma 2.2

$$
\begin{equation*}
l_{j}=0 \tag{3.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
m_{j}=-k \xi_{j} \tag{3.2}
\end{equation*}
$$

because of (1.2). Thus (1.6), (1.7), (1.8), (1.13) and (1.14) are recuded respectively to

$$
\begin{equation*}
L_{j r} \phi_{i}^{r}=-K_{j i}+k \xi_{j} \xi_{i} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
K_{j r} \phi_{i}^{r}=L_{j i} \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
K_{j r} \xi^{r}=k \xi_{j}, \quad L_{j r} \xi^{r}=0 \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
L_{j r} K_{i}^{r}+L_{i r} K_{j}^{r}=0 \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
L_{j i}^{2}=K_{j i}^{2}-k^{2} \xi_{j} \xi_{i} \tag{3.7}
\end{equation*}
$$

From (3.2) we have

$$
\nabla_{k} m_{j}=-\xi_{j} \nabla_{k} k+k A_{k r} \phi_{j}^{r}
$$

from which, taking the skew-symmetric part and using (1.20), (3.1) and (3.2),

$$
A_{k r} L_{j}^{r}-A_{j r} L_{k}^{r}+k\left(A_{k r}{\phi_{j}}^{r}-A_{j r} \phi_{k}^{r}\right)=\xi_{j} \nabla_{k} k-\xi_{k} \nabla_{j} k
$$

Since we have $A \xi=\alpha \xi$, we then have

$$
\begin{equation*}
\nabla_{k} k=\lambda \xi_{k} \tag{3.8}
\end{equation*}
$$

because of (3.5), where $\lambda=\xi^{t} \nabla_{t} k$.
From the last two equations, it is clear that

$$
\begin{equation*}
A_{k r} L_{j}^{r}-A_{j r} L_{k}^{r}=k\left(A_{j r} \phi_{k}^{r}-A_{k r} \phi_{j}^{r}\right) \tag{3.9}
\end{equation*}
$$

Similarly, we also have from (1.19), (3.1) and (3.2)

$$
\begin{equation*}
k\left(n_{j}-\mu \xi_{j}\right)=0 \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
A_{k r} K_{j}^{r}-A_{j r} K_{k}^{r}=0 \tag{3.11}
\end{equation*}
$$

where $\mu=k n_{t} \xi^{t}$.

Lemma 3.1. Let M be a semi-invariant submanifold of codimension 3 in $P_{n+1} \mathbb{C}$ satisfying $d n=2 \theta \omega,\left(\theta \neq \frac{c}{2}\right)$. If it satisfies $A \xi=\alpha \xi$, then $T_{r} A_{(2)}=$ const. Proof. Differentiating (3.8) covariantly and making use of (1.5), we find

$$
\nabla_{k} \nabla_{j} \lambda=\xi_{j} \nabla_{k} \lambda-\lambda A_{k r} \phi_{j}^{r},
$$

which together with $A \xi=\alpha \xi$ yields

$$
\begin{equation*}
\lambda\left(A_{j r} \phi_{i}{ }^{r}-A_{i r} \phi_{j}{ }^{r}\right)=0 . \tag{3.12}
\end{equation*}
$$

On the other hand, by means of (3.1), the equation (1.24) becomes $\nabla_{j} \alpha=$ $\left(\xi^{t} \nabla_{t} \alpha\right) \xi_{j}$. Hence (1.23) implies $\lambda\left(A_{j r}^{2} \phi_{k}{ }^{r}+\frac{c}{4} \phi_{k j}\right)=0$ because of (3.1) and (3.12). By the properties of the almost contact metric structure, it follows that

$$
\lambda\left\{h_{(2)}-\alpha^{2}+\frac{c}{2}(n-1)\right\}=0,
$$

which means

$$
\lambda\left\{\left\|A_{j i}-\alpha \xi_{j} \xi_{i}\right\|^{2}+\frac{c}{2}(n-1)\right\}=0 .
$$

Hence $\lambda=0$ by virtue of $c>0$ and thus $k=$ const. because of (3.8). This complete the proof of Lemma 3.1.

In the following we discuss our arguments the case where $k \neq 0$. Then by (3.10) we have

$$
n_{j}=\mu \xi_{j} .
$$

From this we have

$$
\nabla_{k} n_{j}=\xi_{j} \nabla_{k} \mu-\mu A_{k r} \phi_{j}{ }^{r},
$$

which implies

$$
2 \theta \phi_{k j}=\xi_{j} \nabla_{k} \mu-\xi_{k} \nabla_{j} \mu-\mu\left(A_{k r} \phi_{j}{ }^{r}-A_{j r} \phi_{k}{ }^{r}\right) .
$$

ξ being an eigenvector with respect to A, it is seen that

$$
\begin{equation*}
A_{k r} \phi_{j}^{r}-A_{j r} \phi_{k}^{r}=2 \rho \phi_{k j}, \tag{3.13}
\end{equation*}
$$

where we have put $\rho \theta=-\mu$. Thus (3.9) turns out to be

$$
\begin{equation*}
A_{j r} L_{i}^{r}-A_{i r} L_{j}^{r}=2 \rho k \phi_{i j} \tag{3.14}
\end{equation*}
$$

Using (1.24), (3.1) and (3.13), the relationship (1.23) becomes

$$
\begin{equation*}
A_{j r} A_{k s} \phi^{r s}=\left(\rho \alpha-\frac{c}{4}\right) \phi_{k j} \tag{3.15}
\end{equation*}
$$

