Nihonkai Math. J. Vol.1(1990), 121-135

Shifts with two generators on the hyperfinite \mathbb{I}_1 -factor

Keiichi Watanabe

1. Introduction

R. T. Powers([6]) introduced a concept of a shift on the hyperfinite \mathbb{I}_1 -factor \Re , which is an identity preserving *-endmorphism σ such that $\bigcap_{k=1}^\infty \sigma^k(\Re) = \mathbb{C}1$. He defined the index of σ as the Jones index $[\Re:\sigma(\Re)]$. He discussed on conjugacy or on outer conjugacy of binary shifts which is a class of shifts of index two on \Re . A shift σ on \Re is said to be a binary shift if there is a unitary element $u \in \Re$ with $u^2 = 1$ which satisfies $\Re = \{\sigma^k(u) \ ; \ k \ge 0\}$ " and $u\sigma^k(u) = \pm \sigma^k(u)u$ for $k \in \mathbb{N}$. There are uncountably many non conjugate, at least countably many non outer conjugate binary shifts on \Re . Enomoto, Choda and Watatani considered a general shift σ on a group von Neumann algebra $\Re_m(G)$ on a group G twisted by a multiplier m such that the shift σ is induced from a shift on G, and they generalized results of Powers' binary shifts. Bures and Yin also independently studied the shifts as mentioned above.

In this paper we consider a class of shifts which have two generators in a sense. At first, we shall show that a shift with two

generators assumed some conditions is a shift induced from the ones on the restricted direct product $G = \coprod_{i=0}^{\infty} \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Secondly, we give a sufficient condition for a multiplier m which makes $R_m(G)$ a factor. Then, under some condition, we shall express the relative commutant algebras $\sigma^n(R_m(G))' \cap R_m(G)$ in terms of the three sequences which determine the multiplier m.

2. Shifts with two generators

Let G be a countable discrete group. A multiplier m on G is a map from G×G into $\mathbb{T}=\{z\in\mathbb{C}\ ; \ |z|=1\}$ such that $m(1_G,x)=m(x,1_G)=1$ and m(x,y)m(xy,z)=m(x,yz)m(y,z) for $x,y,z\in G$. We denote by λ_m the left regular projective representation of G associated with m on the Hilbert space $l^2(G)$. That is, $(\lambda_m(x)\xi)(y)=m(x,x^{-1}y)\xi(x^{-1}y)$ for $\xi\in l^2(G)$.

Powers defined binary shifts using a generator (one unitary operator) and commutation relations between two images of the generator under the shift.

Definition 2.1. Let σ be a shift on the hyperfinite \mathbb{I}_1 -factor \Re . Then we say that σ has two generators if there exist two unitary operators u and v in \Re which satisfy the following conditions (1),(2) and (3);

(1)
$$u^2 = 1$$
 and $v^2 = 1$

(2)
$$\{\sigma^{i}(u), \sigma^{j}(v); i, j \geq 0\}^{"} = \Re$$

(3)
$$\sigma^{i}(u)\sigma^{j}(v) = \sigma^{j}(v)\sigma^{i}(u)$$
 or $-\sigma^{j}(v)\sigma^{i}(u)$, $u\sigma^{i}(u) = \sigma^{i}(u)u$ or $-\sigma^{i}(u)u$ and $v\sigma^{i}(v) = \sigma^{i}(v)v$ or $-\sigma^{i}(v)v$.

A function a: $\mathbb{Z} \longrightarrow \{0,1\}$ is called a signature sequence if a(n)=a(-n) for any $n\in\mathbb{Z}$. For any shift σ which has two generators, there exist three signature sequences b, a_u and a_v such that

$$\sigma^{i}(u)\sigma^{j}(v) = (-1)^{b(i-j)}\sigma^{j}(v)\sigma^{i}(u),$$

$$u\sigma^{i}(u) = (-1)^{a_{u}(i)}\sigma^{i}(u)u \text{ and }$$

$$v\sigma^{i}(v) = (-1)^{a_{v}(i)}\sigma^{i}(v)v.$$

Here we should note that it need not be b(0) = 0.

Due to a characterization of group shifts by Bures and Yin([1; Proposition 2.1]), a shift which has two generators is a group shift. Enomoto, Choda and Watatani introduced in [4] a notion of a commutation relator in order to generalize results of Powers' binary shifts to the shifts induced by the shifts on a countable discrete group. They showed that there exists a one to one correspondence between the set of all commutation relators and a class of bicharacter on the restricted direct product of the group. Here we need a slightly modified their results as follows.

