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SUBMANIFOLDS OF CODIMENSION 3
ADMITTING ALMOST CONTACT METRIC

STRUCTURE IN A COMPLEX PROJECTIVE SPACE

U-HANG KI*, HYUNJUNG SONG AND RYOICHI TAKAGI

ABSTRACT. In this paper we prove the following : Let $M$ be a semi-invariant
submanifold with almost contact metric structure $(\phi, \xi, g)$ of codimension 3 in
a complex projective space $P_{n+1}\mathbb{C}$ . Suppose that the third fundamental form
$n$ satisfies $ dn=2\theta\omega$ for a certain scalar $\theta(<\frac{c}{2})$ , where $\omega(X, Y)=g(X, \phi Y)$

for any vectors $X$ and $Y$ on $M$ . Then $M$ has constant eigenvalues correpond-
ing the shape operator $A$ in the direction of the distinguished normal and the
structure vector $\xi$ is an eigenvector of $A$ if and only if $M$ is locally congruent
to a homogeneous real hypersurface of $P_{n}\mathbb{C}$ .

0. Introduction

A submanifold $M$ is caled a $CR$ submanifold of a Kaehlerian manifold
$M$ with complex structure $J$ if there exists a differentiable distribution $T$ :
$p\rightarrow T_{p}\subset M_{p}$ on $M$ such that $T$ is J-invariant and the complementary
orthogonal distribution $T^{\perp}$ is totally real, where $M_{p}$ denotes the tangent
space to $M$ at each point $p$ in $M([1], [20])$ . In particular, $M$ is said to be a
semi-invariant submanifold provided that dim $T^{\perp}=1$ . The unit normal
vector field in $JT^{\perp}$ is called the distinguished normal to the semi-invariant
submanifold ([18]). A semi-invariant submanifold admits an induced almost
contact metric structure, and many results are known by using this structure
([4], [10], [15], etc.).
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A typical example of a semi-invariant submanifold is real hypersurface.
When the ambient manifold $\overline{M}$ is a complex projective space $P_{n}\mathbb{C}$ , real hy-
persurfaces were investigated by many geometers in connection with the
shape operator and the induced almost contact metric structure ([3], [7],
[9], [16], [17], etc.). One of them, the third named author asserts that the
following:

Theorem $T([17])$ . Let $M$ be a homogeneous real hyperspace of $P_{n}\mathbb{C}$ . Then
$M$ is locally congruent to one of the folloutngs:

(A) a geodesic hypersphere (that is, a tube over a hyperplane $P_{n-1}\mathbb{C}$),
(A) a tube over a totally geodesic $P_{k}\mathbb{C}(1\leq k\leq n-2)$ ,
(B) a tube over a complex quadric $Q_{\mathfrak{n}-1}$ ,
(C) a tube over $P_{1}\mathbb{C}\times P_{(n-1)/2}\mathbb{C}$ and $n(\geq 5)$ is odd,
(D) a tube over a complex Grassman $G_{2,5}\mathbb{C}$ and $n=9$ ,
(E) a tube over a Hermitian symmetric space $SO(10)/U(5)$ and $n=15$ .
Cecil-Ryan ([3]) and Kimura ([9]) extensively investigated a real hyper-

surface which is realized as a tube of constant radius $r$ over a complex sub-
manifold of $P_{n}\mathbb{C}$ on which $\xi$ is a principal curvature vector.

On the other hand, submanifolds of codimension 3 addmitting an almost
contact metric structure in a complex space form have been studied in ([8],
[19]) when the normal connection is L-flat or the distinguished normal is
paralel in the normal bundle.

The main purpose of the present paper is to extend Theorem $T$ under
certain conditions on a semi-invariant submanifold of codimension 3 in a
complex projective space $P_{n+1}\mathbb{C}$ , and to give new examples of nontrivial
semi-invariant submanifolds in $P_{n+1}\mathbb{C}$ .

The first named author wishes to express his gratitude to Topology and
Geometry Research Center who gave him the oppertunity to study at Chiba
University.

1. Preliminaries

Let $\tilde{M}$ be a real 2(n+l)-dimensional Kaehlerian manifold equipped with
paralel almost complex structure $J$ and a Riemannian metric tensor $G$ ,
which J-Hermitian and covered by a system of coordinate neighborhoods
$\{W;y^{A}\}$ .

Let $M$ be a real (2n-l)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {V; $x^{h}$ } and immersed isometricaly in
$\tilde{M}$ by the immersion $i:M\rightarrow\tilde{M}$ .
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Throughout the present paper the following convention on the range of
indices are used, unless otherwise stated:

$A,B,$ $\cdots=1,2,$ $\cdots,2n+2$ ; $i,j,$ $\cdots=1,2,$ $\cdots,2n-1$ .

The summation convention wil be used with respect to those system of
indices. When the argument is local, $M$ need not to be distinguished from
$i(M).Thus$ , for simplicity, a point $p$ in $M$ may be identified with $i(p)$ and
a tangent vector $X$ at $p$ may also be identified with the tangent vector
$i_{*}(X)$ at $i(p)$ via the differential $i*ofi$ . We represent the immersion $i$

locally by $y^{A}=y^{A}(x^{h})$ and $B_{j}=(B_{j}^{A})$ are also (2n-l)-linearly independent
local tangent vectors of $M$ , where $B_{j}^{A}=\partial_{j}y^{A}$ and $\partial_{j}=\partial/\partial x^{j}$ . Three
mutualy orthogonal unit normals $C,$ $D$ and $E$ may then be chosen. The
induced Riemannian metric tensor $g$ with components $g_{ji}$ on $M$ is given by
$g_{ji}=G(B_{j}, B_{i})$ because the immersion $i$ is isometric.

Denoting by $\nabla_{j}$ the operator of van der Waerden-Bortolotti covariant
differentiation with $r\underline{e}spect$ to the induced Riemannian metric, equations of
the Gauss for $M$ of $M$ is obtained:

(1.1) $\nabla_{j}B_{i}=A_{ji}C+K_{ji}D+L_{ji}E$ ,

where $A_{ji},$ $K_{ji}$ and $L_{ji}$ are components of the second fundamental forms in
the direction of normals $C,$ $D$ and $E$ respectively.

Equations of the Weingarten are atso given by

$\nabla_{j}C=-A_{j}^{h}B_{h}+l_{j}D+m_{j}E$ ,
(1.2) $\nabla_{j}D=-K_{j}^{h}B_{h}-l_{j}C+n_{j}E$ ,

$\nabla_{j}E=-L_{j}^{h}B_{h}-m_{j}C-n_{j}D$ ,

where $A=(A_{j}^{h}),A_{(2)}=(K_{j}^{h})$ and $A_{(3)}=(L_{j}^{h})$ , which are related by
$A_{ji}=A_{j^{r}}g_{ir},$ $K_{ji}=K_{j}^{r}g_{ir}$ and $L_{ji}=L_{j}^{r}g_{ir}$ respectively, and $l_{j},m_{j}$ and
$n_{j}$ being components of the third fundamental forms.

In the sequel, we denote the normal components of $\nabla_{j}C$ by $\nabla_{j}^{\perp}C$ . The
normal vector field $C$ is said to be parallel in the normal bundle if we have
$\nabla_{j}^{\perp}C=0$ , that is, $l_{j}$ and $m_{j}$ vanish identically.

On the other hand, a submanifold $M$ is caled a $CR$ submanifold of a
Kaehlerian manifold $M$ if there exists a differentiable distribution $T$ : $ p\rightarrow$
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$T_{p}\subset M_{p}$ on $M$ satisfying the following conditions, where $M_{p}$ denotes the
tangent space to $M$ at each point $p$ in $M$ :

(1) $T$ is invariant, that is, $JT_{p}=T_{p}$ for each $p$ in $M,$ (2) the com-
plementary orthogonal distribution $T^{\perp}:$ $p\rightarrow T_{p}^{\perp}\subset M_{p}$ is totally real,
that is, $JT_{p}^{\perp}\subset M_{p}^{\perp}$ for each $p$ in $M$ , where $M_{p}^{\perp}$ denotes the normal
space to $M$ at $p\in M([1], [20], [21])$ . In particular $M$ is said to be a
semi-invariant submanifold provided that dim $T^{\perp}=1$ . In this case the
unit normal vector field in $JT^{\perp}$ is caled a distinguished normal to the
semi-invariant submanifold and denoted this by $C([2], [18])$ . More precisely,
we choose an orthonormal basis $e_{1},$ $\cdots e_{n-1},$ $e_{n}$ of $M_{p}$ in such a way that
$e_{1},$ $\cdots$ , $e_{n-1}\in T$ . Then we see that

$G(Je_{n}, e_{i})=-G(e_{n}, Je_{i})=-G(e_{n},\sum_{k=1}^{n-1}F_{ik}e_{k})=0$ for $i=1,$ $\cdots$ , $n-1$ .