Applying (3.13) by $A_{i}{ }^{j}$ and using (3.15), we obtain

$$
\left(\rho \alpha-\frac{c}{4}\right) \phi_{k i}=A_{i r}^{2} \phi_{k}^{r}+2 \rho A_{i r} \phi_{k}^{r}
$$

Thus, it follows that

$$
\begin{equation*}
A_{j i}^{2}+2 \rho A_{j i}=\left(\rho \alpha-\frac{c}{4}\right) g_{j i}+\left(\alpha^{2}+\rho \alpha+\frac{c}{4}\right) \xi_{j} \xi_{i} \tag{3.16}
\end{equation*}
$$

Lemma 3.2. ρ is nonzero constant if $n>2$.
Proof. Since we have $\theta \rho=-\mu, \rho$ does not vanish because we have $\theta \geq$ $\frac{c}{4}$ and $n_{j}=\mu \xi_{j}$.

Differentiating (3.13) covariantly and taking account of (1.4) and (3.16), we find

$$
\begin{aligned}
& \left(\nabla_{k} A_{j r}\right) \phi_{i}^{r}-\left(\nabla_{k} A_{i r}\right) \phi_{j}^{r}-2\left(\nabla_{k} \rho\right) \phi_{j i} \\
& =\left\{\alpha A_{i k}+\left(\rho \alpha-\frac{c}{4}\right) g_{i k}\right\} \xi_{j}-\left\{\alpha A_{j k}+\left(\rho \alpha-\frac{c}{4}\right) g_{j k}\right\} \xi_{i}
\end{aligned}
$$

If we take the cyclic sum with respect to k, j and i, and make use of (1.16), then we have

$$
\left(\nabla_{k} \rho\right) \phi_{j i}+\left(\nabla_{j} \rho\right) \phi_{i k}+\left(\nabla_{i} \rho\right) \phi_{k j}=0
$$

Thus, ρ is constant for $n>2$. This completes the proof of the lemma.

Lemma 3.3. α and h are constant if $k \neq 0$.
Proof. Since we have $\nabla_{j} \alpha=\left(\xi^{t} \nabla_{t} \alpha\right) \xi_{j}$ as is already seen, we can verify, using the same method as in the proof of Lemma 3.1, that $\xi^{t} \nabla_{t} \alpha=0$ and hence α is constant. From (3.13) we obtain

$$
\begin{equation*}
\alpha-h=2(n-1) \rho \tag{3.17}
\end{equation*}
$$

Thus h is constant because of Lemma 3.2. Therefore Lemma 3.3 is proved.
Since (2.6) is valid by the assumption (2.1), it is , using (3.1), (3.2) and (3.5), verify that

$$
\begin{equation*}
K_{j i}^{2}=\left(\theta-\frac{c}{4}\right) g_{j i}+\left(k^{2}-\theta+\frac{c}{4}\right) \xi_{j} \xi_{i} . \tag{3.18}
\end{equation*}
$$

Differentiating (3.18) covariantly and using (1.5), we have

$$
\begin{align*}
& K_{i}{ }^{r}\left(\nabla_{k} K_{j r}\right)+K_{j}{ }^{r}\left(\nabla_{k} K_{i r}\right) \tag{3.19}\\
& =-\left(k^{2}-\theta+\frac{c}{4}\right)\left(\xi_{j} A_{k r} \phi_{i}{ }^{r}+\xi_{i} A_{k r} \phi_{j}{ }^{r}\right)
\end{align*}
$$

because θ and k are both constant.
Using the same method as that used to (2.13) from (2.12), we can derive from (3.19) the following :

$$
\begin{align*}
K_{j}^{r} \nabla_{k} K_{i r}= & -\left(\theta-\frac{c}{4}\right) n_{k} \phi_{j i}+\rho\left(k^{2}-\theta+\frac{c}{4}\right)\left(\xi_{k} \phi_{j i}+\xi_{i} \phi_{j k}+\xi_{j} \phi_{k i}\right) \tag{3.20}\\
& -\left(k^{2}-\theta+\frac{c}{4}\right) \xi_{j} A_{k r} \phi_{i}{ }^{r},
\end{align*}
$$

where we have used (1.17), (3.13) and (3.14). Transvecting ξ^{j} to this, we get

$$
k \xi^{r} \nabla_{k} K_{i r}=-\left(k^{2}-\theta+\frac{c}{4}\right)\left(A_{k r} \phi_{i}^{r}-\rho \phi_{k i}\right) .
$$

On the other hand, differentiating the first equation of (3.5) covariantly and taking account of (1.5) and (3.4), we obtain

$$
\begin{equation*}
\xi^{r} \nabla_{k} K_{i r}=-A_{k r} L_{i}^{r}-k A_{k r} \phi_{i}^{r} \tag{3.21}
\end{equation*}
$$

From the last two equations, it follows that

$$
\begin{equation*}
-k A_{k r} L_{i}^{r}=\left(\theta-\frac{c}{4}\right) A_{k r} \phi_{i}^{r}+\rho\left(k^{2}-\theta+\frac{c}{4}\right) \phi_{k i} . \tag{3.22}
\end{equation*}
$$

