Fixed Points of Expanding Maps

By

Tetsuo KANEKO and Kazu-Hiro SAKAI

(Received November 4, 1983)

1. Introduction

Let $\{f_i\}_{i=1}^{\infty}$ be a convergent sequence of maps from a space X into itself and let f_0 be a limit map. When does there exist a sequence of fixed points a_i of f_i such that $\{a_i\}_{i=1}^{\infty}$ converges to a_0 for each fixed point a_0 of f_0 . In [3] Rosen proved that it holds when X is a compact connected ANR and f_i is an open ϵ -locally expansive map for i=0, 1, 2, ..., and $\{f_i\}_{i=1}^{\infty}$ converges uniformly to f_0 . In [2] Hu and Rosen recently showed that for a compact connected locally connected metric space, the ANR requirement can be dropped.

In this paper we show that in the hypothesis of the Theorem 4.8 in [2], if $\{f_i\}_{i=1}^{\infty}$ is a sequence of expanding maps with common ε and λ , the uniform convergence may be replaced by pointwise convergence and f_0 may be any map with a fixed point.

2. Definition and lemmas

Let (X, d) be a compact metric space. A continuous map $f: X \to X$ is called an ε -local expansion if there are $\varepsilon > 0$ and skewness $\lambda > 1$ such that $0 < d(x, y) < \varepsilon$ implies $d(f(x), f(y)) > \lambda d(x, y)$.

We call a continuous map f to be expanding if f is open and ε -local expansion for some $\varepsilon > 0$ and $\lambda > 1$.

Rosenholtz showed in [4] that if X is a compact connected metric space, such map f has a fixed point.

LEMMA 1. If X is a compact connected locally connected space with metric d and if $\{f_i\}_{i=1}^{\infty}$ is a sequence of expanding maps of X onto itself with common ε and λ , then there is $\delta_0 > 0$ ($\delta_0 < \varepsilon$) such that x, $y \in X$ with $d(f_i(x), y) < \delta_0$ implies $B_{\delta_0/\lambda}(x) \cap f_i^{-1}(y) \neq \phi$ for $i=1, 2, 3, \ldots$, where $B_{\alpha}(x) = \{y \in X: d(x, y) < \alpha\}$.

PROOF. According to Lemma 2 in [3], there is a finite open cover $\{W_{\beta}\}$ of X such that for each β and for $i=1, 2, 3, \ldots, W_{\beta}$ is connected and diam $W_{\beta} < \varepsilon$ and f_i maps every component of $f_i^{-1}(W_{\beta})$ homeomorphically onto W_{β} and furthermore every component C of $f_i^{-1}(W_{\beta})$ has diameter $< \varepsilon$. Let $\delta_0 > 0$ ($\delta_0 < \varepsilon$) be a Lebesgue number for $\{W_{\beta}\}$. If x, $y \in X$ and $d(f_i(x), y) < \delta_0$, then there is some W_{β} containing $f_i(x)$ and y. Let C be the component of $f_i^{-1}(W_\beta)$ containing x Then there exists a point z in C with the property that $f_i(z) = y$ and $d(x, z) < \delta_0/\lambda$. Hence $B_{\delta_0/\lambda}(x) \cap f_i^{-1}(y) \neq \phi$ for $i = 1, 2, 3, \ldots$, and the proof is completed.

Let f be a continuous map of (X, d) into itself. Given $\delta > 0$, a sequence $\{x_i\}_{i=0}^n (0 \le n \le \infty)$ is called δ -pseudo-orbit for f if $d(f(x_i), x_{i+1}) < \delta$ for $0 \le i < n$. Given $\epsilon > 0$, $\{x_i\}_{i=0}^n$ is called to be ϵ -traced by a point $y \in X$ if $d(f^i(y), x_i) < \epsilon$ for $0 \le i \le n$. We call f to have pseudo-orbit tracing property (abbrev. P.O.T.P.) if for any $\epsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit for f can be ϵ -traced by some point in X. It is well known result that if f is expanding then f has the P.O.T.P. (see, [5]).

LEMMA 2. Let X be a compact connected locally connected space with metric d and let $\{f_i\}_{i=1}^{\infty}$ be a sequence of expanding maps of X onto itself with common ε and λ . Then for any $\eta > 0$, there is $\delta > 0$ such that every δ -pseudo-orbit for f_i can be η -traced for $i = 1, 2, 3, \ldots$

PROOF. For any $\eta > 0$, choose $\delta > 0$ with $\delta < \min\{(\lambda-1)\eta/2, (\lambda-1)\delta_0/\lambda\}$ where $\delta_0 > 0$ is given in Lemma 1. Let $\{x_j\}_{j=0}^{\infty}$ be a δ -pseudo-orbit for f_i . Define $\{x_j^n\}_{j=0}^n$ by $x_j^n = x_j(j = 0, 1, 2, ..., n)$, then we have

$$d(f_i(x_{n-1}^n), x_n^n) < \delta < \delta_0.$$

Hence by Lemma 1 there is $y_{n-1}^n \in B_{\delta_0/\lambda}(x_{n-1}^n)$ such that $f_i(y_{n-1}^n) = x_n^n$. Here $d(x_{n-1}^n, y_{n-1}^n) < \delta/\lambda < \varepsilon$ and f_i is ε -local expansion, so we have

$$d(x_{n-1}^n, y_{n-1}^n) \leq d(f_i(x_{n-1}^n), x_n^n)/\lambda < \delta_0/\lambda < \eta/2.$$

