ON SOME OPERATORS WHOSE PRODUCTS ARE POSITIVE

Shuhei Wada

Abstract. Let A, B be bounded linear operators on \mathcal{H} satisfying

$$
A B \geq 0, A^{2} B \geq 0, A B^{2} \geq 0
$$

We study the positivity of A and B under the condition $\operatorname{Ker} A B=\{0\}$ and the representation for contractions A, B using positive operators.

It is known that a bounded linear operator T on a Hilbert space \mathcal{H} which satisfies $T^{n} \geq 0(n \geq 2)$ is not necessarily positive. In fact, if T satisfies that T^{2}, T^{3} are positive, then T can be decomposed into a direct sum of operators N and S such that $N^{2}=0, S \geq 0$ (cf. [2]). So it is clear that $T^{n} \geq 0(n \geq 2)$ and $\operatorname{Ker} T=\{0\}$ imply the positivity of T. This result motivates the following conjecture:

For bounded linear operators A and B on \mathcal{H} satisfying

$$
\begin{equation*}
A B \geq 0, A^{2} B \geq 0 \text { and } A B^{2} \geq 0 \tag{*}
\end{equation*}
$$

if it holds $\operatorname{Ker} A B=\{0\}$, then both A and B are positive.
We can easily see that this conjecture fails without the assumption $\operatorname{Ker} A B=\{0\}$ (see Example). As stated in the following, in many cases the above conjecture is true. But, in general, we do not know whether the assumption (*) and $\operatorname{Ker} A B=\{0\}$ imply the positivity of A and B or not. So our aim is, under these assumptions, to give a sufficient condition which implies their positivity.

Throughout this paper, we assume that bounded linear operators A and B satisfy the condition (*).
Lemma 1. If $\overline{\operatorname{Ran} B}=\mathcal{H}$, then $A \geq 0$. Similarly, if $\overline{\operatorname{Ran} A^{*}}=\mathcal{H}$, then $B \geq 0$.
Proof. By the assumption, we get

$$
A B^{2}=\left(A B^{2}\right)^{*}=B^{*}(A B)^{*}=B^{*} A B
$$

So we have,

$$
\langle A B x \mid B x\rangle=\left\langle B^{*} A B x \mid x\right\rangle=\left\langle A B^{2} x \mid x\right\rangle \geq 0,
$$

for all $x \in \mathcal{H}$. Thus the condition $\overline{\operatorname{Ran} B}=\mathcal{H}$ implies $A \geq 0$.
Since $A B=(A B)^{*}=B^{*} A^{*}$, if we consider A and B instead of B^{*} and A^{*}, then the condition $\overline{\operatorname{Ran} A^{*}}=\mathcal{H}$ implies $B \geq 0$.

We remark that the assumption (*) implies the positivity of $A^{n} B$ and $A B^{n}$ ($n=$ $1,2, \ldots$) by the similar argument in the above proof.

[^0]Proposition 2. If the operator $A B$ has its bounded inverse, then A, B are positive.
Proof. From $\operatorname{Ker} B \subset \operatorname{Ker} A B=\{0\}$, we have the injectivity of B. The relation

$$
B=(A B)^{-1} A B^{2}=(A B)^{-1} B^{*} A B
$$

says that B is similar to B^{*}, so we have

$$
\overline{\operatorname{Ran} B}=\left(\operatorname{Ker} B^{*}\right)^{\perp}=\mathcal{H} .
$$

By Lemma 1, we have $A \geq 0$.
Applying the same argument for $B^{*} A^{*}=A B$, we also have the positivity of B^{*}, that is, $B \geq 0$.

We consider the case that $\operatorname{Ker} A B=\{0\}$. The positivity and commutativity of A and B follows from Lemma 1 if either A^{*} or B has a dense range. If \mathcal{H} is finite-dimensional, then we can get $A \geq 0$ and $B \geq 0$ by the invertibility of $A B$. If $A B=B A$, then we can also get the positivity of A and B by the relation

$$
\mathcal{H}=\overline{\operatorname{Ran}(A B)^{*}}=\overline{\operatorname{Ran}(B A)^{*}}=\overline{\operatorname{Ran} B A}=\overline{\operatorname{Ran} A^{*} B^{*}} .
$$

In the case that A is hyponormal, then we have $(A B) A=A^{*}(A B)$ by $A(A B)=$ ($A B$) A^{*} and the Fuglede-Putnam theorem [3]. This shows that A^{*} has a dense range. So we have that if either A or B^{*} is hyponormal, then both A and B are positive.

We have seen as above, if the operators A, B hold a property related to normality or invertibility, then we can get their positivity. From this point of view, we will treat an accretive operator or a semi-Fredholm operator. We call a bounded linear operator T is accretive if $T+T^{*} \geq 0$. It is clear that T^{*} is also accretive if T is accretive.