Definition 2.2. Let G be a countable discrete group. Let $G_i = G$ for $i = 0,1,2,\cdots$ and $K = \coprod_{i=0}^{\infty} G_i$, the restricted direct product. Let G_i be the set of elements $(x_j)_{j \geq 0}$ in K such that $K_j = 1_G$ for $j \neq i$. We denote by ρ_i the canonical isomorphism from G to

 \tilde{G}_i in X. A function a: $\mathbb{Z} \times G \times G \longrightarrow \mathbb{T}$ is called a commutation relator if

- (1) a(n;gh,k) = a(n;g,k)a(n;h,k)
- (2) a(n;g,hk) = a(n;g,h)a(n;g,k)
- (3) $a(n;g,h) = \overline{a(-n;h,g)}$ for any $n \in \mathbb{Z}$, $g,h,k \in G$.

Let Comm(G) be the set of all commutation relators. Let σ be the canonical shift on X. Let $Bich(\hat{X},\mathbb{T})$ be the set of all functions $m: X \times X \longrightarrow \mathbb{T}$ such that

- (a) m is a bicharacter
- (b) $m(\sigma(x),\sigma(y)) = m(x,y)$
- (c) $m(\rho_i(g), \rho_i(h)) = 1$ if i < j.

Let u be a mapping from $X_0 = \bigcup_{i=0}^{\infty} \rho_i(G)$ to the unitary group U(B(H)) of B(H) on a separable Hilbert space H. Then u is called a generator representation with respect to an element a in Comm(G) if u satisfies the following conditions;

(i) $u(\rho_{i}(g))u(\rho_{j}(h)) = a(i-j;g,h)u(\rho_{j}(h))u(\rho_{i}(g))$ for $g,h \in G$ (ii) $u(\rho_{i}(g))u(\rho_{i}(h)) = a(0;g,h)u(\rho_{i}(gh))$ for $g,h \in G$.

Remark 2.3. Under the situation in [4], we should consider that a(0;g,h)=1, $g,h\in G$ provided that G is abelian. Indeed, the restriction of u to $\rho_i(G)$ is defined to be a unitary representation in [4; Definition 3.2]. It is the only difference of the above definition of Comm(G) from the one in [4] that a commutation relator is defined on $\{0\}\times G\times G$ and may not equal 1. Also the only difference between two definitions of Bich(X,T) is the conditions "if i < j" or "if $i \le j$ " in (c).

Then we have the following lemmas. Proofs of those are similar to the proofs of the corresponding lemmas in [4], and it should be omitted.

Lemma 2.4(cf.[4;Lemma 3.1]). There is a one to one correspondence between Comm(G) and Bich(X,T) such that

$$m(x,y) = \prod_{\substack{(i,j) \in (\mathbb{N} \cup \{0\}) \times (\mathbb{N} \cup \{0\}) \\ i \geq j}} a(n;g,h) = m(\rho_i(g),\rho_j(h))/m(\rho_j(h),\rho_i(g)) \text{ if } n = i-j > 0$$

$$m(\rho_i(g),\rho_i(h)) \text{ if } n = 0.$$

Lemma 2.5(cf.[4;Lemma 3.3]). There exists a one to one correspondence between the set of all projective representations u from X into U(B(H)) with respect to elements in Bich(X, \mathbb{T}) and the set of all generator representations from X_O into U(B(H)).

From now on, we consider the case of $G = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Let a_1 , a_2 , be signature sequences such that $a_1(0) = a_2(0) = 0$ and b(0) may not equal 0.