Also we have $G(Je_{\mathfrak{n}}, e_{n})=0$ because $J$ is skew-symmetric. Therefore $Je_{n}$ is
orthogonal to $M_{p}$ . We put $C=-Je_{n}$ . Then we can write

(1.3) $JB_{i}=\phi_{i}^{h}B_{h}+\xi_{i}C$, $JC=-\xi^{h}B_{h}$ , $JD=-E$ , $JE=D$

in each coordinate neighborhood, where we have put $\phi_{ji}=G(JB_{j}, B_{i}),\xi_{i}=$

$G(JB_{i}, C),\xi^{h}$ being associated component of $\xi_{h}$ . By the property of the
almost Hermitian structure $J$ , it is clear that $\phi_{ji}$ is skew-symmetric. A
tensor fied of type $(1,1)$ with components $\phi_{i}^{h}$ wil be denoted by $\phi$ . By
properties of the almost complex structure $J$ it folows that

$\phi_{i}^{r}\phi_{r}^{h}=-\delta_{i}^{h}+\xi_{i}\xi^{h}$ , $\xi^{r}\phi_{r}^{h}=0$ , $\xi_{r}\phi_{i}^{r}=0$ ,
$\xi_{r}\xi^{r}=1$ , $g_{rs}\phi_{j}^{r}\phi_{i}^{s}=g_{ji}-\xi_{j}\xi_{i}$ .

Since $J$ is parallel, by differentiating the first equation of (1.3) covariantly
along $M$ and using (1.1), (1.2) and (1.3), and by comparing the tangential
and normal parts, we find (see [19])

(1.4) $\nabla_{j}\phi_{i}^{h}=-A_{ji}\xi^{h}+A_{j}^{h}\xi_{i}$ ,

(1.5) $\nabla_{j}\xi_{i}=-A_{jr}\phi_{i}^{r}$ ,
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(1.6) $K_{ji}=-L_{jr}\phi_{i^{\Gamma}}-m_{j}\xi_{i}$ ,

(1.7) $L_{ji}=K_{jr}\phi_{i}^{r}+l_{j}\xi_{i}$ .

The last two relations give

(1.8) $K_{jt}\xi^{t}=-m_{j}$ , $L_{jt}\xi^{t}=l_{j}$ ,

(1.9) $m_{t}\xi^{t}=-k$ , $l_{t}\xi^{t}=l$

where $k=T_{r}A_{(2)},$ $l=T_{r}A_{(3)}$ .
Here we may assume that $l=0$ . In fact, for a normal vector $v$ of $M$

we denote by $A_{v}$ the second fundamental tensor of $M$ in the direction of $v$ .
Then we have $A_{-v}=-A_{v}$ . Hence there is a unit normal vector $D^{\prime}$ of $M$

in the plane spanned by two vectors $D$ and $E$ such that $T_{r}A_{D^{\prime}}=0$ , which
proves our assertion. Therefore we have by (1.9)

(1.10) $l_{t}\xi^{t}=0$ .

Ransforming (1.7) by $\phi_{k}^{j}$ and using (1.6), we obtain

$-K_{ik}-m_{i}\xi_{k}=K_{st}\phi_{i}^{s}\phi_{k^{t}}+\xi_{i}\phi_{kt}l^{t}$ ,

which implies

$m_{k}\xi_{i}-m_{i}\xi_{k}=\xi_{i}\phi_{kt}l^{t}-\xi_{k}\phi_{it}l^{t}$ ,

or, using (1.9)

(1.11) $\phi_{it}l^{t}=m_{i}+k\xi_{i}$ .

Similarly we have
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(1.12) $\phi_{ir}m^{r}=-l_{i}$

because of (1.10).
Transforming (1.6) and (1.7) by $L_{k}^{i}$ and using (1.6), (1.7) and (1.8), we

have respectively

(1.13) $K_{jr}L_{i}^{r}+KirL_{J}^{r}=-(ljm\iota+lm)$ ,

(1.14) $L_{ji}^{2}-K_{ji}^{2}=l_{j}l_{i}-m_{j}m_{i}$ .

The ambient Kaehlerian manifold $\tilde{M}$ is assumed to be of constant holo-
morphic sectional curvature $c$ , which is caled a complex space form and
denoted by $M_{n+1}(c)$ . Then equations of the Gauss and Codazzi are given by

$R_{kJih}=\frac{c}{4}(gkhgji-gjhgki+\phi kh\phi ji-\phi jh\phi ki-2\phi kj\phi ih)$

(1.15) $+A_{kh}A_{ji}-A_{jh}A_{ki}+K_{kh}K_{ji}-K_{jh}K_{ki}$

$+L_{kh}L_{ji}-L_{jh}L_{ki}$ ,

$\nabla_{k}Aji^{-\nabla A-\downarrow K}jkikji+l_{jki}K-mkL_{ji}+m_{J^{L}ki}$

(1.16) $=\frac{c}{4}(\xi_{k}\phi_{ji}-\xi_{j}\phi_{ki}-2\xi_{l}\phi_{kj})$ ,

(1.17) $\nabla_{k}K_{ji}-\nabla_{j}K_{ki}+l_{k}A_{ji}-l_{j}A_{ki}-n_{k}L_{ji}+n_{j}L_{ki}=0$ ,

(1.18) $\nabla_{k}L_{ji}-\nabla_{j}L_{ki}+m_{k}A_{ji}-m_{j}A_{ki}+n_{k}K_{ji}-n_{j}K_{ki}=0$ ,

where $R_{kjih}$ is covariant components of the Riemann-Christoffel curvature
tensor of $M$ , and those of the Ricci by
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(1.19) $\nabla_{k}l_{j}-\nabla_{j}l_{k}+A_{kr}K_{j}^{r}-A_{jr}K_{k}^{r}+m_{k}n_{j}-m_{j}n_{k}=0$ ,

(1.20) $\nabla_{k}m_{j}-\nabla_{jk}m+A_{kr}L_{j}^{r}-A_{jr}L_{k}^{r}+nl-nl=0$ ,

(1.21) $\nabla_{k}n_{j}-\nabla_{j}n_{k}+K_{kr}L_{j}^{r}-K_{jr}L_{k}^{r}+l_{k}m_{j}-l_{j}m_{k}=\frac{c}{2}\phi_{kj}$ .

In the following we need the following definition. The normal connection
of a semi-invariant submanifold $M$ of codimension 3 in a complex space form
is said to be L-flat if it satisfies $ dn=\frac{c}{2}\omega$ , that is, $\nabla_{j}n_{i}-\nabla_{i}n_{j}=\frac{c}{2}\phi_{ji}$ , where
$\omega(X, Y)=g(X, \phi Y)$ for any vectors $X$ and $Y$ on $M$ (p514, [13]).

Differentiating $ A\xi=\alpha\xi$ covariantly along $M$ , and using (1.5), we find

(1.22) $\xi^{r}\nabla_{k}A_{jr}=A_{jr}A_{ks}\phi^{rs}-\alpha A_{kr}\phi_{j}^{r}+(\nabla_{k}\alpha)\xi_{j}$ ,

which together with (1.8) and (1.16) yields

(1.23) $2A_{jr}A_{ks}\phi^{rs}-\alpha(A_{kr}\phi_{j}^{r}-A_{jr}\phi_{k}^{r})+\frac{c}{2}\phi_{kj}$

$=\xi_{k}\nabla_{j}\alpha-\xi_{j}\nabla_{k}\alpha+2(m_{k}l_{j}-m_{j}l_{k})$ .

Ransvecting $\xi^{k}$ to this and using $ A\xi=\alpha\xi$ , (1.8) and (1.10), we obtain

(1.24) $\nabla_{j}a-(\xi^{t}\nabla_{t}\alpha)\xi_{j}=2kl_{j}$ .

2. The third fundamental forms of semi-invariant submanifolds
In the rest of this paper we shall suppose that $M$ is a real $(2n-1)-$

dimensional semi-invariant submanifold of codimension 3 in a complex pro-
jective space $P_{n+1}\mathbb{C}$ and that the third fundamental form $n$ satisfies $ dn=2\theta\omega$

for a certain scalar $\theta$ on $M$ , that is,
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(2.1) $\nabla_{j}n_{i}-\nabla_{i}n_{j}=2\theta\phi_{ji}$ .
Then we have by (1.21)

$K_{jr}L_{i}$ $‘-K_{ir}L_{j}^{r}+l_{j}m_{i}-l_{i}m_{j}=-2(\theta-\frac{c}{4})\phi_{ji}$ ,

or, using (1.13)

(2.2) $K_{jr}L_{i}^{r}+l_{j}m_{i}=-(\theta-\frac{c}{4})\phi_{ji}$ ,

which together with (1.8), (1.9) and (1.10) yields

(2.3) $K_{jr}l^{r}=kl_{j}$ , $L_{jr}m^{r}=0$ .
Remark 2.1. To write our formulas in a convention form, in the sequel
we denote by $h_{(2)}=A_{ji}A^{ji},$ $h=g^{ji}A_{ji},$ $\alpha=A_{ji}\xi^{j}\xi^{i},$ $K_{(2)}=K_{ji}K^{ji}$ and
$L_{(2)}=L_{ji}\dot{U}^{i}$ .

