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Shifts with two generators on the hyperfinite Hl-factor

Keiichi Watanabe

1. Introduction

R. T. Powers([6]1) introduced a concept of a shift on the
hyperfinite Hl—factor R, which is an identity preserving
*-endmorphism ¢ such that nkzlak(ﬁ) = C1. He defined the indéx of
o as the Jones index [R:0(R)). He discussed on conjugacy or on
outer conjugacy of binary shifts which is a class of shifts of index
two on R. A shift ¢ on R is said to be a binary shift if there

is a unitary element u € R with u2 = 1 which satisfies R =

¥ cw ;s k =2 0)" and wo¥w) = 2o¥(wu for k € N. There are
uncountably many non conjugate, at least countably many non outer
conjugate binary shifts on R. Enomoto, Choda and Watatani considered
a general shift ¢ on a group von Neumann algebra Rm(G) on a group
G twisted by a multiplier m such that the shift o is induced
from a shift on G, and they generalized results of Powers' binary
shifts., Bures and Yin also independently studied the shifts as
mentioned above.

In this paper we consider a class of shifts which have two

generators in a sense. At first, we shall show that a shift with two
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generators assumed some conditions is a shift- induced from the ones
on the restricted direct product G = Hi:OZZQZZ' Secondly, we give a
sufficient éondition for a multiplier m which makes Rm(G> a
factor. Then, under some condition, we shall express the relative
commutant algebras on(Rm(G))' n Rm(G) in terms of the three

sequences which determine the multiplier m.

2. Shifts with two _generators

Let G be a countable discrete group. A multiplier m on G is
a map from GxG into T = (z € € ; |z| = 1) such that m(ls,X)
m(x.lG) = 1 and m(x,y)m(xy,z) = m(x,yz)m(y,z) for X,¥y,2 € G.
We denote by An the left regular projective representation of G

associated with m 'on the Hilbert space LZ(G). That is, (Am(x)ﬁ)(y)

= m(x, x—ly)ﬁ(xgly) for £ € 12G).

Powers defined binary shifts wusing a generator(one wunitary
operator) and commutation relations between two images of the

generator under the shift.

Definition 2.1. Let o be a shift on the hyperfinite I -factor
R. Then we say that o has two generators if there exist two unitary
operators u and Vv in R which satisfy the following conditions
(1),(2) and (3);

(1> u? = 1 and v% = 1

2y tolw), odvy; i, 200 = R
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3) ol (wedv) = sl wiotwy or -odvmiclcw,

ol(u)u or —ol(u)u and

uol(u)

ol(v)v or —ol(v)v.

H

vol(vy

A function a:Z — {0,1} is called a signature sequence if

a(n) = a(-n) for any n € Z. For any shift ¢ which has two
generators, there exist three signature seguences b, au and a,
such that
olcwod(vy = (-1HPUGigyolyy,
. a_ (i)
wlw = -1) ¥ ol(uwu and
i av(i) i
vo (v) = (-1) g (Vv)v.

Here we should note that it need not be b(0) = 0.

Due to a characterization of group shifts by Bures and Yin([1;
Proposition 2.11), a shift which has two generators is a group shift.
Enomoto, vChoda and Watatani introduced in [4] a notion of a
commutation relator in order to generalize results of Powers' binary
shifts to the shifts induced by the shifts on a countable discrete
group. They showed that there exists a one to one correspondence
between the set of all commutation relators and a class of
bicharacter on the restricted direct product of the groub. Here we

need a slightly modified their results as follows.

Definition 2.2, Let G ©be a countable discrete group. Let Gi =

G for i =0,1,2,+ and X = ui:OGi’ the restricted direct product.

Let Gi be the set of elements (xj)jz in X such that xj = 1

0 G
for j # i. We denote by pi the canonical isomorphism from G to
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Ei in X. A function a:Z X G X G — T is called a commutation
relator if

(1) a(n;gh,k) = a(n;g,k)a(n;h,k)

(2) a(n;g,hk) = a(n;g,h)a(n;g,k)

(3) a(n;g,h) = a(-n;h,g)

for any n € Z, g,h,k € G.

Let Comm(G) be the set of all commutation relators. Let ¢ be
the canonical shift on X. Let Bich(X,T) be the set of all
functions m:X x X — T such that

(a) m 1is a bicharacter

(b) m(o(x),0(y)) = m(x,y)

(c) m(pi(g),pj(h)) =1 if i < j.