Accordingly

$$d(f_i(x_{n-2}^n), y_{n-1}^n) \leq d(f_i(x_{n-2}^n), x_{n-1}^n) + d(x_{n-1}^n, y_{n-1}^n) < (1+1/\lambda)\delta < \delta_0.$$

There is by Lemma 1, $y_{n-2}^n \in B_{\delta_0/\lambda}(x_{n-2}^n)$ such that $f_i(y_{n-2}^n) = y_{n-1}^n$. And it is easily seen that

$$d(x_{n-2}^n, y_{n-2}^n) < (1+1/\lambda)\delta/\lambda < \eta/2.$$

By an iterative procedure we get $\{y_{n-k}^n\}_{k=1}^n$ such that $f_i(y_{n-k}^n) = y_{n-k+1}^n$ (k=2, 3, ..., n), and

$$d(x_{n-k}^n, y_{n-k}^n) < (1+1/\lambda + \ldots + 1/\lambda^{k-1})\delta/\lambda < \eta/2 \ (k=1, 2, \ldots, n).$$

When we define $\{y_{n-k}^n\}_{k=1}^n$ as above for every positive integer *n*, we have for each *j* a sequence $\{y_j^n\}_{n=j+1}^\infty$ such that $d(x_j, y_j^n) < \eta/2$ (n=j+1, j+2, ...).

Since X is compact, this sequence has a convergent subsequence for each j. Using diagonal method we can get a subsequence $\{n'\}$ of $\{n\}$ such that $y_j^{n'} \longrightarrow y_j$ as $n' \rightarrow \infty$ and $f_i(y_j) = y_{j+1}$ and $d(x_j, y_j) \leq \eta/2 < \eta$ for $i=1, 2, \ldots$, and $j=0, 1, 2, \ldots$.

These relations mean that $\{x_j\}_{j=0}^{\infty}$ is η -traced by y_0 , i.e., $d(f_i^j(y_0), x_j) < \eta$ (j=0, 1, 2, ...).

This completes the proof.

Remark 1. In Lemmas 1 and 2, the connectedness is not essential.

3. The result

THEOREM. Let X be a compact connected locally connected space with metric d and let $\{f_i\}_{i=1}^{\infty}$ be a sequence of expanding maps of X onto itself with common ε and λ . Assume that $\{f_i\}_{i=1}^{\infty}$ converges pointwise to f_0 . Then for each fixed point a_0 of f_0 there exist fixed points a_i of f_i such that $\{a\}_{i=1}^{\infty}$ converges to a_0 .

PROOF. For any $\eta \in (0, \epsilon/2)$, there is $\delta > 0$ which is given in Lemma 2. There is N > 0 such that

$$d(f_i(a_0), f_0(a_0)) < \delta$$
 for $i \ge N$.

We have

$$d(f_i(f_0^{n-1}(a_0)), f_0^n(a_0)) = d(f_i(a_0), f_0(a_0)) < \delta,$$

thus $\{f_0^n(a_0)\}_{n=0}^{\infty} = \{a_0, a_0, \ldots\}$ is a δ -pseudo-orbit for f_i . Hence by Lemma 2 there is $a_i \in X$ such that

$$d(f_i^n(a_i), a_0) < \eta \text{ for } i \ge N, n=0, 1, 2, \dots$$
 (*)

Hence

$$d(f_{i}^{n}(f_{i}(a_{i})), f_{i}^{n}(a_{i})) \leq d(f_{i}^{n}(f_{i}(a_{i})), a_{0}) + d(a_{0}, f_{i}^{n}(a_{i}))$$

$$< \eta + \eta < \varepsilon \quad \text{for } i \geq N, n = 0, 1, 2, \dots$$

Then, since f_i is an ε -local expansion, $f_i(a_i) = a_i$ for $i \ge N$, thus a_i is a fixed point of f_i . Now from (*),

 $d(a_i, a_0) < \eta$ for $i \ge N$.

This means $a_i \rightarrow a_0$ as $i \rightarrow \infty$ and the proof is completed.

Remark 2. In our theorem we assumed that the maps f_i (i=1, 2, 3, ...) have a common skewness λ . This assumption cannot be omitted as the examples given by Hu and Rosen [2] shows.

References

- [1] R. B. FREASER, Jr. and S. B. NADLER, Jr., Sequence of contractive maps and fixed points, Pacific J. Math. 31 (1969), 659-667.
- [2] T. HU and H. ROSEN, Locally contractive and expansive mappings, Proc. Amer. Math. Soc. 86 (1982), 656-662.
- [3] H. ROSEN, Fixed points of sequences of locally expansive maps, Proc. Amer. Math. Soc. 72 (1978), 387-390.
- [4] I. ROSENHOLTZ, Local expansions, derivatives, and fixed points, Fund. Math. 91 (1976), 1-4.

T. Kaneko and K.-H. Sakai

- [5] D. RUELLE, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-wesley, Reading, Mass., 1978.
- [6] K.-H. SAKAI, Fixed points of positively expansive maps, in preparation.

Department of Mathematics Faculty of Science NIIGATA UNIVERSITY Niigata, 950-21, Japan

28