Let a be an element in $\operatorname{Comm}(\mathbb{Z}_2\oplus\mathbb{Z}_2)$ determined by the following conditions;

$$a(n; \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = (-1)^{a_1(n)}$$

$$a(n; \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (-1)^{a_2(n)}$$

$$a(n; \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = a(n; \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = (-1)^{b(n)}.$$

Then there exists an element m in Bich(X, \mathbb{T}) by Lemma 2.4, and the canonical $\mathbb{Z}_2\oplus\mathbb{Z}_2$ -shift σ associated with m has two generators

$$\lambda_{m}(e_{0}^{1}) \quad \text{and} \quad \lambda_{m}(e_{0}^{2}) \text{, where we put } e_{j}^{1} = \rho_{j}(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) \quad \text{and} \quad e_{k}^{2} = \rho_{k}(\begin{pmatrix} 0 \\ 1 \end{pmatrix}).$$

Proposition 2.6. Let σ is a shift which has two generators u and v. Put $\mathfrak{P}=\{\sigma^i(u);i\geq 0\}$ " and $\mathfrak{Q}=\{\sigma^j(v);j\geq 0\}$ ". Assume the following conditions (1) and (2);

- (1) $\mathfrak{P} \cap \mathfrak{Q} = \mathbb{C}1$
- (2) $\dim(\beta) = \infty$ and $\dim(\Omega) = \infty$.

Then σ is conjugate to a $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ -shift.

Proof. Put $S = \{u,v\}$ and denote by $G_{\sigma}(S)$ the group of unitaries generated by $\{\sigma^k(S); k \geq 0\}$. Let G be the quotient group $G_{\sigma}(S)/G_{\sigma}(S)\cap \mathbb{C}$. Due to [1;Proposition 2.1], it is enough to prove that G is isomorphic to $\coprod_{i=0}^{\infty} \mathbb{Z}_2 \oplus \mathbb{Z}_2$. However we can define a group isomorphism Φ from G to $\coprod_{i=0}^{\infty} \mathbb{Z}_2 \oplus \mathbb{Z}_2$ as follows;

$$\Phi([u^{k(0)}\sigma(u)^{k(1)}\cdots\sigma^{n}(u)^{k(n)}v^{l(0)}\sigma(v)^{l(1)}\cdots\sigma^{n}(v)^{l(n)}])$$

 $= k(0)e_0^1 + \cdots + k(n)e_n^1 + l(0)e_0^2 + \cdots + l(n)e_n^2.$ Indeed, if $[u^{k(0)}\sigma(u)^{k(1)}\cdots\sigma^n(u)^{k(n)}v^{l(0)}\sigma(v)^{l(1)}\cdots\sigma^n(v)^{l(n)}] = l_G$, then there is a scalar $\alpha \in \mathbb{C}$ such that $u^{k(0)}\sigma(u)^{k(1)}\cdots\sigma^n(u)^{k(n)} = \alpha v^{l(0)}\sigma(v)^{l(1)}\cdots\sigma^n(v)^{l(n)}$. By the assumption (1), we have $u^{k(0)}\sigma(u)^{k(1)}\cdots\sigma^n(u)^{k(n)} \in \mathbb{C}1$. Suppose that there exists a number $k(i) \neq 0$. Putting $i_0 = \max(i;k(i) \neq 0, 0 < i < n)$, we can easily see $\mathfrak{P} = \{\sigma^i(u);0 \le i < i_0\}$ ". This contradicts to $\dim(\mathfrak{P}) = \infty$. Thus we have $k(0) = \cdots = k(n) = l(0) = \cdots = l(n) = 0$. Thus G is isomorphic to $\coprod_{i=0}^{\infty} \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Remark 2.7. In the assumption of the previous proposition, if $u \in \sigma(\Re)$ then we have $\dim(\Re) = \infty$. Indeed, one can immediately see

that the set $\{u, \sigma(u), \sigma^2(u), \cdots\}$ is linearly independent.

3. Factor condition and relative commutant algebras

Let $G = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and $X = \coprod_{i=0}^{\infty} G_i$, where $G_i = G$. Let s be the canonical shift on X which is defined by $s(e_i^1) = e_{i+1}^1$ and $s(e_i^2) = e_{i+1}^2$. Let a_1 , a_2 and b be signature sequences which need not be b(0) = 0. Then there is an element m in $Bich(X,\mathbb{T})$ corresponding to a_1 , a_2 and b by Lemma 2.4. We denote by ρ the character of the second exterior product $X \land X$ which is induced by m via

$$\rho(g \wedge h) = m(g,h) \overline{m(h,g)}, g,h \in X.$$

In this section we study some suffitient conditions in terms of a_1 , a_2 and b for m to be non-degenerate, i.e, $\lambda_m(X)$ " is a factor. Also we shall give some examples to show that some analogue of the results of n-shifts are false.