Let u be a mapping from X, = Uizopi(G) to the unitary group
U(B(H)) of B(H) on a separable Hilbert space H. Then u is
called a generator representation with respect to an element a in
Comm(G) if u satisfies the following conditions;

(i) u(pi(g))u(pj(h)) = a(i-j;g,h)u(pj(h))U(pi(g)) for g,h € G

(i1) ulp, (g))ulp, (h)) = al0;g,h)ulp, (gh)) for ",h € G.

Remark 2.3. Under the situation in [4]1, we should consider that
a(0;g,h) = 1, g,h € G provided that G is abelian. Indeed, the
restriction of u to pi(G) is defined to be a unitary
representation in [4; Definition 3.2]. It is the only difference of
the above definition of Comm(G) from the one in [4] that a
commutation relator is defined on {0} X G X G and may not equal 1.
Also the only difference between two definitions of Bich(X,T)

is the conditions *if i<j” or *if i£j” in (e¢).
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"Then we have the following lemmas. Proofs of those are similar
to the proofs of the corresponding lemmas :in [4], and it should be

omitted.

Lemma 2.4(cf.[4;Lemma 3.11). There is a one to one correspondence

between Comm(G) and Bich(X,T) such that

m(x,y) = I a(i=-jxid),y(in
(i,jre(N U{or)xN U{o})
izj
a(n;g,h) = m(pi(g),pj(h))/m(pj(h),pi(g)) if n=1i-j > 0
m(pi(g),pi(h)) if n = 0.
Lemma 2.5(cf.[4;Lemma 3.31). There exists a one to one

correspondence between the set of all projective representations u
from X into U(B(H)) with respect to elements in Bich(X,TH and
the set of all generator representations from XO into U(B(H)).

. Let a

From now on, we consider the case of G = ZZGZ a,, b

2 1’
be signature sequences such that al(O) = a2(0) = 0 and b(0) may
not equal O.

Let a be an element in Comm(ZZQZZ) determined by the

following conditions;

a, (n) —
1 1 — .14 1
a(na(o)’(o)) = (-1)
a,(n)
. {0 0 - 2
a(n; (1), (1)> = ( 1)

(1) (o L(0Y (1Y, _ ,_,.b(n)

Then there exists an element m in Bich(X,T) by Lemma 2.4, and the

canonical Zzezz—shift o associated with m has two generators
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Am(eé) and Am(eg), where we put e} = pj((l)) and ei = pk((?)).

Proposition 2.6. Let o is a shift which has two generators u
and v. Put B = (oi(u);iko)" and R = (oj(v);jZO)". Assume the
following conditions (1) and (2);

(1) PnQ =C1

(2) dim(PB) = » and dim(Q) = =,

Then o© is conjugate to a Zzelz-shift.

Proof. Put S = {u,v} and denote by GO(S) the group of
unitaries generated by (ok(S);kzo). Let G be the quotient group

GO(S)/GO(S)nC. Due to [1;Proposition 2.1, it is enough to prove that

@

G is isomorphic to Ui=022®22. However we can define a group
isomorphism & from G to Hi:oZZQZZ as follows;
Q([uk(O)o(u)k(l)---an(u)k(n)vL(O)a(v)L(l)--'on(v)L(n)])
= k(O)eg + +++ + k(mdel + 1(0rel + -0 4 L(nyel.

Indeed, if [uk(O)a(u)k(l),,,an(u)k(n)vL(O)a(v)L(l),,,an(v)L(n)]
1G’ then there is a scalar o € C such that
uk(O)a(u)k(l)--~an(u)k(") - avL(O)a(v)L(l)--»an(v)L(n). By the
assumption (1), we have uk(O)O(u)k(1)°--on(u)k(h) € C1. Suppose that

there exists a number k(i) # 0. Putting i max{i;k(i) # 0, 0OKixg

0
n}, we can easily see B = (oi(u);O$i<io)". This contradicts to
dim(B) = <., Thus we have k(0) = +++ = k(n) = L(0) = +++ = L(n) = O.
Thus G 1is isomorphic to Hi=022922. o

Remark 2.7. In the assumption of the previous proposition, if u

€ o(R) then we have dim(B) = o, Indeed, one can immediately see
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that the set (u,o(u),oz(u),°'°} is linearly independent.