Proposition 3. If either A or B is accretive and $\operatorname{Ker} A B=\{0\}$, then both A and B are positive.
Proof. We may assume that A is accretive. Let $f \in \mathcal{H}$ satisfy $\left(A+A^{2} B\right) f=0$. By the assumption, we have

$$
0 \leq \operatorname{Re}\langle A f \mid f\rangle=-\left\langle A^{2} B f \mid f\right\rangle \leq 0
$$

This means $\left\langle A^{2} B f \mid f\right\rangle=0$, and we have $f=0$ since $\operatorname{Ker} A^{2} B=\operatorname{Ker} A B A^{*}=\{0\}$. So $A+A^{2} B$ is injective. From the assumption $A B \geq 0$, we have that $A=(A+$ $\left.A^{2} B\right)(I+A B)^{-1}$ is injective, so we get the positivity of A and B by Lemma 1 .

We call a bounded linear operator T left (resp. right) semi-Fredholm if RanT is closed and $\operatorname{Ker} T$ (resp. KerTT^{*}) is finite-dimensional. We call an operator T Fredholm if T is left semi-Fredholm and right semi-Fredholm. It is known that the adjoint of a semi-Fredholm operator is also semi-Fredholm. Then we have the following result:

Theorem 4. If A, B are semi-Fredholm operators and $\operatorname{Ker} A B=\{0\}$, then A, B are positive.
Proof. By Lemma 1, it suffices to show that $\operatorname{Ran} B=\mathcal{H}$. For any $g \in(\operatorname{Ran} B)^{\perp}$ there exists $h \in \operatorname{Ran} B$ such that $g=B^{*} h$, since $\operatorname{Ran} B$ is closed and $\operatorname{Ker} B=\{0\}$. Then we have, for any $f \in \mathcal{H}$,

$$
0=\langle B f \mid g\rangle=\left\langle B f \mid B^{*} h\right\rangle=\left\langle B^{2} f \mid h\right\rangle,
$$

so we get $h \in \operatorname{Ran} B \cap\left(\operatorname{Ran} B^{2}\right)^{\perp}$. Since $\operatorname{Ran} B \cap \operatorname{Ker} A=\{0\}$, we have $\operatorname{Ran} B \subset$ $\operatorname{Ran} A^{*}$. So there exists $k \in \mathcal{H}$ such that $h=A^{*} k$. Then we have

$$
0=\left\langle B^{2} f \mid h\right\rangle=\left\langle B^{2} f \mid A^{*} k\right\rangle=\left\langle A B^{2} f \mid k\right\rangle
$$

From the fact

$$
\overline{\operatorname{Ran} A B^{2}}=\left(\operatorname{Ker} A B^{2}\right)^{\perp}=\mathcal{H},
$$

we get $k=0, h=0$ and $g=0$. This means $\operatorname{Ran} B=\mathcal{H}$.
Let P be the orthogonal projection onto $(\operatorname{Ker} A B)^{\perp}$. In the rest of this paper, we only compute $A^{n} B$ and $A B^{n}(n=1,2, \ldots)$, so we may assume that A and B have the following form:

$$
A=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & 0 \\
B_{21} & 0
\end{array}\right)
$$

with respect to the decomposition $(\operatorname{Ker} A B)^{\perp} \oplus(\operatorname{Ker} A B)$. Clearly we have $A B=$ $A B P=P A B$. Then we can show that A_{11}^{*} and B_{11} are positive with respect to the inner product induced by $A B$.
Theorem 5. For bounded linear operators A, B, there exist a pair of positive operators D_{1}, D_{2} on a Hilbert space \mathcal{K} and a bounded linear operator V from \mathcal{H} to \mathcal{K} such that

$$
A^{n+1} B^{m+1}=V^{*} D_{1}^{n} D_{2}^{m} V \text { for all } n, m \in \mathbb{N} \cup\{0\}
$$

Moreover, if $A^{2} B^{2} \geq 0$, then we have $D_{1} D_{2}=D_{2} D_{1}$.
Proof. We define a new inner product ($\cdot \mid \cdot$) on the closed subspace $(\operatorname{Ker} A B)^{\perp}$ by

$$
(x \mid y)=\langle A B x \mid y\rangle
$$

for all $x, y \in(\operatorname{Ker} A B)^{\perp}$. We denote by \mathcal{K} the completion of $(\operatorname{Ker} A B)^{\perp}$ by this inner product.