Lemma 3.1. Suppose $g = \sum_{j=0}^{\infty} g_j^1 e_j^1 + g_j^2 e_j^2 \in X$, where g_j^1 , $g_j^2 \in \mathbb{Z}_2$ Then $\rho(g \wedge s^m(X)) = 1$ if and only if $\sum_{j=0}^{\infty} g_j^1 a_1^{(k-j)} + g_j^2 b^{(k-j)} = 0$ for all $k \geq m$.

$$\sum_{j=0}^{\infty} g_{j}^{1} b(k-j) + g_{j}^{2} a_{2}(k-j) = 0$$

Proof. Since $s^{m}(X)$ is generated by $\{e_{k}^{1}, e_{l}^{2}; k, l \ge m\}$, $\rho(g \land s^{m}(X))$ = 1 if and only if $\rho(g \land e_{k}^{1}) = \rho(g \land e_{l}^{2}) = 1$ for all $k, l \ge m$. On the other hand, we have $\rho(e_{j}^{1} \land e_{k}^{1}) = m(e_{j}^{1}, e_{k}^{1}) \overline{m(e_{k}^{1}, e_{j}^{1})} = a_{1}(k-j; {1 \choose 0}, {1 \choose 0}) = (-1)^{a_{1}(k-j)}$. Similarly, $\rho(e_{j}^{2} \land e_{k}^{2}) = (-1)^{a_{2}(k-j)}$ and $\rho(e_{j}^{1} \land e_{k}^{2}) = (-1)^{a_{2}(k-j)}$

 $\rho(e_j^2 \wedge e_k^1) = (-1)^{b(k-j)}$. Then it follows that

$$\rho(g \wedge e_k^1) = \rho(\sum_{j=0}^{\infty} g_j^1 e_j^1 \wedge e_k^1 + g_j^2 e_j^2 \wedge e_k^1) = \prod_{j=0}^{\infty} \rho(e_j^1 \wedge e_k^1)^{g_j^1} \rho(e_j^2 \wedge e_k^1)^{g_j^2}$$

$$= (-1)^{\sum_{j=0}^{\infty} g_j^1 a_1(k-j) + g_j^2 b(k-j)}.$$

The second equality follows similarly. This completes the proof.

Price showed that a multiplier m on $\coprod_{i=0}^{\infty} \mathbb{Z}_2$ associated with a signature sequence a is nondegenerate if and only if a is not periodic.

Example 3.2. Let $a_1 = a_2 = (0,0,1,0,1,0,1,\cdots)$ and $b = (1,0,0,1,\cdots)$. Namely, $a_1(0) = a_2(0) = 0$, $a_1(2j-1) = a_2(2j-1) = 0$, $a_1(2j) = a_2(2j) = 1$, b(0) = 1 and b(j) = 0 for all $j \in \mathbb{N}$. Then a_1 , a_2 and b are not periodic at all, however the corresponding element $m \in Bich(X,T)$ is degenerate. Indeed, putting $g = e_0^1 + e_0^2 + e_2^1 + e_2^2$, it is easy to see that $\rho(g \wedge X) = 1$.

A signature sequence a is called to be essentially periodic if there exist integers p > 0 and $N \ge 0$ such that a(i+p) = a(i) for all $i \ge N(cf.[5;Definition 3.1])$.

Lemma 3.3. Let a_1 , a_2 and b be nonzero signature sequences which may not be b(0) = 0. Let m be an element in Bich(X,T) corresponding to a_1 , a_2 and b. If $\lambda_m(X)$ " is not a factor, then a_1 , a_2 and b are essentially periodic.

This proposition can be proved by a similar way to some proof of

the corresponding result for n-shifts(see [1] for instance). However we give a proof for completeness.

Proof. Since $\lambda_m(X)$ " is not a factor, there exists a nonzero element g in X such that $\rho(g \wedge X) = 1$. Put $i_1 = \min\{j; g_j^1 \neq 0\}$, $j_1 = \max\{j; g_j^1 \neq 0\}$, $i_2 = \min\{j; g_j^2 \neq 0\}$ and $j_2 = \max\{j; g_j^2 \neq 0\}$. Also we put $d_1 = \max\{i \in \mathbb{N}; a_1(i) \neq 0\}$, $d_2 = \max\{i \in \mathbb{N}; a_2(i) \neq 0\}$ and $d_b = \max\{i \in \mathbb{N} \cup \{0\}; b(i) \neq 0\}$. Then by Lemma 3.1, g satisfies the following formulae;