Multiplying (2.2) with $\dot{\psi}^{i}$ and summing for $j$ and $i$ , and using (1.6), (1.8)
and (1.11), we find

$K_{(2)}-k^{2}=2(n-1)(\theta-\frac{c}{4})$ ,

which together with (1.8) implies that

(2.4) $||K_{ji}-k\xi_{j}\xi_{i}||^{2}=2(n-1)(\theta-\frac{c}{4})$ ,

where $||F||^{2}=g(F, F)$ for any tensor field $F$ on $M$ .
In the same way, we have $hom(1.7),$ $(1.10),$ $(1.12)$ and (2.2)

(2.5) $L_{(2)}=2(n-1)(\theta-\frac{c}{4})$ .
Differentiating (2.1) covariantly along $M$ and using (1.4), we obtain

$\nabla_{k}(\nabla_{j}n_{i}-\nabla_{i}n_{j})=2(\nabla_{k}\theta)\phi_{ji}+2\theta(A_{ki}\xi_{j}-A_{kj}\xi_{i})$ ,
or, using the first Bianchi identity,

$(\nabla_{k}\theta)\phi_{ji}+(\nabla_{j}\theta)\phi_{ik}+(\nabla_{i}\theta)\phi_{kj}=0$ ,
which implies $(n-2)\nabla_{k}\theta=0$ . Thus $\theta(\geq\frac{c}{4})$ is constant if $n>2$ .
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Lemma 2.1. Let $M$ be a semi-invariant submanifold of codimension 3 with
L-flat normal $co$nnection in a complex projective space $P_{n+1}\mathbb{C}$ . If the struc-
ture vector $\xi$ is an eigenvector of the shape operator $A$ in the direction of the
distinguished normal, then we have $A_{(2)}=A_{(3)}=0$ and $\nabla_{j}^{\perp}C=0$ .
Remark 2.2. This lemma was proved in [8]. But we give a simpler proof
of it here.

Proof. By the hypotheses we have $\theta=\frac{c}{4}$ Thus (2.4) and (2.5) are reduce
respectively to

$K_{ji}=k\xi_{j}\xi_{i},$ $L_{ji}=0$

and hence $m_{j}=-k\xi_{j}$ and $l_{j}=0$ because of (1.8). It sufficies to show that
$k=0$ . In this case (1.19) turns out to be

$k(\xi_{j}A_{kr}\xi^{r}-\xi_{k}A_{jr}\xi^{r})=k(\xi_{k}n_{j}-\xi_{j}n_{k})$ ,

which together with $ A\xi=\alpha\xi$ gives

$k(n_{j}-x\xi_{j})=0$ ,

where $x=n_{t}\xi^{t}$ .
We also have by (1.18)

$k\{\xi_{k}(A_{ji}+n_{j}\xi_{i})-\xi_{j}(A_{ki}+n_{k}\xi_{i})\}=0$ ,

which implies
$k(h-a)=0$ .

Now, let $\Omega_{0}$ be a set of points such that $k\neq 0$ on $M$ and suppose that $\Omega_{0}$

be non void. Then we have

$h-a=0$ , $n_{j}=x\xi_{j}$

on $\Omega_{0}$ . Differentiating the last equation covariantly along $\Omega_{0}$ and using (1.5),
we find

$\nabla_{k}n_{j}=(\nabla_{k}x)\xi_{j}-xA_{kr}\phi_{j}^{r}$ .
Since it is assumed to be $ A\xi=\alpha\xi$ and (2.1) with $\theta=\frac{c}{4}$ , we verified that

$\frac{c}{2}\phi_{kj}+x(A_{kr}\phi_{j}^{r}-A_{jr}\phi_{k}^{r})=0$ ,
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a contradiction because of $h-\alpha=0$ . This completes the proof.

Ttansforming (2.2) by $\phi_{k}^{i}$ and taking account of (1.6) and (1.12), we have

(2.6) $K_{jk}^{2}+\xi_{j}(K_{kr}m^{r})+l_{j}l_{k}=(\theta-\frac{C}{4})(g_{jk}-\xi_{j}\xi_{k})$ ,

which enable us to obtain

$\xi_{j}(K_{kr}m^{r})-\xi_{k}(K_{jr}m^{r})=0$ .
Therefore we have

(2.7) $K_{kr}m^{r}=-(m_{r}m^{r})\xi_{k}$ ,

because of (1.8). Thus it folows that

(2.8) $K_{ji}^{2}+l_{j}l_{i}-(m_{r}m^{r})\xi_{j}\xi_{i}=(\theta-\frac{c}{4})(g_{ji}-\xi_{j}\xi_{i})$ .

In the same way, we have from (2.2)

(2.9) $L_{jr}l^{r}=km_{j}+(l_{\ell}l^{t}+k^{2})\xi_{j}$ .

Transvecting (2.2) with $m^{i}$ and making use of (1.11) and (2.3), we obtain

$(\theta-\frac{c}{4}-m_{r}m^{r})l_{j}=0$ .

Similary, we verify, using (2.2) and (2.9), that

$(\theta-\frac{c}{4}-l_{r}l^{r}-k^{2})(m_{t}m^{\ell}-k^{2})=0$ .

Now, let $\Omega$ be a set of points such that $l_{\ell}l^{t}\neq 0$ on $M$ and suppose that $\Omega$

be non-empty. Then we have

(2.10) $m_{r}m^{r}=\theta-\frac{c}{4}$ , $l_{r}l^{r}+k^{2}=\theta-\frac{c}{4}$
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on $\Omega$ . From now on, we discuss our arguments on the open subset $\Omega$ of $M$ .
Then (2.8) turns out to be

(2.11) $K_{ji}^{2}=(\theta-\frac{c}{4})g_{ji}-l_{j}l_{i}$ .

Differentiating this covariantly along $\Omega$ , we find

(2.12) $K_{j^{\Gamma}}\nabla_{k}K_{ir}+K_{i}^{r}\nabla_{k}K_{jr}+l_{j}\nabla_{k}l_{i}+l_{i}\nabla kl_{j}=0$ ,

from which, taking the skew-symmetric part with respect to indices $k$ and $j$

and making use of (1.17) and (1.19),

$K_{j}^{r}\nabla_{k}K_{ir}-K_{k}^{r}\nabla_{j}K_{ir}+l_{j}\nabla_{k}l_{i}-l_{k}\nabla_{j}l_{i}+K_{i}^{r}(l_{j}A_{kr}-l_{k}A_{jr}$

$+nkL_{jr}-n_{J}Lkr)+l_{i}(A_{j}^{r}K-A^{r}K+nkm-nm)=0$

for any indices $k,$ $j$ and $i$ . Thus, interchanging indices $k$ and $i$ , we have

$K_{j}^{r}\nabla_{i}K_{kr}-K_{i}^{r}\nabla_{j}K_{kr}+l_{j}\nabla_{i}l_{k}-l_{i}\nabla_{j}l_{k}+l_{j}A_{ir}K_{k}^{r}-l_{i}A_{jr}K_{k}^{r}$

$+n_{i}K_{k}^{r}L_{jr}-n_{j}K_{k}^{r}L_{ir}+l_{k}(K_{i}A_{jr}-K_{j}^{r}A_{ir}+n_{i}m_{j}-n_{j}m_{i})=0$ .

Hence, if we use (1.13), (1.17), (1.19) and (2.2), then we get

$K_{j}^{r}\nabla_{k}K_{ir}-K_{i}^{r}\nabla_{k}K_{jr}+l_{j}\nabla_{k}l_{i}-l_{i}\nabla_{k}l_{j}$

+2 $l_{j}A_{kr}K_{i}^{r}-2l_{i}A_{kr}K_{j}^{r}+2(\theta-\frac{c}{4})n_{k}\phi_{ji}=0$ .

Adding this to (2.12), we obtain

(2.13) $K_{j}^{r}\nabla_{k}K_{ir}+l_{j}(\nabla_{k}l_{i}+A_{kr}K_{i}r)-l_{i}A_{kr}K_{j}^{r}+(\theta-\frac{c}{4})n_{k}\phi_{ji}=0$ .