Let P be the orthogonal projection from \mathcal{H} onto $(\operatorname{Ker} A B)^{\perp}$. We define two linear operators D_{1}, D_{2} on $(\operatorname{Ker} A B)^{\perp}$ by $x \mapsto P A^{*} x, x \mapsto P B x$ respectively. It follows from (*) that $A^{3} B \geq 0$ and

$$
\begin{aligned}
\left(D_{1} x \mid D_{1} x\right) & =\left(P A^{*} x \mid P A^{*} x\right)=\left\langle A B P A^{*} x \mid P A^{*} x\right\rangle \\
& =\left\langle A^{2} B A^{*} x \mid x\right\rangle=\left\langle A^{3} B x \mid x\right\rangle \\
& =\left\langle\left.\left(A^{3} B A^{3} B\right)^{\frac{1}{2}} x \right\rvert\, x\right\rangle=\left\langle\left.\left(A B A^{* 2} A^{2} A B\right)^{\frac{1}{2}} x \right\rvert\, x\right\rangle \\
& \leq\left\|A^{2}\right\|\left\langle\left.(A B A B)^{\frac{1}{2}} x \right\rvert\, x\right\rangle=\left\|A^{2}\right\|\langle A B x \mid x\rangle \\
& =\left\|A^{2}\right\|(x \mid x),
\end{aligned}
$$

which show that D_{1} can be extended to a bounded linear operator on \mathcal{K}. Since we have

$$
\left(D_{1} x \mid x\right)=\left\langle A B P A^{*} x \mid x\right\rangle=\left\langle A B A^{*} x \mid x\right\rangle=\left\langle A^{2} B x \mid x\right\rangle \geq 0
$$

for all $x \in(\operatorname{Ker} A B)^{\perp}, D_{1}$ is a positive operator on \mathcal{K}. In a similar fashion, D_{2} can be extended to a positive operator on \mathcal{K}.

Since $P A^{*}=P A^{*} P$ and $P B=P B P$, we have $\left(P A^{*}\right)^{n}=P A^{* n}$ and $(P B)^{n}=$ $P B^{n}$. If we define a bounded linear operator V from \mathcal{H} to \mathcal{K} by $x \mapsto P x$ for any $x \in \mathcal{H}$, then we can get the required identity as follows:

$$
\begin{aligned}
\left\langle A^{n+1} B^{m+1} x \mid x\right\rangle & =\left\langle A^{n} A B B^{m} P x \mid P x\right\rangle \\
& =\left\langle A B P A^{* n} P B^{m} P x \mid P x\right\rangle \\
& =\left(D_{1}^{n} D_{2}^{m} V x \mid V x\right) \\
& =\left\langle V^{*} D_{1}^{n} D_{2}^{m} V x \mid x\right\rangle .
\end{aligned}
$$

The assumption $A^{2} B^{2} \geq 0$ implies the following relation:

$$
\left(D_{1} D_{2} x \mid x\right)=\left\langle A B P A^{*} P B x \mid x\right\rangle=\left\langle A^{2} B^{2} x \mid x\right\rangle \geq 0,
$$

so we have $D_{1} D_{2}=\left(D_{1} D_{2}\right)^{*}=D_{2} D_{1}$. This completes the proof.
With related to the above result, we have some examples as follows:
Example. We put

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-10 & 1 & 0 & 0 \\
4 & -1 & 0 & 0
\end{array}\right),
$$

then A, B satisfy (*) but $A^{2} B^{2}$ is not positive.
We put

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & -4 \\
2 & 2 & -4 & -6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

then A, B satisfy (*) and $A^{2} B^{2} \geq 0$ but $P A P$ and $P B P$ are not positive, where P is the orthogonal projection onto $(\operatorname{Ker} A B)^{\perp}$.

We consider the case that A, B are contractions and $A^{2} B^{2} \geq 0$. In the above proof, we see that D_{1} and D_{2} become commuting positive contractions. So we can get some results related to commuting positive contractions. For example, we have the following result:
Corollary 6. Let A, B be contractions which satisfy $A^{2} B^{2} \geq 0$. Let f, g be holomorphic functions on an open neighborhood of $\{z:|z| \leq 1\}$. If $f(0)=g(0)=0$, then

$$
\|f(A) g(B)\| \leq \sup \left\{\left|f^{[1]}(z) g^{[1]}(w)\right|: z, w \in[0,1]\right\}
$$

where

$$
f^{[1]}(t)=\left\{\begin{array}{ll}
\frac{f(t)}{t}, & (1 \geq t>0) \\
f^{\prime}(0), & (t=0),
\end{array} \quad g^{[1]}(t)=\left\{\begin{array}{cl}
\frac{g(t)}{t}, & (1 \geq t>0) \\
g^{\prime}(0), & (t=0)
\end{array}\right.\right.
$$

References

1. Halmos, P. R., A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1982.
2. Nagisa, M. and Wada, S., Averages of operators and their positivity, Proc. Amer. Math. Soc. 126 (1998), 499-506.
3. Takahashi K., On the converse of Fuglede-Putnam theorem, Acta. Sci. Math. 43 (1981), 123-125.

Department of Information and Computer Engineering, Kisarazu National College of Technology 2-11-1 Kiyomidai-Higashi, Kisarazu, Chiba, 292-0041, Japan.

E-mail address: wadaej.kisarazu.ac.jp

Received December 4, 1998
Revised January 19, 1999

[^0]: 1991 Mathematics Subject Classification. Primary 47B65; Secondary 47B44.
 The author would like to thank Professor Masaru Nagisa for the many invaluable discussions.