(*)
$$\sum_{j=i}^{j} {}_{1} g_{j}^{1} a_{1}(k-j) + \sum_{j=i}^{j} {}_{2} g_{j}^{2} b(k-j) = 0$$

(**)
$$\sum_{j=i_2}^{j_2} g_j^2 a_2(k-j) + \sum_{j=i_1}^{j_1} g_j^1 b(k-j) = 0$$

for all integer $k \ge 0$. We may assume that $j_1 \le j_2$. Especially, when $k > d_b + j_2$, we have $g_j^1b(k-j) = 0$ for any $j \ge 0$. It follows from the formula (**) that

 $a_2(k-i_2) = \Phi(a_2(k-i_2-1), a_2(k-i_2-2), \cdots, a_2(k-j_2))$ for $k > d_b + j_2$, where Φ is a fixed linear function. Let $r = j_2-i_2$ and assume first that r > 0. Then we have

Now assume that r=0. It follows from the formula (**) that $g_{i_2}^2 a_2^{(k-i_2)} = 0$ for $k > d_b + j_2$. Hence we have $a_2(k) = 0$ for all k

> d_b.

Similarly we obtain the essentially periodicity of \mathbf{a}_1 and \mathbf{b}_2 . This completes the proof.

When the signature sequences have only finite supports, we can realize the relative commutant algebras $\sigma^n(\Re)' \cap \Re$ concretely as well as n-shifts. The result contains a suffitient condition for a_1 , a_2 and b such that m makes $\lambda_m(X)''$ a factor.

Theorem 3.4. Let a_1 , a_2 and b be nonzero signature sequences whose supports are finite. Put $d_1 = \max\{i \in \mathbb{N}; a_1(i) \neq 0\}$, $d_2 = \max\{i \in \mathbb{N}; a_2(i) \neq 0\}$ and $d_b = \max\{i \in \mathbb{N} \cup \{0\}; b(i) \neq 0\}$. Let m be the multiplier associated with a_1 , a_2 and b. Consider the following conditions (i) and (ii);

- (i) $d_b \le d_1 \le d_2$ and $d_b < d_2$
- (ii) $d_1 \le d_2 \le d_b$ and $d_1 < d_b$.

If either (i) or (ii) is satisfied, then $\lambda_m(X)$ " is a hyperfinite \mathbb{I}_1 -factor. Moreover, for the case of (i), we have

For the case of (ii), we have

$$\begin{split} \sigma^n(\Re)\,'\, \cap\, \Re &=\, \mathbb{C}1 \quad \text{if} \quad 0\, \leq\, n\, \leq\, d_b \quad \text{and} \\ \sigma^n(\Re)\,'\, \cap\, \Re &=\, \{\lambda_m(e_j^1)\,,\, \lambda_m(e_j^2)\,\,;\,\, 0\, \leq\, i\,,j\, \leq\, n-d_b-1\}\,'' \quad \text{if} \quad d_b+1\, \leq\, n\,. \end{split}$$

Proof. For a subgroup Y of X, we put $D_Y = \{g \in X ; \rho(g \land h) = 1\}$

for all $h \in Y$). We shall prove the theorem only for the case of (i) (a similar proof works for the case of (ii)). Due to [1; Corollary 1.3], it is sufficient to show the following;

 $D_{s^{n}(X)} = [e_{i}^{1}, e_{j}^{2}; 0 \leq i \leq n-d_{1}-1, 0 \leq j \leq n-d_{2}-1] \quad \text{if} \quad d_{2}+1 \leq n,$ where we denote by $[e_{i}^{1}; 0 \leq i \leq n-d_{1}-1] \quad \text{the subgroup of } X$ generated by $e_{i}^{1}, 0 \leq i \leq n-d_{1}-1$. It is clear that $D_{s^{n}(X)} \quad \text{containes}$ the right side of the above formula in each case. We shall show the reverse inclusion. At first, we assume that the condition (i) is satisfied. Suppose that there exists a nonzero element g in $D_{s^{n}(X)} \quad \text{s}^{n}(X)$ Put $j_{1} = \max\{j; g_{j}^{1} \neq 0\}$ and $j_{2} = \max\{j; g_{j}^{2} \neq 0\}$. It follows from Lemma 3.1 that

(*)
$$\sum_{j=0}^{j} g_{j}^{1} a_{1}(k-j) + \sum_{j=0}^{j} g_{j}^{2} b(k-j) = 0$$

$$(**) \sum_{j=0}^{j} g_{j}^{2} a_{2}(k-j) + \sum_{j=0}^{j} g_{j}^{1} b(k-j) = 0$$

for each integer $k \ge n$.