Transforming this by $K_{j}{ }^{i}$ and making of (2.2), (3.1) and (3.4), we find

$$
\left(\theta-\frac{c}{4}\right)\left(A_{k r} L_{j}^{r}+k A_{k r} \phi_{j}^{r}\right)=\rho\left(k^{2}-\theta+\frac{c}{4}\right)
$$

which together with (3.22) yields

$$
\begin{equation*}
\left(k^{2}-\theta+\frac{c}{4}\right)\left\{\rho k L_{j i}-\left(\theta-\frac{c}{4}\right)\left(A_{j r} \phi_{i}^{r}-\rho \phi_{j i}\right)\right\}=0 . \tag{3.23}
\end{equation*}
$$

Transforming (3.20) by $K_{l}{ }^{j}$ and making use of (3.4), (3.5), (3.18) and (3.21), we find
$\left(\theta-\frac{c}{4}\right)\left(\nabla_{k} K_{l i}-n_{k} L_{l i}\right)=\left(k^{2}-\theta+\frac{c}{4}\right)\left\{\xi_{l}\left(A_{k r} L_{i}{ }^{r}+\rho k \phi_{k i}\right)-\rho\left(\xi_{k} L_{l i}+\xi_{i} L_{l k}\right\}\right.$, from which, taking the skew-symmetric part with respect to indices l and i,

$$
\left(k^{2}-\theta+\frac{c}{4}\right)\left\{\xi_{l}\left(A_{k r} L_{i}^{r}+\rho k \phi_{k i}+\rho L_{k i}\right)-\xi_{i}\left(A_{k r} L_{l}^{r}+\rho k \phi_{k l}+\rho L_{k l}\right)\right\}=0 .
$$

From the last two equations, it follows that

$$
\begin{equation*}
\nabla_{k} K_{j i}=n_{k} L_{j i}-a\left(\xi_{k} L_{j i}+\xi_{i} L_{j k}+\xi_{j} L_{k i}\right), \tag{3.24}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
a\left(\theta-\frac{c}{4}\right)=\rho\left(k^{2}-\theta+\frac{c}{4}\right) . \tag{3.25}
\end{equation*}
$$

Differentiating (3.4) covariantly and using (1.4) and (3.24), we can verify that

$$
\begin{align*}
\nabla_{k} L_{j i}= & -n_{k} K_{j i}+a\left(\xi_{k} K_{j i}+\xi_{j} K_{k i}+\xi_{i} K_{k j}\right)-k\left(\xi_{j} A_{k i}+\xi_{i} A_{k j}\right) \tag{3.26}\\
& +k\left\{n_{k}+(2 \alpha-a) \xi_{k}\right\} \xi_{j} \xi_{i} .
\end{align*}
$$

If we differentiate (3.24) covariantly and substitute (1.5), we find

$$
\begin{aligned}
\nabla_{l} \nabla_{k} K_{j i}= & \left(\nabla_{l} n_{k}\right) L_{j i}+n_{k} \nabla_{l} L_{j i}+a\left\{\left(A_{l r} \phi_{k}^{r}\right) L_{j i}+\left(A_{l r} \phi_{i}^{r}\right) L_{j k}+\left(A_{l r} \phi_{j}^{r}\right) L_{k i}\right\} \\
& -a\left(\xi_{k} \nabla_{l} L_{j i}+\xi_{i} \nabla_{l} L_{j k}+\xi_{j} \nabla_{l} L_{k i}\right) .
\end{aligned}
$$

Multiplying this with $\phi^{l k}$ and summing for l and k, and taking account of (3.3), (3.4), (3.10), (3.11), (3.17) and (3.26), we obtain

$$
\phi^{l k} \nabla_{l} \nabla_{k} K_{j i}=\left(\phi^{l k} \nabla_{l} n_{k}\right) L_{j i}+a\left\{2(n-1) \rho L_{j i}-A_{j r} L_{i}^{r}-A_{i r} L_{j}^{r}\right\},
$$

or, using (2.1) and the Ricci identity for $K_{j i}$,
$-\frac{1}{2} \phi^{l k}\left(R_{l k j r} K_{i}{ }^{r}+R_{l k i r} K_{j}^{r}\right)=2(n-1)(\theta-a \rho) L_{j i}-a\left(A_{j r} L_{i}^{r}+A_{i r} L_{j}{ }^{r}\right)$.
On the other hand we have from (1.15)

$$
\phi^{l k} R_{l k j i}=\left\{c(n+1)-4 \theta-2\left(\rho \alpha-\frac{c}{4}\right)\right\} \phi_{i j} .
$$

where we have used (2.2) with $l_{j}=0$, (3.3), (3.4) and (3.15). Combining with last two equations, it is seen that

$$
\left\{(n+1)(c-2 \theta)-2\left(\rho \alpha-\frac{c}{4}\right)\right\} L_{j i}=2(n-1) a \rho L_{j i}-a\left(A_{j r} L_{i}^{r}+A_{i r} L_{j}^{r}\right)
$$

Multiplying $L^{j i}$ to this and summing for j and i, and making use of (2.5), (3.7) and (3.18), we have

$$
\begin{equation*}
(n+1)(c-2 \theta)-2\left(\rho \alpha-\frac{c}{4}\right)=2 n \rho a . \tag{3.27}
\end{equation*}
$$