Since we have (1.7), (2.3) and (2.11), by transforming $K_{h}^{j}$ , we have
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(2.14)

$(\theta-\frac{c}{4})(\nabla kK-nLhi+nklh\xi-lA_{hk})-l_{h}(l^{r}\nabla_{k}K_{ir})$

$+klh(\nabla kli+AkrK_{i}^{r})+(Akrl^{r})lhli=0$ .

On the other hand, differentiating the first equation of (2.3) covariantly
along $\Omega$ , we find

$l^{r}\nabla_{k}K_{jr}+K_{j}^{r}\nabla_{k}l_{r}=k\nabla_{k}l_{j}+(\nabla_{k}k)l_{j}$ ,

which, transvecting $l^{j}$ and using (2.10),

$(\nabla_{k}K_{ji})l^{j}l^{i}=(\theta-\frac{c}{4}-k^{2})\nabla_{k}k$ .

Thus, if we transvect li to (2.14) and use (2.9) and (2.10), then we obtain

(2.15) $(\nabla_{k}K_{jr})l^{r}=l_{j}\nabla_{k}k-l_{j}A_{k}l^{r}+(\theta-\frac{c}{4}-k^{2})A_{jk}$

$+n_{k}\{km_{j}+(\theta-\frac{c}{4})\xi_{j}\}$

because $\theta-\frac{c}{4}\neq 0$ on $\Omega$ , from which, taking the skew-symmetric part and
making use of (2.9),

(2.16) $l_{j}(2A_{kr}l^{r}-\nabla_{k}k)=l_{k}(2A_{jr}l^{r}-\nabla_{j}k)$ .

Therefore it folows that

(2.17) $2A_{jr}l^{r}-\nabla_{j}k=\sigma l_{j}$

for some function $\sigma$ on $\Omega$ . By means of (2.15) and (2.17), the equation (2.14)
turns out to be

(2.18) $(\theta-\frac{c}{4})(\nabla_{k}K_{ji}-n_{k}L_{ji}-l_{i}A_{jk}-l_{j}A_{ik})+\sigma l_{k}l_{j}l_{i}$

$-kl_{j}n_{k}m_{i}+k^{2}l_{j}A_{ik}+kl_{j}(\nabla_{k}l_{i}+A_{kr}K_{i}^{r})=0$ ,
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$hom$ which, taking the skew-symmetric part with respect to $j$ and $i$ ,

$kl_{j}(kA_{ik}-n_{k}m_{i}+\nabla_{k}l_{i}+A_{kr}K_{i}^{r})=kl_{i}(kA_{jk}-n_{k}m_{j}+\nabla_{k}l_{j}+A_{kr}K_{j}^{r})$ .

If we transvect $l^{j}$ to this and make use of (2.17), we get

$k(l_{t}l^{t})(kA_{ik}-n_{k}m_{i}+\nabla_{k}l_{i}+A_{kr}K_{i}^{r})=k^{2}\sigma l_{i}l_{k}$ .

Ftom this and (2.18), we have

(2.19) $\nabla_{k}K_{ji}=n_{k}L_{ji}+l_{i}A_{jk}+l_{j}A_{ik}+\tau l_{j}l_{k}l_{i}$

for some function $\tau$ on $\Omega$ . Multiplying $g^{ji}$ to (2.19) and summing for $j$ and
$i$ , and using (2.17) we have

(2.20) $(l_{t}l^{t})\tau=-\sigma$.

Differentiating the first equation of (1.8) covariantly and taking account
of (1.5), (1.6) and (2.19), we obtain

(2.21) $\nabla_{k}m_{j}=-n_{k}l_{j}-A_{kr}L_{j}^{r}$ .

Differentiating the first equation of (1.9) covariantly and using (1.11) and
(2.21), we find

(2.22) $\nabla_{j}k=2A_{jr}l^{r}$ ,

which together with (2.17) implies that $\tau l^{2}=-\sigma$ . This means that $\sigma=\tau=0$

on $\Omega$ by virtue of (2.20). Therefore (2.19) reduces to

(2.23) $\nabla_{k}K_{ji}=n_{k}L_{ji}+l_{i}A_{jk}+l_{j}A_{ik}$ .

Substituting (2.23) into (2.13), we obtain

$n_{k}K_{jr}L_{i}^{r}+kl_{j}A_{ki}+l_{j}(\nabla_{k}l_{i}+A_{kr}K_{i}r)+(\theta-\frac{c}{4})n_{k}\phi_{ji}=0$ ,
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which transvect $l^{j}$ and using (1.11), (2.9) and (2.10),

(2.24) $\nabla_{k}l_{j}=nkm_{jkr}-AK_{j}^{r}-kA_{jk}$ .

Differentiating (1.7) covariantly and using (1.4), (1.5), (1.11) and (2.24),
we also find

(2.27) $\nabla_{k}L_{ji}=-n_{k}K_{ji}+m_{j}A_{ik}+m_{i}A_{jk}$ .

Differentiating (2.22) covariantly along $\Omega$ and taking account of (2.24),
we get

$\nabla_{k}\nabla_{j}k=2(\nabla_{k}A_{jr})l^{r}+2A_{j}^{r}(n_{k}m_{r}-A_{ks}K_{r}^{s}-kA_{kr})$

$+n_{j}(2A_{kr}m^{r}-kn_{k})$ ,

from which, taking the skew-symmetric part and making use of (1.11), (1.16),
(2.3) and (2.9),

$(\theta-\frac{c}{2})(m_{k}\xi_{j}-m_{j}\xi_{k})=0$ .

Therefore it folows that $(\theta-\frac{c}{2})(m_{j}+k\xi_{j})=0$ and hence $\theta=\frac{c}{2}$ on $\Omega$ because
of (2.10). Thus we have by the first equation of (1.2)

Lemma 2.2. Let $M$ be a semi-invanant submanifold of codimension 3 in
$P_{\mathfrak{n}+1}\mathbb{C}$ satishing (2.1). If $\theta\neq\frac{c}{2}$ , then we have $\nabla_{j}^{\perp}C=-k\xi_{j}E$ on $M$

3. Further properties of the third fundamental forms
We continue now, our arguments under the same hypotheses (2.1) as in

section 2. Furthermore suppose, throughout this section, that $\theta\neq\underline{c}$ holds
and that the structure vector $\xi$ satisfies $A_{jr}\xi^{r}=\alpha\xi_{j}$ . Then we have by
Lemma 2.2

(3.1) $l_{j}=0$

and hence
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(3.2) $m_{j}=-k\xi_{j}$

because of (1.2). Thus (1.6), (1.7), (1.8), (1.13) and (1.14) are recuded
respectively to

(3.3) $L_{jr}\phi_{i}^{r}=-K_{ji}+k\xi_{j}\xi_{i}$ ,

$(3\cdot 4)$ $K_{jr}\phi_{i}^{r}=L_{ji}$ ,

(3.5) $K_{jr}\xi^{r}=k\xi_{j}$ , $L_{jr}\xi^{r}=0$ ,

$(3\cdot 6)$ $L_{jr}K_{i}^{r}+L_{ir}K_{j}^{r}=0$ ,

(3.7) $L_{ji}^{2}=K_{ji}^{2}-k^{2}\xi_{j}\xi_{i}$ .
From (3.2) we have

$\nabla_{k}m_{j}=-\xi_{j}\nabla_{k}k+kA_{kr}\phi_{j}^{r}$ ,
ffom which, taking the skew-symmetric part and using (1.20), (3.1) and (3.2),

$A_{kr}L_{j}^{r}-A_{jr}L_{k}^{r}+k(A_{kr}\phi_{j}^{r}-A_{jr}\phi_{k}^{r})=\xi_{j}\nabla_{k}k-\xi_{k}\nabla_{j}k$ .
Since we have $ A\xi=\alpha\xi$ , we then have

(3.8) $\nabla_{k}k=\lambda\xi_{k}$

because of (3.5), where $\lambda=\xi^{t}\nabla_{t}k$ .
Ftom the last two equations, it is clear that
(3.9) $A_{kr}L_{j}^{r}-A_{jr}L_{k}^{r}=k(A_{jr}\phi_{k}^{r}-A_{kr}\phi_{j}^{r})$ .

Similarly, we also have ffom (1.19), (3.1) and (3.2)

(3.10) $k(n_{j}-\mu\xi_{j})=0$ ,

(3.11) $A_{kr}K_{j}^{r}-A_{jr}K_{k}^{r}=0$ ,
where $\mu=kn_{\ell}\xi^{t}$ .
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Lemma 3.1. Let $M$ be a semi-invariant submanifold of codimension 3 in
$P_{n+1}\mathbb{C}$ satisfying $dn=2\theta\omega,$ $(\theta\neq\frac{c}{2})$ . If it satisfies $ A\xi=\alpha\xi$ , then $T_{r}A_{(2)}=$ const.