Step(1). Let $0 \le n \le d_1$. If $j_1 \le j_2$, then we can apply the formula (**) for $k = d_2 + j_2 \ge d_1 \ge n$. It follows from $d_b \le d_2$ that all terms in the formula (**) except of $g_{j_2}^2 a_2(d_2)$ equal to 0. Hence $g_{j_2}^2 a_2(d_2) = 0$. Since $a_2(d_2) = 1$, we have $g_{j_2}^2 = 0$. This is a contradiction. If $j_1 > j_2$, then we can apply the formula (*) for $k = d_1 + j_1 \ge n$. Then all terms in (*) except of $g_{j_1}^1 a_1(d_1)$ equal to 0. Hence $g_{j_1}^1 a_1(d_1) = 0$. Since $a_1(d_1) = 1$, we have $g_{j_1}^1 = 0$. This is

a contradiction. Therefore we conclude that $g_j^1 = 0$ for all integers $j \ge 0$.

Step(2). Let $d_1+1 \le n$. Assume that $g_s^2=1$ for some $s\ge 0$. Then a similar argument in step(1) immediately yields a contradiction. Therefore $g_j^2=0$ for all integers $j\ge 0$. Assume that $g_s^1=1$ for some $s\ge n-d_1$. If $j_1\le j_2$, we have by the assumption that $j_1\ge s\ge n-d_1$. Thus we can apply the formula (**) for $k=d_2+j_2\ge d_1+j_1\ge n$, and we have a contradiction as step(1). If $j_1>j_2$, considering the formula (*) for $k=d_1+j_1\ge n$, we reach a contradiction similarly. Therefore $g_j^1=0$ for all integers $j\ge n-d_1$. Step(3). Let $d_2+1\le n$. Assume that $g_s^2=1$ for some $s\ge n-d_2$. Then

Step(3). Let $d_2+1 \le n$. Assume that $g_S^2 = 1$ for some $s \ge n-d_2$. Then we have $j_2 \ge s \ge n-d_2$. Considering the formula (**) for $k = d_2 + j_2$ $\ge n$, we have a contradiction as above. Therefore $g_j^2 = 0$ for all integers $j \ge n-d_2$. Clearly these arguments complete the proof. \square

Remark 3.5. In the above proposition, we can not drop the condition (i) or (ii). Let $a_1=a_2=b$. Then $\rho(g\wedge X)=1$ for any g in X such that $g_1^1=g_1^2$ for all $j\geq 0$.

Corollary 3.6. There are at least a countable infinity of outer conjugacy classes among the $\mathbb{Z}_2\oplus\mathbb{Z}_2$ -shifts.

Proof. Fix any integer $d \ge 1$. Let $a_1^d = a_2^d = (0, \cdots, 0, 1, 0, \cdots)$ and $b = (1, 0, 0, \cdots)$. Namely, $a_1^d(d) = a_2^d(d) = 1$ and $a_1^d(i) = a_2^d(i) = 0$ for $i \ne d$, b(0) = 1 and b(i) = 0 for $i \ne 0$. Then $d_b < d_1 = d_2$. Denote by σ_d the $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ -shift associated with a_1^d , a_2^d and b.

It follows from the proceeding theorem that $\sigma_d^n(\Re)' \cap \Re = \mathbb{C}1$ if $n \leq d$ and $\sigma_d^n(\Re)' \cap \Re \neq \mathbb{C}1$ if $n \geq d+1$. Since the relative commutant algebras are invariant under outer conjugacy, σ_{d_1} is not outer conjugate to σ_{d_2} if $d_1 \neq d_2$. Thus we have countable infinity of outer conjugacy classes among the $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ -shifts. This completes the proof.

Finally, we shall consider a converse of Proposition 3.3 and Theorem 3.4. Let a_1 , a_2 and b are signature sequences and let m be the element in Bich(X,T) associated with a_1 , a_2 and b. Assume that $\lambda_m(X)$ " is a factor. Is it necessary that one of a_1 , a_2 and b is not essentially periodic? Is it necessary that all of a_1 , a_2 and b have finite supports? The following example gives an answer to the above question.