3. Factor condition and relative commutant algebras

Let G = Z,0Z, and X = u.” G., where G, = G. Let s be the
i=071 i

canonical shift on X which is defined by s(ei) = eiil and s(e?)
= eifl' Let al, a2 and b be signature sequences which need not be

b(0) = 0. Then there is an element m in Bich(X,T) corresponding to

aj, a, and b by Lemma 2.4. We denote by ¢p the character of the

second exterior product XAX which is induced by m via
p(gAh) .= m(g,h)m(h,g), g,h € X.
In this section we study some suffitient conditions in terms of a

a and b for m to be non-degenerate, i.e, Am(X)" is a factor.

2
Also we shall give some examples to show that some analogue of the

J

results of n-shifts are false.

1.1 2
L€’
J

L 2 1 2
A O = . . e, € s - . €
Lemma 3 1. Suppose g ZJ=OgJeJ + gje] X, where g5 B Z2

Then p(gAs™(X)) = 1 if and only if
® 1 . 2 L
220852 (k=) + gb(k-i) = 0
for all kK 2 m.

]
(@)

© 1 , 2 .
2, 08 P k-i) + gla, (k-1)

Proof. Since sm(X) is generated by (ei, e%;k,LZm), p(gAsm(X))

2) =

= 1 if and only if p(gAei) = p(gAeL 1 for all k, L =2 m. On the
1

1,1, _ 1 1 1, _ _:. 1 1
other hand, we have p(ejAek) = m(ej,ek)m(ek,ej) = al(k J,(O),(O))
a, (k-j) a,(k-j)
(-1) 1 . Similarly, O(E?Aei) = (-1) ? and p(eﬁAei) =
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O(e?Aell‘) = (-1)P¥"3) Then it follows that
gl 32
1, _ o 11, 1 2.2, 1, _ ® 1, 1.} 2, 1.%j
plghe,) = p(2j=ogjej/\ek + glejre) = szop(ejAek) plejAe,)
o 1 . 2 .
i (_1)2j=ogja1(k i)y + &bk J)‘
‘The second equality follows similarly. This completes the proof. o
Price showed that a multiplier m on Hi:022 associated with a

signature sequence a is nondegenerate if and only if a is not

periodic.

Example 3.2. Let a, = a, = (0,0,1,0,1,0,1,*+-+) and b = (1,0,

0,°**). Namely, al(O) = a2(0)

o, al(2j-1) =

a2(2j-1) = 0, a1(2j) =

a2(2j) = 1, b(0) = 1 and b(j) = 0 for all j € N. Then a, »a,
and b are not periodic at all, however the corresponding element m
€ Bich(X,T) is degenerate. Indeed, putting g = eé + eg + e% + eg, it

is easy to see that p(gaAX) = 1.

A signature sequence a is called to be essentially periodic if
there exist integers p > 0 and N =2 0 such that a(i+p) = a(i) for

all i 2 N(cf.[5;Definition 3.113).

Lemma 3.3. Let a,, a, and b be nonzero signature sequences
which may not be b(0) = 0. Let m be an element in Bich(X,T)
corresponding to a;, a, and b. If Am(X)" is not a factor, then
a;, a, and b are essentially periodic.

This proposition can be proved by a similar way to some proof of
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the corresponding result for n-shifts(see [1] for instance). However

we give a proof for completeness.

Proof. Since Am(X)" is not a factor, there exists a nonzero
element g in X such that p(gAX) = 1. Put i, = min(j:g} = 0}, i,
= max(j;g§ % 0), i, = min{j:g§ % 0) and j, = max(j;g? % 0). Also we
put d, = max{iew;al(i) = 0}, d, = max(iEN;az(i) # 0} and d, =

max{i€ N U (0);b(i) # 0)}. Then by Lemma 3.1, g satisfies the
following formulae;

P

J
() St gla k-j) + 3. % g2b(k-j) = 0
j=i i’1 j=1i J
1 2
Ia 9 I
(xk) 2. _.° g7a,(k-j) + 2._ .~ g.b(k-j) = 0
=1, 73 2 =1, 7
for all integer k 2> 0. We may assume that j1 < j2.

Especially, when k > d, + j,, we have gﬁb(k—j) = 0 for any j = 0.
It follows from the formula (%%) that '

az(k~i ) = ¢(az(k-i -1y, a,(k-i,-2), -+ , az(k'jz))

2 2 2
where ¢ is a fixed linear function. Let r =

2
j2—i2 and assume first that r > 0. Then we have
az(k) = @(gz(k—l), az(k-2), sy, az(k-r)) for k > db + r.