Proof. Differentiating (3.8) covariantly and making use of (1.5), we find

$\nabla_{k}\nabla_{j}\lambda=\xi_{j}\nabla_{k}\lambda-\lambda A_{kr}\phi_{j}^{r}$ ,

which together with $ A\xi=\alpha\xi$ yields

(3.12) $\lambda(A_{jr}\phi_{i}^{r}-A_{ir}\phi_{j}^{r})=0$ .

On the other hand, by means of (3.1), the equation (1.24) becomes $\nabla_{j}\alpha=$

$(\xi^{t}\nabla_{t}\alpha)\xi_{j}$ . Hence (1.23) implies $\lambda(A_{jr}^{2}\phi_{k}^{r}+\frac{c}{4}\phi_{kj})=0$ because of (3.1) and
(3.12). By the properties of the almost contact metric structure, it follows
that

$\lambda\{h_{(2)}-\alpha^{2}+\frac{c}{2}(n-1)\}=0$ ,

which means
$\lambda\{\Vert A_{ji}-\alpha\xi_{j}\xi_{i}||^{2}+\frac{c}{2}(n-1)\}=0$ .

Hence $\lambda=0$ by virtue of $c>0$ and thus $k=const$ . because of (3.8). This
complete the proof of Lemma 3.1.

In the folowing we discuss our arguments the case where $k\neq 0$ . Then by
(3.10) we have

$n_{j}=\mu\xi_{j}$ .
Ftom this we have

$\nabla_{k}n_{j}=\xi_{j}\nabla_{k}\mu-\mu A_{kr}\phi_{j}^{r}$ ,

which implies

$2\theta\phi_{kj}=\xi_{j}\nabla_{k}\mu-\xi_{k}\nabla_{j}\mu-\mu(A_{kr}\phi_{j}^{r}-A_{jr}\phi_{k}^{r})$ .
$\xi$ being an eigenvector with respect to $A$ , it is seen that

(3.13) $A_{kr}\phi_{j}^{r}-A_{jr}\phi_{k}^{r}=2\rho\phi_{kj}$ ,

where we have put $\rho\theta=-\mu$ . Thus (3.9) turns out to be

(3.14) $A_{jr}L_{i}^{r}-A_{ir}L_{j}^{r}=2\rho k\phi_{ij}$ .
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Using (1.24), (3.1) and (3.13), the relationship (1.23) becomes

(3.15) $A_{jr}A_{ks}\phi^{rs}=(\rho\alpha-\frac{c}{4})\phi_{kj}$ .

Applying (3.13) by $A_{i}^{j}$ and using (3.15), we obtain

$(\rho\alpha-\frac{c}{4})\phi_{ki}=A_{i}\phi_{k}+2\rho A_{ir}\phi_{k}^{r}$ .

Thus, it follows that

(3.16) $A_{ji}^{2}+2\rho Aji=(\rho a-\frac{c}{4})gji+(\alpha^{2}+\rho\alpha+\frac{c}{4})\xi j\xi i$ .

Lemma 3.2. $\rho$ is nonzero constant if $n>2$ .

Proof. Since we have $\theta\rho=-\mu,$ $\rho$ does not vanish because we have $\theta\geq$

$\frac{c}{4}$ and $n_{j}=\mu\xi_{j}$ .
Differentiating (3.13) covariantly and taking account of (1.4) and (3.16),

we find

$(\nabla_{k}A_{jr})\phi_{i}^{r}-(\nabla_{k}A_{ir})\phi_{j}^{r}-2(\nabla_{k}\rho)\phi_{ji}$

$=\{\alpha A_{ik}+(\rho\alpha-\frac{c}{4})g_{ik}\}\xi_{j}-\{aA_{jk}+(\rho\alpha-\frac{c}{4})g_{jk}\}\xi_{i}$ .

If we take the cyclic sum with respect to $k,j$ and $i$ , and make use of (1.16),
then we have

$(\nabla_{k}\rho)\phi_{ji}+(\nabla_{j}\rho)\phi_{ik}+(\nabla_{i}\rho)\phi_{kj}=0$ .
Thus, $\rho$ is constant for $n>2$ . This completes the proof of the lemma.

Lemma 3.3. $\alpha$ and $h$ are constant if $k\neq 0$ .
Proof. Since we have $\nabla_{j}\alpha=(\xi^{t}\nabla_{t}\alpha)\xi_{j}$ as is already seen, we can verify,
using the same method as in the proof of Lemma 3.1, that $\xi^{\ell}\nabla_{t}\alpha=0$ and
hence $\alpha$ is constant. From (3.13) we obtain

(3.17) $\alpha-h=2(n-1)\rho$ .
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Thus $h$ is constant because of Lemma 3.2. Therefore Lemma 3.3 is proved.
Since (2.6) is valid by the assumption (2.1), it is , using (3.1), (3.2) and

(3.5), verify that

(3.18) $K_{ji}^{2}=(\theta-\frac{c}{4})g_{ji}+(k^{2}-\theta+\frac{c}{4})\xi_{j}\xi_{i}$ .

Differentiating (3.18) covariantly and using (1.5), we have

(3.19) $K_{i}^{r}(\nabla_{k}K_{jr})+K_{j}^{r}(\nabla_{k}K_{ir})$

$=-(k^{2}-\theta+\frac{c}{4})(\xi_{j}A_{kr}\phi_{i}^{r}+\xi_{i}A_{kr}\phi_{j}^{r})$

because $\theta$ and $k$ are both constant.
Using the same method as that used to (2.13) ffom (2.12), we can derive

$hom(3.19)$ the following:

(3.20)
$K_{j}^{r}\nabla_{k}K_{ir}=-(\theta-\frac{c}{4})n_{k}\phi_{ji}+\rho(k^{2}-\theta+\frac{c}{4})(\xi_{k}\phi_{ji}+\xi_{i}\phi_{jk}+\xi_{j}\phi_{ki})$

$-(k^{2}-\theta+\frac{c}{4})\xi_{j}A_{kr}\phi_{i}^{r}$ ,

where we have used (1.17), (3.13) and (3.14). Ransvecting $\xi^{j}$ to this, we get

$k\xi^{r}\nabla_{k}K_{ir}=-(k^{2}-\theta+\frac{c}{4})(A_{kr}\phi_{i}^{r}-\rho\phi_{ki})$ .
On the other hand, differentiating the first equation of (3.5) covariantly

and taking account of $(1_{;}5)$ and (3.4), we obtain

(3.21) $\xi^{r}\nabla_{k}K_{ir}=-A_{kr}L_{i}^{r}-kA_{kr}\phi_{i}^{r}$

Ftom the last two equations, it folows that

(3.22) $-kA_{kr}L_{i}^{r}=(\theta-\frac{c}{4})A_{kr}\phi_{i}^{r}+\rho(k^{2}-\theta+\frac{c}{4})\phi_{ki}$ .

Ransforming this by $K_{j}^{i}$ and making of (2.2), (3.1) and (3.4), we find
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$(\theta-\frac{c}{4})(A_{kr}L_{j}^{r}+kA_{kr}\phi_{j}^{r})=\rho(k^{2}-\theta+\frac{c}{4})$ ,

which together with (3.22) yields

(3.23) $(k^{2}-\theta+\frac{c}{4})\{\rho kL_{ji}-(\theta-\frac{c}{4})(A_{jr}\phi_{i}^{r}-\rho\phi_{ji})\}=0$ .

hansforming (3.20) by $K_{l}^{j}$ and making use of (3.4), (3.5), (3.18) and
(3.21), we find

$(\theta-\frac{c}{4})(\nabla_{k}K_{li}-n_{k}L_{li})=(k^{2}-\theta+\frac{c}{4})\{\xi_{l}(A_{kr}L_{i}^{r}+\rho k\phi_{ki})-\rho(\xi_{k}L_{li}+\xi_{i}L_{lk}\}$ ,

from which, taking the skew-symmetric part with respect to indices $l$ and $i$ ,

$(k^{2}-\theta+\frac{c}{4})\{\xi_{l}(A_{kr}L_{i}^{r}+\rho k\phi_{ki}+\rho L_{ki})-\xi_{i}(A_{kr}L_{l}^{r}+\rho k\phi_{kl}+\rho L_{kl})\}=0$ .

Rom the last two equations, it follows that

(3.24) $\nabla_{k}K_{ji}=n_{k}L_{ji}-a(\xi_{k}L_{ji}+\xi_{i}L_{jk}+\xi_{j}L_{ki})$ ,

where we have put

(3.25) $a(\theta-\frac{c}{4})=\rho(k^{2}-\theta+\frac{c}{4})$ .

