On imbedding closed 4-dimensional manifolds in Euclidean space

By
Tsuyoshi Watabe
(Recieved in November 30, 1965)

1. Introduction

It is an open question to give an imbedding of an oriented closed differentiable 4-manifold in 7-dimensional Euclidean space space R^{7} [1]. Recently, M. Hirsch has proved that such a manifold can be imbedded in R^{7} piecewise linearly [4]. A closed n-dimensionaly manifold M^{n} will be said to be almost differentiably imbeddable in R^{m} if $M^{n}-x$, where x is a point of M, is differentiably imbeddable in R^{m}. It is known that a closed differentiable 4 -manifold is almost differentiably imbeddable in R^{7} [3].

In what follows, all manifolds are understood to be differentiable and compact. Differentiable will always mean of class ${ }^{\circ} C^{\infty}$. The notation R^{n} will be used for the n-dimensional Euclidean space. We write $M_{1} \approx M_{2}$ if M_{1} and M_{2} are diffeomorphic The notation \# will mean of the connected sum defined in [7].

In this paper, we shall prove the following
Theorem 1. All 4-dimensional closed π-manifolds are imbeddable in R^{7}.
Theorem 2. All simply connected closed 4-dimensional π-manifolds are imbeddable in R^{6}.
Theorem 3. All homotopy 4 -spheres are imbeddable in R^{5}.
The result of Theorem 3 has been obtained by S. Smale (unpublished).
The authour is grateful to Professors K. Aoki and T. Kaneko for their generous help and stimulation.

2. Imbedding of homotopy spheres

It is known that all homotopy n-spheres are imbeddable in R^{n+k}, where $n<2 k$ -2 [2]. It is easy to show that a homotopy n-sphere is imbeddable in R^{n+1} if and only if it is h-cobordant to the standard n-sphere S^{n}. Hence if n is greater than 4 the standard n-sphere is the only homotopy n-sphere which is imbeddable in R^{n+1}.

According to a result of [3], we can prove the following (we assume $n>5$)

Theorem. For odd n, a homotopy n-sphere is imbeddable in R^{n+2} if and only if it bounds a π-manifold.

In fact, it follows from Theorem 4.1 in [3] that a homotopy n-sphere which is boundary of a π-manifold is imbeddable in R^{n+2}. The converse follows from the following result which includes the case n is even, which is due to M. Kervaire.

A simply connected closed n-manifold M^{n} which is imbeddable in R^{n+2} bounds $a \pi$ manifold.

For even n, we have
Theorem. Any homotopy n-sphere which is not standard n-sphere S^{n} is not imbeddable in R^{n+2}.

In fact a homotopy n-sphere which is imbeddable in R^{n+2} bounds a π-manifold. Then, by Theorem 5.1 in [5], such a homotopy n-sphere is diffeomorphic to the standard n-sphere.

Many results on imbedding of homotopy sphere have been obtained in [6].
To obtain an imbedding of homotopy 4 -sphere in R^{5}, we need the following lemmas.

Lemma 1. [Theorem 1, 7]
Let M^{n} be a closed n-manifold. Then the following two statements are equivalent.
(1) There exists a closed n-manifold N^{n} such that

$$
M^{n} \# N^{n} \approx S^{n}
$$

(2) $M^{n} \# R^{n} \approx R^{n}$

Notes that $M^{n} \# R^{n}$ is diffeomorphic to M^{n-x}, for some point of M^{n}.
Since, for a homotopy n-sphere $M^{n}, M^{n} \#\left(-M^{n}\right)$, where $-M^{n}$ denotes the manifold with the orientation reversed, is h-cobordant to the standard n-sphere, and for $n \geqslant 5$, by the result in [9], $M^{n \#}\left(-M^{n}\right)$ is diffeomorphic to S^{n}.
we have
Lemma 2. For $n \geqslant 5$, any homotopy n-sphere is almost diffentiable imbeddable in R^{n}. Moreover we need the following lemma

Lemma 3. [Lemma 2.3,5]
Let M^{n} be a simply connected closed n-manifold. Then M^{n} is h-cobordant to the standard n-sphere S^{n} if and only if M^{n} bounds a contractible manifold.