Since there are only finitely many distinct values for an n-tuple

- from Z there is a number r > 0 such that (az(db+r), ey,

2 ’
aQ(db+1)) = (az(db+r+1), crey, az(db+l+L)). Then we have az(db+r+1)

@(az(db+r), caey, az(db+1)) = ¢(az(db+r+L), ey az(db+1+L)) 5
az(db+r+1+l). Thus az(k) = az(k+L) for k > db+r.
Now assume that r = 0. It follows from the formula (x%) that
2 . _ ; -
gi az(k 12) = 0 for k > db+32. Hence we have az(k) = 0 for all k

2
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> db.
Similarly we obtain the essentially periodicity of a1 and b.

This completes the proof. o

When the signature sequences have only finite supports, we can
realize the relative commutant algebras o"(R)' n R concretely as
well as n-shifts. The result contains a suffitient condition for a,
a, and b such that m makes Am(X)" a factor.

Theorem 3.4, Let al, a2 and b be nonzero signature sequences

whose supports are finite. Put d1 = max(ieN;al(i) # 0}, d2 =
max(iGN;az(i) # 0) and db = max{i€N U (0};b(i) # 0}. Let m be
the multiplier associated with al, a2 and b. Consider the

following conditions (i) and (ii);

(i) d, £d, £ d and d, < d

b 1 2 b 2
(ii) d1 < d2 < db and d1 < db'
I1f either (i) or (ii) is satisfied, then Am(X)" is a hyperfinite
Hl—factor. Moreover, for the case of (i), we have
"B nR=Cl if 0<n<d,,
" AR = x(el) s 051 <n-d -1 if 441 <n<d, and
"B R = A e}, Apce) 50 < i € n-d-1, 0§ < n-d,-1)”

if d2+1 < n.
For the case of (ii), we have
C1 if 0 £ n<gd

d"R)' n R and

[}

b

1 2 . 3 . - - (1] 3
(lm(ei), Am(ej) s 0L i, <n db 1} if d,+1 £ n.

") n R b

Proof. For a subgroup Y of X, we put DY = (g € X ; p(gah) =1
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for all h € Y}. We shall prove the theorem only for the case of (i)
(a similar proof works for the case of (ii)). Due to [1l; Corollary

1.31, it is sufficient to show the following;

D = {0} if 0 < n<x<d )
s"(x) 1
1
D = [e; ; 0L£i £ n-d,-1] if d,+1 £ n < d
sn(X) i 1 1 2
D = fel, e2 ; 0<i < n-d,-1, 0 < j < n-d,-11 if d.+1 < n,
n i j 1 2 2
s (XD
where we denote by [e% s 0 £ 1 £ n—dl—ll the subgroup of X
generated by e%, 0 £ i < n—dl-l. It is clear that D n containes

s (X)
the right side of the above formula in each case. We shall show the

reverse inclusion. At first, we assume that the condition (i) |is

satisfied. Suppose that there exists a nonzero element g in D n .
s (X)

Put j1 = max(j;g§ #Z 0) and jz = max(j;g§ # 0). It follows from

Lemma 3.1 that

i
1 -
(%) 2 =0 gt j8p (k=) + 2 o g5 2h(k-j) = 0
(k) 2 g2a (k-j) + 2 glb(k =0
=0 2 =0

for each integer Kk 2 n.

Step(l). Let 0 £ n<d,. If j £ j,, then we can apply the formula
1 2

1
(x%) for K = d2 + j2 > d1 2 n. It follows from db < d2 that all
terms in the formula (%%) except of g? a2(d2) equal to 0. Hence
2
g% a.(d.) = 0. Since a.(d.) = 1, we have g2 = 0. This is a
iy 272 _ 272 Jg
contradiction. If jl > jz’ then we can apply the formula (%) for K
= d1 + j1 2 n. Then all terms in (%) except of gﬁ al(dl) equal to
1
0. Hence g% a (d,) = 0, Since a,(d,) = 1, we have g% = 0. This is
3y 171 171 Iy
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a contradiction. Therefore we conclude that g} = 0 for all

integers j 2 0.