Lemma 3.4. $\rho \alpha+\theta-\frac{3}{4} c=0$ if $k \neq 0$.
Proof. Suppose that $k^{2}=\theta-\frac{c}{4}$. Then we have by (3.22)

$$
A_{k r} L_{i}{ }^{r}+k A_{k r} \phi_{i}{ }^{r}=0,
$$

which together with (3.16) implies that

$$
\left(\rho \alpha-\frac{c}{4}\right)\left(L_{j i}-k \phi_{j i}\right)=0
$$

Thus, it is seen that $\rho \alpha=\frac{c}{4}$. Therefore (3.25) and (3.27) will produce a contradiction because $\theta=\frac{c}{2}$ was assumed. Accordingly we have $k^{2}-\theta+\frac{c}{4}=0$ and hence

$$
\begin{equation*}
\rho k L_{j i}-\left(\theta-\frac{c}{4}\right)\left(A_{j r}{\phi_{i}}^{r}-\rho \phi_{j i}\right)=0 \tag{3.28}
\end{equation*}
$$

by virtue of (3.23). If we take the usual norm of this and make use of (3.3), (3.16) and (3.17), then we obtain

$$
\begin{equation*}
\rho^{2} k^{2}=\left(\theta-\frac{c}{4}\right)\left(\rho^{2}+\rho \alpha-\frac{c}{4}\right), \tag{3.29}
\end{equation*}
$$

which together with (3.27) gives the required relationship. This completes the proof of Lemma 3.4.

Multiplying (3.14) with $\phi^{j i}$ and summing for j and i, and taking account of (3.3), we get

$$
\begin{equation*}
A_{j i} K^{j i}=\{\alpha+(n-1) \rho\} k . \tag{3.30}
\end{equation*}
$$

Now, we are going to prove that the distinguished normal C is parallel in the normal bundle. From (1.15) we verify that the Ricci tensor S of M with components $S_{j i}$ is given by

$$
\begin{equation*}
S_{j i}=\frac{c}{4}\left\{(2 n+1) g_{j i}-3 \xi_{j} \xi_{i}\right\}+h A_{j i}-A_{j i}^{2}+k K_{j i}-K_{j i}^{2}-L_{j i}^{2}, \tag{3.31}
\end{equation*}
$$

which together with (3.5), (3.17) and Lemma 3.4 implies that

$$
\begin{equation*}
S_{j i} \xi^{j} \xi^{i}=2(n-1)\left(\theta-\frac{c}{2}\right) \tag{3.32}
\end{equation*}
$$

If we multiply (3.31) with $K^{j i}$ and sum for j and i, then we obtain

$$
S_{j i} K^{j i}=2(n-1)\left\{\theta-2(n-2) \rho^{2}\right\} k,
$$

where we have used (3.6), (3.16), (3.17), (3.18), (3.30) and Lemma 3.4.
Transforming (3.31) by $\phi_{k}{ }^{i}$ and using (3.4), (3.7), (3.16), (3.17), (3.18) and Lemma 3.4, we find

$$
S_{j r} \phi_{k}^{r}=\left\{\frac{c}{4}(2 n+1)-\theta\right\} \phi_{k j}+\{\alpha-2(n-2) \rho\} A_{j r} \phi_{k}^{r}+k L_{j k} .
$$

Multiplying $L^{j k}$ to this and making use of (2.5), (3.3), (3.30), (3.32), (3.33) and Lemma 3.4, we see that $k\left(\theta-\frac{c}{4}\right)=0$. Therefore we have $\theta=\frac{c}{4}$. Because of Lemma 2.1, it follows that $k=0$, a contradiction. Thus we have

Proposition 3.5. Let M be a real $(2 n-1)$-dimensional $(n>2)$ semiinvariant submanifold of codimension 3 in $P_{n+1} \mathbb{C}$. If it satisfies $d n=2 \theta \omega$ for $\theta \neq \frac{c}{2}$ and $A \xi=\alpha \xi$. Then $\nabla_{j}{ }^{\perp} C=0$, namely, the distinguished normal is parallel in the normal bundle.

4. Parallel distinguished normal vectors

In this section, we consider a semi-invariant submanifold of codimension 3 satisfying $d n=2 \theta \omega$ in a complex projective space.

Suppose that the distinguished normal C is parallel in the normal bundle. Then we have $l_{j}=m_{j}=0$. Thus, (1.16), (1.17), (1.19) and (1.20) turn out respectively to

$$
\begin{equation*}
\nabla_{k} A_{j i}-\nabla_{j} A_{k i}=\frac{c}{4}\left(\xi_{k} \phi_{j i}-\xi_{j} \phi_{k i}-2 \xi_{i} \phi_{k j}\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} K_{j i}-\nabla_{j} K_{k i}=n_{k} L_{j i}-n_{j} L_{k i}, \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
A_{j r} K_{i}^{r}-A_{i r} K_{j}^{r}=0, \quad A_{j r} L_{i}^{r}-A_{i r} L_{j}^{r}=0 \tag{4.3}
\end{equation*}
$$

Since we have $d n=2 \theta \omega$, relationships (2.2) and (2.8) are reduced respectively to

$$
\begin{equation*}
K_{j r} L_{i}^{r}=-\left(\theta-\frac{c}{4}\right) \phi_{j i} \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
K_{j i}^{2}=\left(\theta-\frac{c}{4}\right)\left(g_{j i}-\xi_{j} \xi_{i}\right) \tag{4.5}
\end{equation*}
$$

Since we have $K_{i r} \xi^{r}=0$, by differentiating covariantly along M and using (1.7) with $l_{j}=0$, we find

$$
\begin{equation*}
\left(\nabla_{k} K_{i r}\right) \xi^{r}=-L_{i r} A_{k}^{r} \tag{4.6}
\end{equation*}
$$