Differentiating (3.4) covariantly and using (1.4) and (3.24), we can verify
that

(3.26)
$\nabla_{k}L_{ji}=-n_{k}K_{ji}+a(\xi_{k}K_{ji}+\xi_{j}K_{ki}+\xi_{i}K_{kj})-k(\xi_{j}A_{ki}+\xi_{l}A_{kj})$

$+k\{n_{k}+(2\alpha-a)\xi_{k}\}\xi_{j}\xi_{i}$ .

If we differentiate (3.24) covariantly and substitute (1.5), we find
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$\nabla_{l}\nabla_{k}K_{ji}=(\nabla_{l}n_{k})L_{ji}+n_{k}\nabla_{l}L_{ji}+a\{(A_{lr}\phi_{k}^{r})L_{ji}+(A_{lr}\phi_{i}^{r})L_{jk}+(A_{lr}\phi_{j}^{r})L_{ki}\}$

$-a(\xi k\nabla L+\xi\nabla L+\xi\nabla L)$ .

Multiplying this with $\phi^{lk}$ and summing for $l$ and $k$ , and taking account of
(3.3), (3.4), (3.10), (3.11), (3.17) and (3.26), we obtain

$\phi^{lk}\nabla l\nabla kKji=(\phi^{lk}\nabla lnk)Lji+a\{2(n-1)\rho Li-AL^{r}-AL_{j}^{r}\}$ ,

or, using (2.1) and the Ricci identity for $K_{ji}$ ,

$-\frac{1}{2}\phi^{lk}(R_{lk^{jr}}K_{i}^{r}+R_{lkir}K_{j}^{r})=2(n-1)(\theta-a\rho)L_{ji}-a(A_{jr}L_{i}‘ +A_{ir}L_{j}^{r})$ .

On the other hand we have $hom(1.15)$

$\phi^{\iota k}R_{lkji}=\{c(n+1)-4\theta-2(\rho\alpha-\frac{c}{4})\}\phi_{ij}$ .

where we have used (2.2) with $l_{j}=0,$ $(3.3),$ $(3.4)$ and (3.15). Combining
with last two equations, it is seen that

$\{(n+1)(c-2\theta)-2(\rho\alpha-\frac{c}{4})\}L_{ji}=2(n-1)a\rho L_{ji}-a(A_{jr}L_{i}^{r}+A_{ir}L_{j}^{r})$ .

Multiplying $\dot{D}^{i}$ to this and summing for $j$ and $i$ , and making use of (2.5),
(3.7) and (3.18), we have

(3.27) $(n+1)(c-2\theta)-2(\rho\alpha-\frac{c}{4})=2n\rho a$ .

Lemma 3.4. $\rho a+\theta-\frac{3}{4}c=0$ if $k\neq 0$ .

Proof. Suppose that $k^{2}=\theta-\frac{c}{4}$ . Then we have by (3.22)

$A_{kr}L_{i}^{r}+kA_{kr}\phi_{i}^{r}=0$ ,
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which together with (3.16) implies that

$(\rho\alpha-\frac{c}{4})(L_{ji}-k\phi_{ji})=0$ .

Thus, it is seen that $\rho\alpha=\frac{c}{4}$ Therefore (3.25) and (3.27) will produce a
contradiction because $\theta=\frac{c}{2}$ was assumed. Accordingly we have $k^{2}-\theta+\frac{c}{4}=0$

and hence

(3.28) $\rho kL_{ji}-(\theta-\frac{c}{4})(A_{jr}\phi_{i}^{r}-\rho\phi_{ji})=0$

by virtue of (3.23). If we take the usual norm of this and make use of (3.3),
(3.16) and (3.17), then we obtain

(3.29) $\rho^{2}k^{2}=(\theta-\frac{c}{4})(\rho^{2}+\rho a-\frac{c}{4})$ ,

which together with (3.27) gives the required relationship. This completes
the proof of Lemma 3.4.

Multiplying (3.14) with $\dot{\psi}^{i}$ and summing for $j$ and $i$ , and taking account
of (3.3), we get

(3.30) $A_{J^{i}}K^{ji}=\{a+(n-1)\rho\}k$ .

Now, we are going to prove that the distinguished normal $C$ is parallel in
the normal bundle. Ftom (1.15) we verify that the Ricci tensor $S$ of $M$ with
components $S_{ji}$ is given by

(3.31) $S_{ji}=\frac{c}{4}\{(2n+1)g_{ji}-3\xi_{j}\xi_{i}\}+hA_{ji}-A_{ji}^{2}+kK_{ji}-K_{ji}^{2}-L_{ji}^{2}$ ,

which together with (3.5), (3.17) and Lemma 3.4 implies that

(3.32) $S_{ji}\xi^{j}\xi^{i}=2(n-1)(\theta-\frac{c}{2})$ .

If we multiply (3.31) with $K^{ji}$ and sum for $j$ and $i$ , then we obtain
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$S_{ji}K^{ji}=2(n-1)\{\theta-2(n-2)\rho^{2}\}k$ ,

where we have used (3.6), (3.16), (3.17), (3.18), (3.30) and Lemma 3.4.
Transforming (3.31) by $\phi_{k}^{i}$ and using (3.4), (3.7), (3.16), (3.17), (3.18)

and Lemma 3.4, we find

$S_{jr}\phi_{k}^{r}=\{\frac{c}{4}(2n+1)-\theta\}\phi kj+\{a-2(n-2)\rho\}Ajr\phi_{k^{r}}+kLjk$ .

Multiplying $\dot{D}^{k}$ to this and making use of (2.5), (3.3), (3.30), (3.32),
(3.33) and Lemma 3.4, we see that $k(\theta-\frac{c}{4})=0$ . Therefore we have $\theta=\frac{c}{4}$ .
Because of Lemma 2.1, it follows that $k=0$ , a contradiction. Thus we have

Proposition 3.5. Let $M$ be a real $(2n-1)$ -dimensional $(n>2)$ semi-
invariant submanifold of codimension 3 in $P_{n+1}\mathbb{C}$ . If it satisfies $ dn=2\theta\omega$

for $\theta\neq\frac{c}{2}$ and $ A\xi=\alpha\xi$ . Then $\nabla_{j}^{\perp}C=0$ , namely, the distinguished nomal
is parallel in the normal bundle.

4. Parallel distinguished normal vectors
In this section, we consider a semi-invariant submanifold of codimension

3 satisfying $ dn=2\theta\omega$ in a complex projective space.
Suppose that the distinguished normal $C$ is paralel in the normal bundle.

Then we have $l_{j}=m_{j}=0$ . Thus, (1.16), (1.17), (1.19) and (1.20) turn out
respectively to

(4.1) $\nabla_{k}A_{ji}-\nabla_{j}A_{ki}=\frac{c}{4}(\xi_{k}\phi_{ji}-\xi_{j}\phi_{ki}-2\xi_{i}\phi_{k^{j}})$ ,

(4.2) $\nabla_{k}K_{ji}-\nabla_{j}K_{ki}=n_{k}L_{i^{i}}-n_{j}L_{ki}$ ,

(4.3) $A_{jr}K_{i}^{r}-A_{ir}K_{j}^{r}=0$ , $A_{jr}L_{i}^{r}-A_{ir}L_{j}^{r}=0$ .

Since we have $ dn=2\theta\omega$ , relationships (2.2) and (2.8) are reduced respec-
tively to
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(4.4) $K_{jr}L_{i}$ $=-(\theta-\frac{c}{4})\phi_{ji}$ ,

(4.5) $K_{ji}^{2}=(\theta-\frac{c}{4})(g_{ji}-\xi_{j}\xi_{i})$ .

Since we have $K_{ir}\xi^{r}=0$ , by differentiating covariantly along $M$ and using
(1.7) with $l_{j}=0$ , we find

(4.6) $(\nabla_{k}K_{ir})\xi^{r}=-L_{ir}A_{k}^{r}$ .

Differentiating (4.5) covariantly along $M$ and using (1.5), we have

(4.7) $K_{j}^{r}(\nabla_{k}K_{ir})+K_{i}^{r}(\nabla_{k}K_{jr})=(\theta-\frac{c}{4})(\xi_{j}A_{k}\phi_{i}^{r}+\xi_{i}A_{kr}\phi_{j})$ .