Now the proof of Theorem 3 is as follows.
The fact θ_{4} (=the group of homotopy 4 -spheres) is trivial, and lemma 3 imp lies that any homotopy 4 -sphere Σ bounds contractible 5 -manifold V. Let \widetilde{V} be the manifold obtained from the union of two copies of V by identifying the common boundary. Lemma 2 implies \widetilde{V} is almost diffentiabele imbeddable in R^{5}, since \tilde{V} is a homotopy 5 -sphere. Since V is imbeddable in $\widetilde{V}-x$, for some point x of \widetilde{F}, we have an imbedding of Σ in R^{5}. This completes the proof of Theorem 3.

3. The proof of Theorem 1.

In this section M denotes a closed 4 -dimensional π-manifold. Let M be imbedded in R^{4+N}, where N is sufficiently large, with a normal N-frames, and $t(M$, $F)$ the element of $\pi_{4+N}\left(S^{N}\right)$ defined by Thom contruction. Since the stable homotopy group $\pi_{4+N}\left(S^{N}\right)$ vanishes, M bounds a 5 -dimensional π-manifold V. By a sequence of spherical modifications, we may assume that V is a simply connected π-manifold.

In order to prove Theorem 1, we need the following lemma due to C. T. C. Wall [Theorem. p 567, 11].

Lemma 4. Suppose V has boundary ∂V, and that the pair ($V, \partial V$) is r-connected, $r \leqq m-4$. If V immersed in R^{s} and $s \geqslant 2 m-2 r-1$, then V imbeds is R^{s}.

Now it is straightforward to prove Theorem 1 by lemma 3. (Constructing the double of V and using Theorem 4.1 in [3], we can also prove Theorem 1).

4. The proof of Theorem 2

In this section, M denotes a simply connected closed 4 -dimensional π-manifold. By the same argument as in Section 3, there is a 5 -manifold V whose boundary is M. By Theorem 1 in [10], we may assume that V has the homotopy type of a bouquet of somo 2 -spheres, and the second Stiefel-Whitney class of V vanishes. Let \widetilde{V} be the manifold obtained from the disjoint union of two copies of V by identifying the common boundary. It is known that \tilde{V} is simply connected. Moreover we can show that \widetilde{V} is a π-manifold. In fact, it follows from the fact that the second Stiefel-Whitney class of V vanishes that \tilde{V} has the vanishing second StiefelWhitney class. Consider the following cohomology exact sequense (Mayer-Vietoris sequence)

$$
\rightarrow H^{1}(M) \rightarrow H^{2}(\tilde{V}) \xrightarrow[\rightarrow]{i^{*}} H^{2}(V)+H^{2}(V) \rightarrow
$$

It is easy to see that $i *\left(w_{2}(\tilde{V})\right)=w_{2}(V)+w_{2}(V)$. Since $w_{2}(V)=0$, and i^{*} is a monomorphism, we have $w_{2}(\tilde{V})=0$. Now, by obstruction theory, it follows that \tilde{V} is a π-manifold (i. e. the normal frame bundle of an imbedding of \widetilde{V} in R^{11} has a cross section), using the fact $\pi_{1}(\tilde{V})=0$ ard $\bar{w}_{2}(\tilde{V})=w_{2}(\tilde{V})=0$.