Differentiating (4.5) covariantly along M and using (1.5), we have

$$
\begin{equation*}
K_{j}^{r}\left(\nabla_{k} K_{i r}\right)+K_{i}^{r}\left(\nabla_{k} K_{j r}\right)=\left(\theta-\frac{c}{4}\right)\left(\xi_{j} A_{k r} \phi_{i}^{r}+\xi_{i} A_{k r} \phi_{j}^{r}\right) . \tag{4.7}
\end{equation*}
$$

Using the quaite same method as that used to (2.13) from (2.12), we can derive from (4.7) the following :

$$
\begin{align*}
& 2 K_{j}^{r} \nabla_{k} K_{i r}=\left(\theta-\frac{c}{4}\right)\left\{2 n_{k} \phi_{i j}+\left(A_{i r} \phi_{j}^{r}-A_{j r} \phi_{i}^{r}\right) \xi_{k}\right. \tag{4.8}\\
& \left.+\left(A_{k r} \phi_{j}^{r}-A_{j r} \phi_{k}^{r}\right) \xi_{i}+\left(A_{k r} \phi_{i}^{r}+A_{i r} \phi_{k}^{r}\right) \xi_{j}\right\},
\end{align*}
$$

where we have used (4.2) and (4.4).
In the following, we are going to prove $A_{(2)}=0$. By means of (4.5), we may only consider the case where $\theta-\frac{c}{4} \neq 0$ because it is already seen that θ is constant. By (4.2) we can, using $k=l=0$, verify that $\nabla_{r} K_{j}^{r}=L_{j r} n^{r}$. Thus, multiplying (4.8) with $g^{k i}$ and summing for k and i, we find

$$
K_{j}^{r} L_{r s} n^{s}=\left(\theta-\frac{c}{4}\right)\left(\phi_{r j} n^{r}+\xi^{s} A_{s r} \phi_{j}^{r}\right)
$$

which together with (4.4) implies that $\xi^{s} A_{s r} \phi_{j}{ }^{r}=0$ and hence

$$
\begin{equation*}
A \xi=\alpha \xi \tag{4.9}
\end{equation*}
$$

Therefore, if we transvect (4.8) with ξ^{j} and take account of (1.8) and (4.9), then we obtain

$$
\begin{equation*}
A \phi=\phi A \tag{4.10}
\end{equation*}
$$

From this and (4.1) we can prove the followings (cf. [7], [11]) :

$$
\begin{equation*}
A_{j i}^{2}=\alpha A_{j i}+\frac{c}{4}\left(g_{j i}-\xi_{j} \xi_{i}\right), \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{k} A_{j i}=-\frac{c}{4}\left(\xi_{j} \phi_{k i}+\xi_{i} \phi_{k j}\right) . \tag{4.12}
\end{equation*}
$$

By means of (4.10), the equation (4.8) can be written as

$$
K_{j}^{r} \nabla_{k} K_{i r}=\left(\theta-\frac{c}{4}\right)\left(n_{k} \phi_{i j}+\xi_{k} A_{i r} \phi_{j}^{r}+\xi_{i} A_{k r} \phi_{j}^{r}\right)
$$

Transforming by $K_{h}{ }^{j}$ and using (1.7), (4.3), (4.5) and (4.6), we obtain

$$
\begin{equation*}
\nabla_{k} K_{j i}=n_{k} L_{j i}-\xi_{k} A_{j r} L_{i}^{r}-\xi_{i} A_{k r} L_{j}^{r}-\xi_{j} A_{i r} L_{k}^{r}, \tag{4.13}
\end{equation*}
$$

Differentiating (1.7) with $l_{j}=0$ covariantly and using (1.4) and (4.13), we have

$$
\begin{equation*}
\nabla_{k} L_{j i}=-n_{k} K_{j i}+\xi_{k} A_{j r} K_{i}^{r}+\xi_{i} A_{k r} K_{j}^{r}+\xi_{j} A_{i r} K_{k}^{r} \tag{4.14}
\end{equation*}
$$

which together (1.8) with $l_{j}=0$ and (4.9) implies that

$$
\begin{equation*}
T_{r}\left(A A_{(2)}\right)=0, \quad T_{r}\left(A^{2} A_{(2)}\right)=0 \tag{4.15}
\end{equation*}
$$

because of (4.11).
On the other hand, we have $A_{(2)} \xi=0$ and $T_{r} A_{(2)}=0$ and (4.5), the shape operator $A_{(2)}$ has at most three distinct constant eigenvalues $0, \sqrt{\theta-\frac{c}{4}},-\sqrt{\theta-\frac{c}{4}}$ with multiplicities $1, n-1, n-1$ respectively.

By (4.9), (4.10) and (4.11), we also see that A has at most three distinct constant eigenvalues $\alpha,(\alpha+\sqrt{D}) / 2,(\alpha-\sqrt{D}) / 2$ with multiplicities $1, r, s$ respectively, where $D=\alpha^{2}+c, r+s=2 n-2$.