Example 3.7. Let $a_1=(0,1,0,0,\cdots)$, $a_2=(0,1,1,1,\cdots)$ and $b=(1,0,0,\cdots)$. Namely, $a_1(1)=1$ and $a_1(i)=0$ if $i\neq 1$, $a_2(i)=1$ if $i\neq 0$ and $a_2(0)=0$, b(0)=1 and b(i)=0 if $i\neq 0$. Then all of these signature sequences are essentially periodic, and a_2 does not have finite support. However $\lambda_m(X)$ " is a factor.

Proof. It is sufficient to show that $\{g \in X : \rho(g \land X) = 1\} = \{0\}$. Suppose that there exists a nonzero element $g = \sum_{j=0}^{\infty} g_j^1 e_j^1 + g_j^2 e_j^2$ in X such that $\rho(g \land X) = 1$.

Then g satisfies the following conditions;

$$(1) \quad g_1^1 + g_0^2 = 0$$

(2)
$$g_{k-1}^1 + g_{k+1}^1 + g_k^2 = 0$$
 for all $k \ge 1$

(3)
$$\sum_{\substack{j \geq 0 \\ i \neq k}} g_j^2 + g_k^1 = 0$$
 for all $k \geq 0$.

Suppose that $\sum_{j\geq 0}g_j^2=1$. Considering the formula (3) for sufficiently large k, we have $g_k^1=1$ for infinitely many k. This is a contradiction, and we have $\sum_{j\geq 0}g_j^2=0$. Adding this and the equation (3), we have $g_k^2=g_k^1$ for all $k\geq 0$. So we put $g_k=g_k^1=g_k^2$. From the equation (1) and (3) for k=1, one can see that $\sum_{j\geq 2}g_j=0$. Therefore $g_0+g_1=0$. Also we see from the equation (2) for k=1 that $g_0+g_2+g_1=0$. Hence $g_2=0$.

Suppose that $g_{3(m-1)}=g_{3(m-1)+1}$ and $g_{3(m-1)+2}=0$ for some positive integer m. It follows from the equation (2) that $g_{k-1}+g_{k+1}+g_k=0$. Since $g_{3m-1}=0$, we have $g_{3m-2}=g_{3m}$ from the equation for k=3m-1. Similarly, the equation for k=3m says that $g_{3m+1}=g_{3m}$. When k=3m+1, we have $g_{3m}+g_{3m+2}+g_{3m+1}=0$, and so $g_{3m+2}=0$. By an induction, we conclude that $g_{3m}=g_{3m+1}=g_0$ and $g_{3m+2}=0$ for all integers $m\geq 0$. Since g belongs to the restricted direct product, we have g=0. This completes the proof.

References

- [1] D.Bures and H.S.Yin, Shifts on the hyperfinite factor of type \mathbb{I}_1 , J.Operator Theory, 20(1988), 91-106.
- [2] M.Choda, Shift on the hyperfinite \mathbb{I}_1 factor, J.Operator Theory 17(1987), 223-235.
- [3] M. Enomoto and Y. Watatani, Powers' binary shifts on the

- hyperfinite factor of type \mathbb{I}_1 , Proc.Amer.Math.Soc.,105, No.2(1989), 371-374.
- [4] M.Enomoto, M.Choda and Y.Watatani, Generalized Powers' binary shifts on the hyperfinite \mathbb{I}_1 factor, Math.Japon.,33,No.6(1988), 831-843.
- [5] M.Enomoto, M.Nagisa, Y.Watatani and H.Yoshida, Relative commutant algebras of Powers' binary shifts on the hyperfinite \mathbb{I}_1 -factor, preprint 1989.
- [6] V.Jones, Index for subfactors, Invent Math., 72(1983), 1-25.
- [7] R.T.Powers, An index theory for semigroups of *-endmorphisms of B(H) and type \mathbb{I}_1 factors, Can.J.Math., 40(1988), 86-114.
- [8] G.Price, Shifts on type \mathbb{I}_1 factors, Can.J.Math.,39(1987), 492-511.
- [9] G.Price, Shifts on integer index on the hyperfinite \mathbb{I}_1 factor, Pacific J.Math., 132(1988), 379-390.

Keiichi Watanabe

Department of Mathematics

Faculty of Science

Niigata University

Niigata, 950-21 Japan

Received January 7, 1990