Using the quaite same method as that used to (2.13) from (2.12), we can
derive $hom(4.7)$ the folowing:

(4.8) $2K_{j}^{r}\nabla_{k}K_{ir}=(\theta-\frac{c}{4})\{2n_{k}\phi_{ij}+(A_{ir}\phi_{j}^{r}-A_{jr}\phi_{i}^{r})\xi_{k}$

$+(A_{kr}\phi_{j}^{r}-A_{J^{r}}\phi_{k^{r}})\xi_{i}+(A_{kr}\phi_{i}^{r}+A_{ir}\phi_{k}^{r})\xi_{j}\}$ ,

where we have used (4.2) and (4.4).
In the folowing, we are going to prove $A_{(2)}=0$ . By means of (4.5), we

may only consider the case where $\theta-\frac{c}{4}\neq 0$ because it is already seen that
$\theta$ is constant. By (4.2) we can, using $k=l=0$ , verify that $\nabla_{r}K_{j}^{r}=L_{jr}n^{r}$ .
Thus, multiplying (4.8) with $g^{ki}$ and summing for $k$ and $i$ , we find

$K_{j}^{r}L_{rs}n^{s}=(\theta-\frac{c}{4})(\phi_{rj}n^{r}+\xi^{s}A_{sr}\phi_{j}^{r})$ ,

which together with (4.4) implies that $\xi^{s}A_{sr}\phi_{J^{r}}=0$ and hence

(4.9) $ A\xi=\alpha\xi$ .
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Therefore, if we transvect (4.8) with $\xi^{j}$ and take account of (1.8) and (4.9),
then we obtain

(4.10) $A\phi=\phi A$ .

Rom this and (4.1) we can prove the folowings (cf. [7], [11]) :

(4.11) $A_{ji}^{2}=\alpha A_{ji}+\frac{c}{4}(g_{ji}-\xi_{j}\xi_{i})$ ,

(4.12) $\nabla_{k}A_{ji}=-\frac{c}{4}(\xi_{j}\phi_{ki}+\xi_{i}\phi_{kj})$ .

By means of (4.10), the equation (4.8) can be written as

$K_{j}^{r}\nabla_{k}K_{ir}=(\theta-\frac{c}{4})(n_{k}\phi_{ij}+\xi_{k}A_{ir}\phi_{j}^{r}+\xi_{i}A_{kr}\phi_{j}^{r})$ .

Transforming by $K_{h}^{j}$ and using (1.7), (4.3), (4.5) and (4.6), we obtain

(4.13) $\nabla_{k}K_{ji}=n_{k}L_{ji}-\xi_{k}A_{jr}L_{i}^{r}-\xi_{i}A_{kr}L_{j}^{r}-\xi_{j}A_{ir}L_{k}^{r}$ ,

Differentiating (1.7) with $l_{j}=0$ covariantly and using (1.4) and (4.13),
we have

(4.14) $\nabla_{k}L_{ji}=-n_{k}K_{ji}+\xi_{k}A_{jr}K_{i}^{r}+\xi_{i}A_{kr}K_{j}^{r}+\xi_{j}A_{ir}K_{k}^{r}$ ,

which together (1.8) with $l_{j}=0$ and (4.9) implies that

(4.15) $T_{r}(AA_{(2)})=0$ , $T_{r}(A^{2}A_{(2)})=0$

because of (4.11).
On the other hand, we have $A_{(2)}\xi=0$ and $T_{r}A_{(2)}=0$ and (4.5), the shape

operator $A_{(2)}$ has at most three distinct constant eigenvalues $0,$ $\sqrt{\theta-\frac{c}{4}},$ $-\sqrt{\theta-\frac{c}{4}}$

with multiplicities 1, $n-1,$ $n-1$ respectively.
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By (4.9), (4.10) and (4.11), we also see that $A$ has at most three distinct
constant eigenvalues $a,$ $(\alpha+\sqrt{D})/2,$ $(\alpha-\sqrt{D})/2$ with multiplicities 1, $r,$ $s$

respectively, where $D=\alpha^{2}+c,$ $r+s=2n-2$ .
Since we have $AA_{(2)}=A_{(2)}A$ , it follows that $A$ and $A_{(2)}$ are diagonalizable

at the same time. Because of (4.15), we have $(\theta-\frac{c}{4})r(\alpha^{2}+c)=0$ . Thus $s=$

$2(n-1)$ and consequently $A$ has two constant eigenvalues $\alpha$ and $(\alpha-\sqrt{D})/2$

with multiplicities 1, $2(n-1)$ repectively. Accordingly the trace $h$ of $A$ is
given by

(4.16) $h=n\alpha-(n-1)\sqrt{D}$ .

Differentiating (4.13) covariantly along $M$ and using (1.5), (1.8), (4.11),
(4.12) and (4.13), we find

$\nabla_{h}\nabla_{k}K_{ji}=(\nabla_{h}n_{k})L_{ji}-\frac{c}{4}(K_{ki}\xi_{j}\xi_{h}+K_{jh}\xi_{k}\xi_{i}+2K_{ih}\xi_{j}\xi_{k})+B_{hk^{j}i}$

$-\alpha(\xi_{j}\xi_{h}A_{kr}K_{i}^{r}+\xi_{k}\xi_{i}A_{jr}K_{k}^{r}+2\xi_{j}\xi_{k}A_{ir}K_{h}^{r})$

$+(A_{hs}\phi_{j}^{s})(A_{kr}L_{i}^{r})+(A_{hs}\phi_{k^{S}})(A_{ir}L_{j}^{r})+(A_{hs}\phi_{i}^{s})(A_{jr}L_{k}^{r})$ ,

where $B_{hkji}$ is a certain tensor with $B_{hkji}=B_{khji}$ , ffom which, taking the
skew-symmetric part with respect to $h$ and $k$ , and making use of (2.1), (4.10)
and the Ricci identity for $K_{ji}$ ,

(4.17)
$R_{khjr}K_{i}^{r}+R_{khir}K_{j}^{r}$

$=2\theta\phi_{hk}L_{ji}-\frac{c}{4}\{\xi_{j}(\xi_{k}K_{ih}-\xi_{h}K_{ik})+\xi_{i}(\xi_{k}K_{jh}-\xi_{h}K_{jk})\}$

$-\alpha\{\xi_{j}(\xi_{k}A_{ir}K_{h}^{r}-\xi_{h}A_{ir}K_{k}^{r})+\xi_{i}(\xi_{k}A_{jr}K_{h}^{r}-\xi_{h}A_{jr}K_{k}^{r})\}$

$+(A_{hs}\phi_{j}^{s})(A_{kr}L_{i}^{r})-(A_{ks}\phi_{j}^{s})(A_{hr}L_{i}^{r})+(A_{hs}\phi_{i}^{\epsilon})(A_{kr}L_{j}^{r})$

$-(A_{ks}\phi_{i^{S}})(A_{hr}L_{j}^{r})+2(A_{hs}\phi_{k^{s}})(A_{jr}L_{i}^{r})$ .

Multiplying (4.17) with $\phi^{kh}$ and summing for $k$ and $h$ , and using (1.6),
(1.7), (2.1), (4.10) and (4.11), we find

(4.18) $\emptyset^{kh}(R_{kh^{jr}}K_{i}^{r}+R_{khir}K_{j}^{r})=\{c-4(n-1)\theta\}L_{ji}+2(h+\alpha)A_{jr}L_{i}^{r}$ .
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On the other hand, we have $hom(1.15)$

$\phi^{kl}Rklih=(cn+\frac{c}{2})\phi hi-2\alpha Ahr\phi^{r}+4KL^{r}$ ,

where we have used (1.7), (1.8), (4.10) and (4.11), which together with (1.7)
and (4.5) gives

$\phi^{kl}(R_{klir}K_{j}^{r}+R_{kljr}K_{i}^{r})=\{8\theta-(2n+3)c\}L_{ji}-4aA_{jr}L_{i}^{r}$ .

From this and (4.18), it is seen that

(4.19) $(h+3\alpha)A_{jr}L_{i}^{r}=\{2(n+1)\theta-(n+2)c\}L_{ji}$ ,

which implies

$(h+3\alpha)(Aji-\alpha\xi_{j}\xi i)=\{2(n+1)\theta-(n+2)c\}(g_{ji}-\xi_{j}\xi_{i})$ .
If we take the trace of this, then we obtain

(4.20) $(h+3\alpha)(h-\alpha)=2(n-1)\{2(n+1)\theta-(n+2)c\}$ .

In the same way, multiplying $A^{jk}$ to (4.17) and summing for $j$ and $k$ , and
taking account of (1.6), (1.8), (4.3), $(4.9)\sim(4.11)$ , we also have

$(R_{kjir}K_{h}^{r}+R_{kjhr}K_{i}^{r})A^{ik}=(3\alpha^{2}-2\theta+c)A_{hr}K_{j}^{r}+\frac{3}{4}c\alpha K_{jh}$ .