Since we have $A A_{(2)}=A_{(2)} A$, it follows that A and $A_{(2)}$ are diagonalizable at the same time. Because of (4.15), we have $\left(\theta-\frac{c}{4}\right) r\left(\alpha^{2}+c\right)=0$. Thus $s=$ $2(n-1)$ and consequently A has two constant eigenvalues α and $(\alpha-\sqrt{D}) / 2$ with multiplicities $1,2(n-1)$ repectively. Accordingly the trace h of A is given by

$$
\begin{equation*}
h=n \alpha-(n-1) \sqrt{D} . \tag{4.16}
\end{equation*}
$$

Differentiating (4.13) covariantly along M and using (1.5), (1.8), (4.11), (4.12) and (4.13), we find

$$
\begin{aligned}
\nabla_{h} \nabla_{k} K_{j i}= & \left(\nabla_{h} n_{k}\right) L_{j i}-\frac{c}{4}\left(K_{k i} \xi_{j} \xi_{h}+K_{j h} \xi_{k} \xi_{i}+2 K_{i h} \xi_{j} \xi_{k}\right)+B_{h k j i} \\
& -\alpha\left(\xi_{j} \xi_{h} A_{k r} K_{i}^{r}+\xi_{k} \xi_{i} A_{j r} K_{k}^{r}+2 \xi_{j} \xi_{k} A_{i r} K_{h}^{r}\right) \\
& +\left(A_{h s} \phi_{j}^{s}\right)\left(A_{k r} L_{i}^{r}\right)+\left(A_{h s} \phi_{k}^{s}\right)\left(A_{i r} L_{j}^{r}\right)+\left(A_{h s} \phi_{i}^{s}\right)\left(A_{j r} L_{k}^{r}\right),
\end{aligned}
$$

where $B_{h k j i}$ is a certain tensor with $B_{h k j i}=B_{k h j i}$, from which, taking the skew-symmetric part with respect to h and k, and making use of (2.1), (4.10) and the Ricci identity for $K_{j i}$,

$$
\begin{align*}
& R_{k h j r} K_{i}{ }^{r}+R_{k h i r} K_{j}^{r} \tag{4.17}\\
& =2 \theta \phi_{h k} L_{j i}-\frac{c}{4}\left\{\xi_{j}\left(\xi_{k} K_{i h}-\xi_{h} K_{i k}\right)+\xi_{i}\left(\xi_{k} K_{j h}-\xi_{h} K_{j k}\right)\right\} \\
& -\alpha\left\{\xi_{j}\left(\xi_{k} A_{i r} K_{h}^{r}-\xi_{h} A_{i r} K_{k}{ }^{r}\right)+\xi_{i}\left(\xi_{k} A_{j r} K_{h}{ }^{r}-\xi_{h} A_{j r} K_{k}{ }^{r}\right)\right\} \\
& +\left(A_{h s} \phi_{j}^{s}\right)\left(A_{k r} L_{i}^{r}\right)-\left(A_{k s}{ }_{j}^{s}\right)\left(A_{h r} L_{i}{ }^{r}\right)+\left(A_{h s} \phi_{i}{ }^{s}\right)\left(A_{k r} L_{j}{ }^{r}\right) \\
& -\left(A_{k s} \phi_{i}{ }^{s}\right)\left(A_{h r} L_{j}{ }^{r}\right)+2\left(A_{h s} \phi_{k}{ }^{s}\right)\left(A_{j r} L_{i}{ }^{r}\right) .
\end{align*}
$$

Multiplying (4.17) with $\phi^{k h}$ and summing for k and h, and using (1.6), (1.7), (2.1), (4.10) and (4.11), we find

$$
\begin{equation*}
\phi^{k h}\left(R_{k h j r} K_{i}^{r}+R_{k h i r} K_{j}^{r}\right)=\{c-4(n-1) \theta\} L_{j i}+2(h+\alpha) A_{j r} L_{i}^{r} . \tag{4.18}
\end{equation*}
$$

On the other hand, we have from (1.15)

$$
\phi^{k l} R_{k l i h}=\left(c n+\frac{c}{2}\right) \phi_{h i}-2 \alpha A_{h r} \phi_{i}^{r}+4 K_{h r} L_{i}^{r},
$$

where we have used (1.7), (1.8), (4.10) and (4.11), which together with (1.7) and (4.5) gives

$$
\phi^{k l}\left(R_{k l i r} K_{j}^{r}+R_{k l j r} K_{i}^{r}\right)=\{8 \theta-(2 n+3) c\} L_{j i}-4 \alpha A_{j r} L_{i}^{r} .
$$

From this and (4.18), it is seen that

$$
\begin{equation*}
(h+3 \alpha) A_{j r} L_{i}^{r}=\{2(n+1) \theta-(n+2) c\} L_{j i}, \tag{4.19}
\end{equation*}
$$

which implies

$$
(h+3 \alpha)\left(A_{j i}-\alpha \xi_{j} \xi_{i}\right)=\{2(n+1) \theta-(n+2) c\}\left(g_{j i}-\xi_{j} \xi_{i}\right) .
$$

If we take the trace of this, then we obtain

$$
\begin{equation*}
(h+3 \alpha)(h-\alpha)=2(n-1)\{2(n+1) \theta-(n+2) c\} . \tag{4.20}
\end{equation*}
$$

In the same way, multiplying $A^{j k}$ to (4.17) and summing for j and k, and taking account of (1.6), (1.8), (4.3), (4.9) ~ (4.11), we also have

$$
\left(R_{k j i r} K_{h}^{r}+R_{k j h r} K_{i}^{r}\right) A^{i k}=\left(3 \alpha^{2}-2 \theta+c\right) A_{h r} K_{j}^{r}+\frac{3}{4} c \alpha K_{j h} .
$$

