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1. Introduction

It is an open question to give an imbedding of an oriented closed differentia $\cdot$

ble 4-manifold in 7-dimensional Euclidean space space $R^{7}[1]$ . Recently, M. Hirsch
has proved that such a manifold can be imbedded in $R^{7}$ piecewise linearly [4]. A
closed n-dimensionaly manifold $M^{n}$ will be said to be almost $di$fferentiably imbeddable
in $R^{m}$ if $M^{n}-x$ , where $x$ is a point of $M$ , is differentiably imbeddable in $R^{m}$ .
It is known that a closed differentiable 4-manifold is almost differentiably imbedd-
able in $R^{7}[3]$ .

In what follows, all manifolds are understood to be differentiable and compact.
Differentiable will always mean of class $C^{\infty}$ . The notation $R^{n}$ will be used for the
n-dimensional Euclidean space. We write $M_{1}\approx M_{2}$ if $M_{1}$ and $M_{2}$ are diffeomorphic
The notation $\#$ will mean of the connected sum defined in [7].

In this paper, we shall prove the following
THEOREM 1. All 4-dimensional closed $\pi$-manifolds are imbeddable in $R^{7}$ .
THEOREM 2. All simply connected closed $4- dim^{\rho}$, nsional $\pi$-manifolds are imbeddable in $R^{6}$ .
THEOREM 3. All homotopy 4-spheres are imbeddable in $R^{5}$ .
The result of Theorem 3 has been obtained by S. Smale (unpublished).

The authour is grateful to Professors K. Aoki and T. Kaneko for their gene-
rous help and stimulation.

2. Imbedding of homotopy spheres

It is known that all homotopy n-spheres are imbeddable in $R^{n+k}$, where $n<2k$

$-2[2]$ . It is easy to show that a homotopy n-sphere is imbeddable in $R^{n+1}$ if
and only if it is h-cobordant to the standard n-sphere $S^{n}$ . Hence if $n$ is greater
than 4 the standard n-sphere is the only homotopy n-sphere which is imbeddable
in $R^{n+1}$ .

According to a result of [3], we can prove the following (we assume $n\succ 5$)
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THEOREM. For odd $n$ , a homotopy n-sphere is imbeddable in $R^{n+2}$ if and only if it
bounds a $\pi$-manifold.

In fact, it follows from Theorem 4. 1 in [3] that a homotopy n-sphere which is
boundary of a $\pi$-manifold is imbeddable in $R^{n+2}$ . The converse follows from the
following result which includes the case $n$ is even, which is due to $M$ . Kervaire.

A simply connected closed n-manifold $M^{n}$ which is imbeddable in $R^{n+2}$ bounds a $\pi$ .
manifold.

For even $n$, we have
THEOREM. Any hmotopy $n\cdot sphere$ which is not standard $n\cdot sphereS^{n}$ is not imbedda-

ble in $R^{n+2}$.
In fact a homotopy $n\cdot sphere$ which is imbeddable in $R^{n+2}$ bounds a $\pi$-manifold.

Then, by Theorem 5. 1 in [5], such a homotopy n-sphere is diffeomorphic to the
standard n-sphere.

Many results on imbedding of homotopy sphere have been obtained in [6].

To obtain an imbedding of homotopy 4-sphere in $R^{5}$, we need the following
lemmas.

LEMMA 1. [Theorem 1, 7]

Let $M^{n}$ be a closed n-manifold. Then the following two statements are equivalent.
(1) There exists a closed $n\cdot mnifoldN^{n}$ such that

$M^{n}\# N^{n\approx}S^{n}$

(2) $M^{n}\# R^{n}\approx R^{n}$

Notes that $M^{n}\# R^{n}$ is diffeomorphic to $M^{n-X}$ , for some point of $M^{n}$ .
Since, for a homotopy n-sphere $M^{n},$ $M^{n}\#(-M^{n})$ , where $-M^{n}$ denotes the

manifold with the orientation reversed, is h-cobordant to the standard n-sphere,
and for $n\geq 5$ , by the result in [9], $M^{n}\#(-M^{n})$ is diffeomorphic to $S^{n}$ .

we have
LEMMA 2. For $n\gg 5$ , any homotopy n-sphere is almost diffentiable imbeddable in $R^{n}$

Moreover we need the following lemma

LEMMA 3. [Lemma 2. 3, 5]

Let $M^{n}$ be a simply connected closed $n\cdot manifold$ Then $M^{n}$ is h-cobordant to the
standard n-sphere $S^{n}$ if and only if $M^{n}$ bounds a contractible manifold.

Now the proof of Theorem 3 is as follows.
The fact $\theta_{4}$ ( $=the$ group of homotopy 4-spheres) is trivial, and lemma 3 imp $\cdot$

lies that any homotopy 4-sphere $\Sigma$ bounds contractible 5-manifold $V$ Let $\tilde{V}$ be

the manifold obtained from the union of two copies of $V$ by identifying the com-
mon boundary. Lemma 2 implies $\tilde{V}$ is almost diffentiabele imbeddable in $R^{5}$, since
$\tilde{V}$ is a homotopy 5-sphere. Since $V$ is imbeddable in $\tilde{V}-x$ , for some point $x$ of $\sim T^{:}$ .
we have an imbedding of $\Sigma$ in $R^{5}$ This completes the proof of Theorem 3.
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3. The proof of Theorem 1.

In this section $M$ denotes a closed 4-dimensional $\pi$-manifold. Let $M$ be im-
bedded in $R^{4+N}$ , where $N$ is sufficiently large, with a normal N-frames, and $t(M$,

$F)$ the element of $\pi_{4+N}(S^{N})$ defined by Thom contruction. Since the stable homo-

topy group $\pi_{4+N}(S^{N})$ vanishes, $M$ bounds a 5-dimensional $\pi$-manifold $V$ . By a
sequence of spherical modifications, we may assume that $V$ is a simply connected
$\pi$-manifold.