On the other hand, we have from. (1.15)

$(R_{kjir}K_{h}^{r}+R_{kjhr}K_{i}^{r})A^{ik}$

$=(2\theta-2c-h_{(2)})A_{hr}K_{j}^{r}+\{(\theta-\frac{c}{2})(h-\alpha)-\frac{c}{4}\alpha\}K_{jh}$ ,

where we have used (1.6), (1.7), (4.3), (4.4), (4.5) and (4.11).
Ftom the last two equations, it follows that

(4.21) $(4\theta-3c-h_{(2)}-3\alpha^{2})A_{jr}K_{i}^{r}=\{c\alpha-(\theta-\frac{c}{2})(h-\alpha)\}K_{ji}$ ,
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which implies

(4.22) $(4\theta-3c-h_{(2)}-3a^{2})(h-\alpha)=2(n-1)\{ca-(\theta-\frac{c}{2})(h-\alpha)\}$ .
If we take account of (4.11), then (4.22) can be written as

2 $(n+1)(\theta-\frac{3}{4}c)(h-\alpha)-\alpha(h+3\alpha)(h-\alpha)=2(n-1)c\alpha$ ,

or use (4.20),

(4.23) $(\theta-\frac{3}{4}c)(h-\alpha)=2(n-1)\alpha(\theta-\frac{c}{2})$ .
By the way, we have from (4.16) and (4.20)

$a(a-\sqrt{D})=2(\theta-\frac{3}{4}c)$ .
Combining (4.16), (4.23) and the last equation, we see that

$(\theta-\frac{3}{4}c)^{2}=\alpha^{2}(\theta-\frac{c}{2})$ .
From this, (2.5) and (4.5) we have

Lemma 4.1. Let $M$ be a real (2n-l)-dimensional $(n>2)$ semi-invariant
submanifold of codimension 3 satisfying $ dn=2\theta\omega$ for a certain scalar $\theta<\frac{c}{2}$

in a complex projective space $P_{n+1}\mathbb{C}$ . If the distinguished normal is parallel
in the normal bundle, then we have $A_{(2)}=A_{(3)}=0$ .

Let $N_{0}(p)=\{\eta\in T_{p}^{\perp}(M)|A_{\eta}=0\}$ and $H_{0}(p)$ the maximal J-invariant
subspace of $N_{0}(p)$ . As a consequence of Lemma 4.1, we have $A_{(2)}=A_{(3)}=0$ ,
the orthogonal complement of $H_{0}(p)$ is invariant under parallel translation
with respect to the normal connection because of $\nabla_{j}^{\perp}C=0$ . Thus, by the
reduction theorem in [5], [14] and by Lemma 2.2 and Proposition 3.5 we have

Theorem 4.2. Let $M$ be a real (2n-l)-dimensional $(n>2)semi- inva\dot{n}ant$

submanfold of codimension 3 in a complex projective space $P_{n+1}\mathbb{C}$ . If the
structure vector $\xi i8$ an eigenvector for the shape operator in the direction ofthe distinguished normal and the third fundamental tensor $n$ satisfies $dn=$
$ 2\theta\omega$ for a certain scalar $\theta(<\frac{c}{2})$ , then $M$ is a real hypersurface in a complex
projective space $P_{n}\mathbb{C}$ .

Owing to Theorem $T$ and Theorem 4.2, we have
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Theorem 4.3. Let $M$ be a real $(2n-1)$ -dimensional $(n>2)$ semi-invariant
submanfold of codimension 3 in a complex projective space $P_{n+1}\mathbb{C}$ such that
the third fundamental tensor satisfies $ dn=2\theta\omega$ for a cert ain scalar $\theta(<\frac{c}{2})_{f}$

where $\omega(X,Y)=g(X, \phi Y)$ for any vectors $X$ and $Y$ on M. Then $M$ has
constant eigenvalues $CO7ve$sponding the shape operator $A$ in the direction of
distinguished nomal and the structure vector $\xi$ is an eigenvector of $A$ if and
only if $M$ is locally congruent to a homogeneous real hypersurfaces of $P_{n}\mathbb{C}$ .

5. Examples of a nontrivial semi-invariant submanifold

In this section, we shall give an example of a nontrivial semi-invariant
submanifold in $P_{n}\mathbb{C}$ .

Let $p,$ $q(3\leq p\leq q)$ be integers. We denote by $M_{p,q}\mathbb{C}$ the space of $pxq$
matrices over $\mathbb{C}$ , which can be considered as a complex Euclidean space $\mathbb{C}^{pq}$

with the standard Hermitian inner product. Let denote the unitary group
of degree $p$ by $U(p)$ . Then the Lie group $G;=S(U(p)\times U(q))$ acts on
$\mathbb{C}^{pq}\equiv M_{p,q}\mathbb{C}$ as follows :

$(\sigma, \tau)X=\sigma X\tau^{-1},$ $(\sigma, \tau)\in G,$ $X\in \mathbb{C}^{pq}$ .
Thus we can consider $G$ as a unitary subgroup of $U(pq)$ . Remark that
this action is nothing but the linear isotropic representation of the compact
Hermitian symmetric space $SU(p+q)/S(U(p)xU(q))$ of type AIII(cf. [6]).

Let $\pi$ be the canonical projection of $\mathbb{C}^{pq}-\{0\}$ onto $P_{pq-1}\mathbb{C}$ , and $S^{2pq-1}(r)$

the hypersphere in $\mathbb{C}^{pq}$ of radius $r$ centered at the origin.
Then, for any element $A$ of $\mathbb{C}^{pq}-\{0\}$ , the orbit $G(A)$ of $A$ under $G$ is a com-
pact homogeneous submanifold in $S^{2pq-1}(|A|)$ , and the space $\pi(G(A))$ is
a compact homogeneous submanifolds in $P_{pq-1}\mathbb{C}$ . Moreover, for any normal
vector $N$ of $G(A)$ in $S^{2pq-1}(|A|)$ , the mean curvature of $G(A)$ in the direc-
tion $N$ is equal to the one of $\pi(G(A))$ in the direction $\pi_{*}N$ in $P_{pq-1}\mathbb{C}.(see$

e.g. [12]). In particular, $G(A)$ is minimal in $S^{2pq-1}(|A|)$ if and only if
$\pi(G(A))$ is minimal in $P_{pq-1}\mathbb{C}$ .

Here, for $i=1,$ $\cdots$ , $p$ and $a=1,$ $\cdots$ , $q$ , we denote by $E_{i\alpha}$ the element of
$M_{p,q}\mathbb{C}$ whose $(i, \alpha)$-entry is 1 and other entries are all $0$ . In the sequel we
shall show

(5.1) If $A=a_{1}E_{11}+a_{2}E_{22}$ satisfies $a_{1}a_{2}\neq 0,a_{1^{2}}\neq a_{2^{2}}$ , and $a_{1}^{2}+a_{2^{2}}=r^{2}$ ,
then $\pi(G(A))$ is a $(4p+4q-11)$-dimensional semi-invariant submanifold
in $P_{pq-1}\mathbb{C}$ .
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By the definition, the tangent space $T_{A}(G(A))$ of the orbit of $A$ under $G$

is generated by the vectors

$XA$ and $AY$,

where $X$ (resp.Y) ranges over all skew-Hermitian matrices of degree $p(degreeq)$ .
Hence the space $T_{A}(G(A))$ are spanned over $\mathbb{R}$ by the following vectors :

$a_{1}^{\sqrt{-1}E_{11}+a_{2}^{\sqrt{-1}E_{22}}},$ $a_{1}^{\sqrt{-1}E_{11}-a_{2}^{\sqrt{-1}E_{22}}}$ ,
$E_{12},$ $\sqrt{-1}E12,$ $E21,$ $\sqrt{-1}E21,$ $Ei\alpha’\sqrt{-1}EE,$ $\sqrt{-1}Ej\beta$

where $1\leq i\leq 2,3\leq\alpha\leq q,$ $3\leq j\leq p$ and $1\leq\beta\leq 2$ .
Thus the intersection of the vector space $\sqrt{-1}T_{A}(G(A))$ and the normal
space of $G(A)$ at $A$ in $S^{2pq-1}(r)$ is spanned by the vector

$a_{2}\sqrt{-1}E_{11^{-a_{1}}}\sqrt{-1}E_{22}$ ,
which shows that $\pi(G(A))$ is semi-invariant in $P_{pq-1}\mathbb{C}$ . Since the space
$SU(p+q)/S(U(p)\times U(q))$ is irreducible as a symmetric space, our space
$\pi(G(A))$ is not trivially semi-invariant, $i.e.$ , it satisfies $A_{(2)}\neq 0$ and $A_{(3)}\neq 0$

in the previous notation.

Remark 5.1. In the case $p=q=3$ , the space $\pi(G(A))$ is a submanifold of
codimension 3 in $P_{8}\mathbb{C}$ .
Remark 5.2. We can see that, among the spaces $\pi(G(A))$ satisfying the
conditions $0<a_{1}<a_{2}$ and $a_{1^{2}}+a_{2^{2}}=r^{2}$ , there is uniqully a minimal one.
About this we shal work out in a forthcoming paper.
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