On the other hand, we have from (1.15)

$$
\begin{aligned}
& \left(R_{k j i r} K_{h}^{r}+R_{k j h r} K_{i}^{r}\right) A^{i k} \\
& =\left(2 \theta-2 c-h_{(2)}\right) A_{h r} K_{j}^{r}+\left\{\left(\theta-\frac{c}{2}\right)(h-\alpha)-\frac{c}{4} \alpha\right\} K_{j h},
\end{aligned}
$$

where we have used (1.6), (1.7), (4.3), (4.4), (4.5) and (4.11).
From the last two equations, it follows that

$$
\begin{equation*}
\left(4 \theta-3 c-h_{(2)}-3 \alpha^{2}\right) A_{j r} K_{i}^{r}=\left\{c \alpha-\left(\theta-\frac{c}{2}\right)(h-\alpha)\right\} K_{j i} \tag{4.21}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(4 \theta-3 c-h_{(2)}-3 \alpha^{2}\right)(h-\alpha)=2(n-1)\left\{c \alpha-\left(\theta-\frac{c}{2}\right)(h-\alpha)\right\} . \tag{4.22}
\end{equation*}
$$

If we take account of (4.11), then (4.22) can be written as

$$
2(n+1)\left(\theta-\frac{3}{4} c\right)(h-\alpha)-\alpha(h+3 \alpha)(h-\alpha)=2(n-1) c \alpha,
$$

or use (4.20),

$$
\begin{equation*}
\left(\theta-\frac{3}{4} c\right)(h-\alpha)=2(n-1) \alpha\left(\theta-\frac{c}{2}\right) . \tag{4.23}
\end{equation*}
$$

By the way, we have from (4.16) and (4.20)

$$
\alpha(\alpha-\sqrt{D})=2\left(\theta-\frac{3}{4} c\right) .
$$

Combining (4.16), (4.23) and the last equation, we see that

$$
\left(\theta-\frac{3}{4} c\right)^{2}=\alpha^{2}\left(\theta-\frac{c}{2}\right)
$$

From this, (2.5) and (4.5) we have
Lemma 4.1. Let M be a real (2n-1)-dimensional ($n>2$) semi-invariant submanifold of codimension 3 satisfying $d n=2 \theta \omega$ for a certain scalar $\theta<\frac{c}{2}$ in a complex projective space $P_{n+1} \mathbb{C}$. If the distinguished normal is parallel in the normal bundle, then we have $A_{(2)}=A_{(3)}=0$.

Let $N_{0}(p)=\left\{\eta \in T_{p} \perp(M) \mid A_{\eta}=0\right\}$ and $H_{0}(p)$ the maximal J-invariant subspace of $N_{0}(p)$. As a consequence of Lemma 4.1, we have $A_{(2)}=A_{(3)}=0$, the orthogonal complement of $H_{0}(p)$ is invariant under parallel translation with respect to the normal connection because of $\nabla_{j}{ }^{\perp} C=0$. Thus, by the reduction theorem in [5], [14] and by Lemma 2.2 and Proposition 3.5 we have

Theorem 4.2. Let M be a real ($2 n-1$)-dimensional $(n>2)$ semi-invariant submanfold of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$. If the structure vector ξ is an eigenvector for the shape operator in the direction of the distinguished normal and the third fundamental tensor n satisfies $d n=$ $2 \theta \omega$ for a certain scalar $\theta\left(<\frac{c}{2}\right)$, then M is a real hypersurface in a complex projective space $P_{n} \mathbb{C}$.

Owing to Theorem T and Theorem 4.2, we have

Theorem 4.3. Let M be a real ($2 n-1$)-dimensional ($n>2$) semi-invariant submanfold of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$ such that the third fundamental tensor satisfies $d n=2 \theta \omega$ for a certain scalar $\theta\left(<\frac{c}{2}\right)$, where $\omega(X, Y)=g(X, \phi Y)$ for any vectors X and Y on M. Then M has constant eigenvalues corresponding the shape operator A in the direction of distinguished normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous real hypersurfaces of $P_{n} \mathbb{C}$.

5. Examples of a nontrivial semi-invariant submanifold

In this section, we shall give an example of a nontrivial semi-invariant submanifold in $P_{n} \mathbb{C}$.

Let $p, q(3 \leq p \leq q)$ be integers. We denote by $M_{p, q} \mathbb{C}$ the space of $p \times q$ matrices over \mathbb{C}, which can be considered as a complex Euclidean space $\mathbb{C}^{p q}$ with the standard Hermitian inner product. Let denote the unitary group of degree p by $U(p)$. Then the Lie group $G:=S(U(p) \times U(q))$ acts on $\mathbb{C}^{p q} \equiv M_{p, q} \mathbb{C}$ as follows :

$$
(\sigma, \tau) X=\sigma X \tau^{-1},(\sigma, \tau) \in G, X \in \mathbb{C}^{p q}
$$

Thus we can consider G as a unitary subgroup of $U(p q)$. Remark that this action is nothing but the linear isotropic representation of the compact Hermitian symmetric space $S U(p+q) / S(U(p) \times U(q))$ of type $A I I I$ (cf. [6]).

Let π be the canonical projection of $\mathbb{C}^{p q}-\{0\}$ onto $P_{p q-1} \mathbb{C}$, and $S^{2 p q-1}(r)$ the hypersphere in $\mathbb{C}^{p q}$ of radius r centered at the origin.
Then, for any element A of $\mathbb{C}^{p q}-\{0\}$, the orbit $G(A)$ of A under G is a compact homogeneous submanifold in $S^{2 p q-1}(|A|)$, and the space $\pi(G(A))$ is a compact homogeneous submanifolds in $P_{p q-1} \mathbb{C}$. Moreover, for any normal vector N of $G(A)$ in $S^{2 p q-1}(|A|)$, the mean curvature of $G(A)$ in the direction N is equal to the one of $\pi(G(A))$ in the direction $\pi_{*} N$ in $P_{p q-1} \mathbb{C}$.(see e.g. [12]). In particular, $G(A)$ is minimal in $S^{2 p q-1}(|A|)$ if and only if $\pi(G(A))$ is minimal in $P_{p q-1} \mathbb{C}$.