Step(2). Let d1+1 £ n. Assume that gi = 1 for some s = 0. Then a

similar argument in step(l) immediately yields a contradiction.
2 1

Therefore gj = 0 for all integers j > 0. Assume that gs = 1 for
some s > n—dl. If j1 < j2, we have by the assumption that j1 2 8 2
n-dl. Thus we can apply the formula (xx) for Xk = d2 + j2 > d1 + jl =

n, and we have a contradiction as step(l). If jl > j2, considering

the formula (x) for k = d1 + j1 2 n, we reach a contradiction
1

similarly. Therefore gj = 0 for all integers j 2 n-dl.
Step(3). Let d2+1 < n. Assume that gz = 1 for some s 2 n-d2. Then
j2 2 s 2 n-dz. Considering the formula (**) for Kk = d2+ j2
2 n, we have a contradiction as above. Therefore g? ='0 for all

we have

integers j 2 n—d2.

Clearly these arguments complete the proof. D

Remark 3.5. In the above proposition, we can not drop the
condition (i) or (ii). Let a, = a, = b. Then p(gAX) = 1 for any g
in X such that g? = g? for all j > 0.

Corollary 3.6. There are at least a countable infinity of outer

conjugacy classes among the Zz$22—shifts.

d d d>
Proof. Fix any integer 4 =2 1. Let a1 = a2 = (0,°++,0,1,0,°+°°)
and b = (1,0,0,°++). Namely, aT(d) = ag(d) = 1 and a?(i) = ag(i) =
0O for i # d, b(0) =1 and (i) = 0 for i # 0. Then db < dl =
. . . d d
d2. Denote by 94 the 12622 shift associated with a;, a, and b.
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1t follows from the proceeding theorem that og(m)' NnNR=C1 if n <

d and 02(?)' N R # C1 if n =2 d+1. Since the relative commutant

algebras are invariant under outer conjugacy, ad is not outer
1

conjugate to od if d1 # d Thus we have countable infinity of

2
outer conjugacy classes among the 22622-shifts. This completes the

X
proof. o

Finally, we shall consider a converse of Proposition 3.3 and
Theorem 3.4. Let a;, a, and b are signature sequences and let m
be the element in Bich(X,T) associated with a;, a, and b. Assume
that Am(X)" is a factor. Is it necessary that one of a;, a, and
b is not essentially periodic? Is it necessary that all of al, az
and b have finite supports? The following example gives an answer

to the above question.

Example 3.7. Let ar = (0,1,0,0,°-°), a, = (0,1,1,1,+++) and b
= (1,0,0,*-+)>. Namely, a, (1) = 1  and a,(i) =0 if i # 1, a,(i) =
1 if i # 0 and a,(0) = 0, b(0) = 1 and b(i) =0 if i # 0. Then
all of these signature sequences are essentially periodic, and az

does not have finite support. However Am(X)" is a factor.

Proof. It is sufficient to show that {g € X ; p(gAXD 1} = (0}.

Suppose that there exists a nonzero element g = Ejzog}e§ + g?e
X such that p(gaX) = 1.

Then g satisfies the following conditions;

(1 gi + gg = 0
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1 2
-1 * Bkep * B T

2 1 _
(3) 2320 8y * & = 0 for all k 2 0.

(2) 0 for all k =21

j#K
Suppose that 2j203§ = 1. Considering the formula (3) for
sufficiently large k, we have gi = 1 for infinitely many k. This
is a contradiction, and we have ijog? = 0. Adding this and

the equation (3), we have gﬁ = gi for all k 2 0. So we put gk =

gi = gi. From the equation (1) and (3) for k = 1, one can see that

ijzgj = 0. Therefore By * & = 0. Also we see from the equation (2).
for k = 1 that By * &y * & = 0. Hence g, = 0.

Suppose that and 0 for some

E3(m-1) = 83(m-1)+1 E3(m-1)+2

positive integer m. It follows from the equation (2) that +

8x-1
from the

0. Since 0, we have

B+1 * By E3m-1 E3am-2 ° B3y
equation for k = 3m-1. Similarly, the equation for k = 3m says that

g3m+1 = g3m. When Kk = 3m +1, we have = 0, and so

am ¥ Z3pme2 * Baper

0. By an induction, we conclude that g3m = g3m+1

0 for all integers m 2 0. Since £ belongs to the

g3m+2 go and

E3m+2
restricted direct product, we have g = 0. This completes the proof.O
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