According Theorem A^{\prime} in [8], we have

$$
\tilde{V} \approx\left(S^{2} \times S^{3}\right) \# \cdots \cdots \#\left(S^{2} \times S^{3}\right) \# M_{k_{1}} \# \cdots \cdots \not M_{k_{r}},
$$

where $M_{k_{i}}$ is a 5 -manifold such that $H_{2}\left(M_{k_{i}}\right)=Z_{k_{i}}+Z_{k_{i}}, k_{i}>1$. If $H_{2}(\tilde{V})$ is torsion free, \tilde{V} is diffeomorpic to

$$
\left(S^{2} \times S^{3}\right) \# \cdots \cdots \#\left(S^{2} \times S^{3}\right)
$$

Then it is clear \tilde{V} is imbeddable in R^{6}, and hence M imbeds in R^{6}. Thus to complete the proof of Theorem 2, it must be shown that $H_{2}(\tilde{V})$ is torsion free. Consider the following cohomology exact sequence of the pair (\widetilde{V}, V),

$$
\rightarrow H^{q-1}(V) \xrightarrow{\partial} H^{q}(\widetilde{V}, V) \xrightarrow{h^{*}} H^{q}(\tilde{V})^{i^{*}} H^{q}(V) \rightarrow
$$

Scince $H^{q}(\widetilde{V}, V) \approx H^{q}(V, M)$, we have an exact sequence

$$
\rightarrow H^{q-1}(V) \stackrel{\delta^{\prime}}{\rightarrow} H^{q}(V, M) \stackrel{j^{*}}{\rightarrow} H^{q}(\tilde{V}) \xrightarrow{i^{*}} H^{q}(V) \rightarrow
$$

We define a map $k ; \tilde{V} \rightarrow V$ by $k(x)=x$, and $k\left(x^{\prime}\right)=x$, where x^{\prime} is the element of a copy of V corresponding to x. Then we have $k i=$ identity map of V, and hence the induced homomorphism

$$
k^{*} ; H^{q}(V) \rightarrow H^{q}(\tilde{V})
$$

is a monomorphism, and

$$
i^{*} ; H^{q}(\tilde{V}) \rightarrow H^{q}(V)
$$

is an epimorphism. It follows that δ^{\prime} is a trivial homomorphism. Thus we have an exact sequence

$$
0 \rightarrow H^{q}(V, M) \rightarrow H^{q}(\tilde{V}) \rightarrow H^{q}(V) \rightarrow 0
$$

As a special case, we have an exact sequence

$$
0 \rightarrow H^{3}(V, M) \rightarrow H^{3}(\tilde{V}) \rightarrow 0
$$

Since $H^{3}(V, M)$ is isomorphic to $H_{2}(V)$, which is torsion free, $H^{3}(\tilde{V})$ is also torsion free. Hence $H_{2}(\tilde{V})$ is torsion free. This completes the proof of Theorem 2.

Added in proof. (1) The result of Theorem 3 is proved by M. Kervaire in his paper 'On Higher Dimensional Knots'. (A symposium honor of Marston Morse).
(2) Since this writing, I found a paper written by D. Barden which includes an imbedding of simply connected 5 -dimensional π-manifold in R^{6}.

Niggata University

References

1. A. HAEFIGER \& M. HIRSCH: Existence and classification of differentiable imbeddings, Topology 2 (1963), 129-135.
2. A. HAEFLIGER: Plongements differentiables de varietes dans varietes, Comm. Math. Helv., 36 (1961) 47-82.
3. M. HIRSCH: On embedding differentiable manifolds in euclidean space, Ann. of Math., 73 (1196), 566-571.
4. : On embedding 4-manifold in R^{7}, Proc. Camb. Phil. Poc., vol 61 (1965) 657-658.
5. M. Kervaire \& J. Milnor: Groups of homotopy spheres I, Ann. of Math., 77 (1963) 504-537.
6. J. Levine: A classification of differentiable knots, Ann. of Math., (1965) 15-50.
7. J. Milnor: Sommes de varietes differentiables et structures differentiable des spheres, Bull. Soc. Math. France, 97 (1959) 439-444.
8. S. Smale: On the structure of 5-manifolds, Ann. of Math., 75 (1962) 38-46.
9. - On the structure of manifolds, Amer. J. Math., 84 (1962) 287-399.
10. C. T. C. Wall: On simply connected 4-manifold, Jour. Lond. M. S., 39 (1964) 141-149.
11. \qquad : All 3-manifolds imbedded in 5-space, Bull. A. M. S. May, (1965) 564-667.