Here, for $i=1, \cdots, p$ and $\alpha=1, \cdots, q$, we denote by $E_{i \alpha}$ the element of $M_{p, q} \mathbb{C}$ whose (i, α)-entry is 1 and other entries are all 0 . In the sequel we shall show
(5.1) If $A=a_{1} E_{11}+a_{2} E_{22}$ satisfies $a_{1} a_{2} \neq 0, a_{1}{ }^{2} \neq a_{2}{ }^{2}$, and $a_{1}{ }^{2}+a_{2}{ }^{2}=r^{2}$, then $\pi(G(A))$ is a $(4 p+4 q-11)$-dimensional semi-invariant submanifold in $P_{p q-1} \mathbb{C}$.

By the definition, the tangent space $T_{A}(G(A))$ of the orbit of A under G is generated by the vectors
$X A$ and $A Y$,
where $X($ resp. Y) ranges over all skew-Hermitian matrices of degree p (degree q). Hence the space $T_{A}(G(A))$ are spanned over \mathbb{R} by the following vectors :

$$
\begin{aligned}
& a_{1} \sqrt{-1} E_{11}+a_{2} \sqrt{-1} E_{22}, a_{1} \sqrt{-1} E_{11}-a_{2} \sqrt{-1} E_{22}, \\
& E_{12}, \sqrt{-1} E_{12}, E_{21}, \sqrt{-1} E_{21}, E_{i \alpha}, \sqrt{-1} E_{i \alpha}, E_{j \beta}, \sqrt{-1} E_{j \beta},
\end{aligned}
$$

where $1 \leq i \leq 2,3 \leq \alpha \leq q, 3 \leq j \leq p$ and $1 \leq \beta \leq 2$.
Thus the intersection of the vector space $\sqrt{-1} T_{A}(G(A))$ and the normal space of $G(A)$ at A in $S^{2 p q-1}(r)$ is spanned by the vector

$$
a_{2} \sqrt{-1} E_{11}-a_{1} \sqrt{-1} E_{22}
$$

which shows that $\pi(G(A))$ is semi-invariant in $P_{p q-1} \mathbb{C}$. Since the space $S U(p+q) / S(U(p) \times U(q))$ is irreducible as a symmetric space, our space $\pi(G(A))$ is not trivially semi-invariant, i.e., it satisfies $A_{(2)} \neq 0$ and $A_{(3)} \neq 0$ in the previous notation.
Remark 5.1. In the case $p=q=3$, the space $\pi(G(A))$ is a submanifold of codimension 3 in $P_{8} \mathbb{C}$.
Remark 5.2. We can see that, among the spaces $\pi(G(A))$ satisfying the conditions $0<a_{1}<a_{2}$ and $a_{1}{ }^{2}+a_{2}{ }^{2}=r^{2}$, there is uniqully a minimal one. About this we shall work out in a forthcoming paper.

References

1. A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
2. D. E. Blair, G.D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319.
3. T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
4. Y.-W. Choe and M. Okumura, Scalar curvature of a certain CR-submanifold of complex projective space, Arch. Math. 68 (1997), 340-346.
5. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 3 (1971), 333-340.
6. S. Helgason, Differential Geometry, Lie group and Symmetric Space, Academic Press (1978).
7. U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12 (1988), 259-268.
8. U-H. Ki and H.-J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, to appear in Kyungpook Math. J.
9. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
10. J. H. Kwon and J. S. Pak, CR-submanifolds of $(n-1) C R$-dimension in a complex projective space, Saitama Math. J. 15 (1997), 55-65.
11. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, in Tight and Taut submanifolds, Cambridge University Press (1998(T. E. Cecil and S. S. Chern, eds.)), 233-305.
12. M. Okumura, Totally umbilical submanifolds of a Kaehlerian manifold, J. Japan Math. Soc. 19 (1967), 317-327.
13. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geometriae Dedicata 7 (1978), 509-517.
14. M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloq. Math. Soc., János Bolyai 56 (1989), 574-585.
15. M. Okumura and L. Vanhecke, n-dimensional real submanifolds with ($n-1$)-dimensional maximal holomorphic tangent subspace in complex projective spaces, Rendiconti del Circolo Mat. di Palermo 43 (1994), 233-249.
16. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
17. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
18. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces(in Japanese), Sugaku 16 (1964), 34-61.
19. K. Yano and U-H. Ki, On ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kodai Math. Sem. Rep. 29 (1978), 285-307.
20. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).
21. K. Yano and M. Kon, Structures on manifolds, World Scientific Publ. Co. Singapore (1984).

U-H. KI
Department of Mathematics
Kyungrook University
Taegu 702-701, Korea
Department of Mathematics and Informatics
Chiba University
Chiba 263-8522, Japan
and
H. Song and R. Takagi

Department of Mathematics and Informatics
Chiba University
Chiba 263-8522, Japan

[^0]: Mathematics Subject Classification(1991):53C25, 53C40, 53C42.
 Key words and phrases : Semi-invariant submanifold, distinguished normal, almost contact metric structure, real hypersurface.
 ${ }^{*}$) This research was supported by the grant from BSRI, 1998-015-D00030, Korea Research Foundation, Korea 1998 and TGRC-KOSEF, 1999.