In order to prove Theorem 1, we need the following lemma due to C. T. C.
Wall [Theorem. $p567,11$ ].

LEMMA 4. Suppose $V$ has boundary $\partial V$ , and that the pair (V, $\partial V$) is $r\cdot comcted$,
$r\leqq m-4$ . If $V$ immersed in $R^{s}$ and $s\gg 2m-2r-1$ , then $V$ imbeds is $R^{s}$

Now it is straightforward to prove Theorem 1 by lemma 3. (Constructing

the double of $V$ and using Theorem 4. 1 in [3], we can also prove Theorem 1).

4. The proof of Theorem 2

In this section, $M$ denotes a simply connected closed 4-dimensional $\pi$-manifold.
By the same argument as in Section 3, there is a $5\cdot manifoldV$ whose boundary is
$M$ . By Theorem 1 in [10], we may assume that $V$ has the homotopy type of a
bouquet of somo 2-spheres, and the second Stiefel-Whitney class of $V$ vanishes.
Let $\tilde{V}$ be the manifold obtained from the disjoint union of two copies of $V$ by iden $\cdot$

tifying the common boundary. It is known that $\tilde{V}$ is simply connected. Moreover
we can show that $\tilde{V}$ is a $\pi$-manifold. In fact, it follows from the fact that the
second Stiefel-Whitney class of $V$ vanishes that $\tilde{V}$ has the vanishing second Stiefel-
Whitney class. Consider the following cohomology exact sequense $(Mayer\cdot Vietoris$

sequence)

$\rightarrow H^{1}(M)\rightarrow H^{2}(\tilde{V})\rightarrow H^{2}(V)+H^{2}(V)\rightarrow;*$

It is easy to see that $i^{*}(w_{2}(\tilde{V}))=w_{2}(V)+w_{2}(V)$ . Since $w_{2}(V)=0$ , and $i^{*}$ is a
monomorphism, we have $w_{2}(\tilde{V})=0$ . Now, by obstruction theory, it follows that $\tilde{V}$

is a $\pi\cdot manifold(i$ . $e$ . the normal frame bundle of an imbedding of $\tilde{V}$ in $R^{11}$ has
a cross section), using the fact $\pi_{1}(\tilde{V})=0$ ard $\overline{w_{2}}(\tilde{V})=w_{2}(\tilde{V})=0$ .

According Theorem A‘ in [8], we have

$\tilde{V}\approx(S^{2}\times S^{3})\#\cdots\cdots\#(S^{2}\times S^{3})\# Mk_{1}\#\cdots\cdots\# Mk_{r}$

where $M_{k_{i}}$ is a 5-manifold such that $H_{2}(M_{k_{i}})=Z_{k_{j}}+Z_{k_{i}}$ , $h;>1$ . If $H_{2}(\tilde{V})$ is

torsion free, $\tilde{V}$ is diffeomorpic to
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$(S^{2}\times S^{3})\#\cdots\cdots\#(S^{2}\times S^{3})$

Then it is clear $\tilde{V}$ is imbeddable in $R^{6}$, and hence $M$ imbeds in $R^{6}$ Thus to com-
plete the proof of Theorem 2, it must be shown that $H_{2}(\tilde{V})$ is torsion free.

Consider the following cohomology exact sequence of the pair $(\tilde{V}, V)$ ,

$\rightarrow H^{q-1}(V)\rightarrow H^{q}(\tilde{V}, V)\rightarrow H^{q}(\tilde{V})\rightarrow H^{q}(V)\rightarrow\partial h^{*}i^{*}$

Scince $H^{q}(\tilde{V}, V)\approx H^{q}(V, M)$ , we have an exact sequence

$\rightarrow H^{q-1}(V)^{\delta^{\prime}j^{*}i^{*}}\rightarrow H^{q}(V, M)\rightarrow H^{q}(\tilde{V})\rightarrow H^{q}(V)\rightarrow$

We define a map $k;\tilde{V}\rightarrow V$ by $k(x)=x$, and $k(x^{\prime})=x$, where $x^{\prime}$ is the element of a
copy of $V$ corresponding to $x$ Then we have $ki=identity$ map of $V$, and hence
the induced homomorphism

$k^{*};$ $H^{q}(V)\rightarrow H^{q}(\tilde{V})$

is a monomorphism, and

$i^{*};$ $H^{q}(\tilde{V})\rightarrow H^{q}(V)$

is an epimorphism. It follows that $\delta$‘ is a trivial homomorphism. Thus we have
an exact sequence

$0\rightarrow H^{q}(V, M)\rightarrow H^{q}(\tilde{V})\rightarrow H^{q}(V)\rightarrow 0$ .

As a special case, we have an exact sequence

$0\rightarrow H^{3}(V, M)\rightarrow H^{3}(\tilde{V})\rightarrow 0$

Since $H^{3}$ (V, $M$) is isomorphic to $H_{2}(V)$ , which is torsion free, $H^{3}(\tilde{V})$ is also
torsion free. Hence $H_{2}(\tilde{V})$ is torsion free. This completes the proof of Theorem 2.

Added in proof. (1) The result of Theorem 3 is proved by M. Kervaire in
his paper On Higher Dimensional Knots’. (A symposium honor of Marston Morse).

(2) Since this writing, I found a paper written by D. Barden which includes
an imbedding of simply connected 5-dimensional $\pi$-manifold in $p$.
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