On a Characterization of the Tensor Product of the Selfdual Cones Associated to the Standard von Neumann Algebras

By
Yasuhide Miura and Jun Tomiyama

(Received April 27, 1983)

§ 1. Introduction

The notion of the selfdual cones in a Hilbert space was introduced by Araki [1] and Connes [2], and it is highly instrumental in determining the algebraic structure of the standard von Neumann algebra. Our purpose in the present paper is to discuss the characterization of the tensor product of the selfdual cones associated to the standard von Neumann algebras.

Let ($M_{1}, H_{1}, J_{1}, P_{1}$) and ($M_{2}, H_{2}, J_{2}, P_{2}$) be two standard von Neumann algebras defined by Haagerup [3] where M_{i} is a von Neumann algebra on a Hilbert space H_{i} and J_{i} is an isometric involution on H_{i} and P_{i} is a selfdual cone in H_{i} for $i=1,2$. Then the closure of the algebraic tensor product of two selfdual cones P_{1} and P_{2}, i. e.,

$$
P_{1} \otimes P_{2}=\overline{\mathrm{co}}\left\{\xi \otimes \eta \mid \xi \in P_{1}, \eta \in P_{2}\right\}
$$

is not always seldual in $H_{1} \otimes H_{2}$ where $\overline{\text { co }}$ denotes the closed convex hull.
In § 2 we shall characterize the selfdual cone associated to the tensor product of two standard von Neumann algebras modifying the idea of completely positive maps. With this characterization, we shall investigate some properties of the abelian standard von Neumann algebras in § 3.

We refer mainly [6] and [7] for stnandard results in the theory of the operator algebras, and also refer [8] for the discussion of completely positive maps.

Before going into the discussion, the authors wish to express their hearty thank to Dr. Katayama for his many valuable suggestions.

§ 2. Characterizations of the tensor product of the selfdual cones

Let M be a von Neumann algebra on a Hilbert space H. Let J be an isometric involution on H, and P be a selfdual cone in H, i. e., P coincides with the dual cone $P^{\prime}=$ $\{\xi \in H \mid(\xi, \eta) \geqq 0$ for all $\eta \in P\}$.

Definition 2.1. ([3; Definition 2.1]). The quadruple (M, H, J, P) is called the standard form of a von Neumann algebra M if it satisfies the following conditions:
i) $J M J=M^{\prime}$,
ii) $J c J=c^{*}, c \in M \cap M^{\prime}$,
iii) $J \xi=\xi, \xi \in P$,
iv) if x belongs to M, then $x J x J(P) \subset P$.

Definition 2.2. Let (M, H, J, P) be a standard von Neumann algebra. A matrix $\left[\xi_{i j}\right]_{i, j=1}^{n} \in M_{n}(H)\left(\xi_{i j} \in H\right)$ is said to be J-positive with respect to P if

$$
\sum_{i, j=1}^{n} a_{i} J a_{j} J \xi_{i j} \in P
$$

for these elements $\left\{a_{i}\right\}$ of M.
Let M be a von Neumann algebra on a Hilbert space H with a cyclic and separating vector ξ_{0} and let $J_{\xi_{0}}$ be the modular conjugation of the left Hilbert algebra $M \xi_{0}$. We put

$$
P_{\xi_{0}}=\left\{x J_{\xi_{0}} x J_{\xi_{0} \xi_{0}} \mid x \in M\right\} .-
$$

Then, $P_{\xi_{0}}$ is the selfdual cone in H and ($M, H, J_{\xi_{0}}, P_{\xi_{0}}$) is of standard form. In particular, we put $\widetilde{M}=\mathrm{B}\left(H_{n}\right) \otimes I_{n}, \widetilde{H}=H_{n} \otimes H_{n}$ where H_{n} is an n-dimensional Hilbert space with a complete orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then, $\eta_{0}=e_{1} \otimes e_{1}+e_{2} \otimes e_{2}+\ldots+e_{n} \otimes e_{n}$ is the cyclic and separating vector for \widetilde{M}, and we have

$$
\begin{aligned}
& J_{\eta_{0}}(\xi \otimes \eta)=\eta \otimes \xi, \xi, \eta \in H_{n}, \\
& P_{\eta_{0}}=\left[\left(\mathrm{B}\left(H_{n}\right) \otimes I_{n}\right)^{+} \eta_{0}\right] .
\end{aligned}
$$

Lemma 2.3. Keep the notations as above. We identify $\mathscr{M}_{n}(H)$ with $H \otimes\left(H_{n} \otimes H_{n}\right)$ by the linear map: $\left[\xi_{i j}\right]_{i, j=1}^{n} \rightarrow \sum_{i, j=1}^{n} \xi_{i j} \otimes\left(e_{i} \otimes e j\right)$ of $\mu_{n}(H)$ onto $H \otimes\left(H_{n} \otimes H_{n}\right)$. The canonical cone $P_{\xi_{0} \otimes \eta_{0}}$ with respect to the cyclic and separating vector $\xi_{0} \otimes \eta_{0}$ then coincides with the set of all $J_{\xi_{0}}$-positive elements with respect to $P_{\xi_{0}}$, and also coincides with the closure of the convex hull of the elements of matrices $\left[a_{i} J_{\xi_{0}} a_{j} J_{\xi_{0}} \xi_{0}\right]_{i, j=1}^{n}$ where each a_{i} is an element of M.

Proof. In this proof the modular conjugations $J_{\xi_{0}}$ and $J_{\eta_{0}}$ are simply denoted by J and \widetilde{J} respectively, and we put $\widetilde{M}=B\left(H_{n}\right) \otimes I_{n}$. Let x be an arbitrary element of the weakly dense part of $M \otimes \widetilde{M}$ such that $x=\sum_{i=1}^{m} a_{i} \otimes b_{i}, a_{i} \in M, b_{i} \in \widetilde{M}$. We have then,

$$
x=(J \otimes \widetilde{J}) x(J \otimes \widetilde{J})\left(\xi_{0} \otimes \eta_{0}\right)=\sum_{i, j=1}^{m} a_{i} J a_{j} J \xi_{0} \otimes b_{i} \widetilde{J} \breve{J}_{j} \widetilde{J \eta}_{0} .
$$

On the other hand, if $b_{i}=y_{i} \otimes 1$ for $y_{i}=\left[\lambda_{s t}^{(i)}\right] \in \mathrm{B}\left(H_{n}\right)$, we have

$$
\begin{aligned}
b_{i} \widetilde{J} \widetilde{J}_{j}{\widetilde{J} \eta_{0}} & =\left(y_{i} \otimes 1\right) \widetilde{J}\left(y_{j} \otimes 1\right) \widetilde{J} \eta_{0} \\
& =\left(y_{i} \otimes 1\right)\left(1 \otimes \overline{y_{j}}\right)\left(\sum_{p=1}^{n} e_{p} \otimes e_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{p=1}^{n} y_{i} e_{p} \otimes \bar{y}_{j} e_{p} \\
& =\sum_{p, q=1}^{n} \sum_{t=1}^{n} \lambda_{p t}^{(i)} \lambda_{q t}^{(\bar{j})} \\
& e_{p} \otimes e_{q}, \text { where } \overline{y_{i}}=\left[\overline{\lambda_{s t}^{(i)}}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{i, j=1}^{m} a_{i} J a_{j} J \xi_{0} \otimes b_{j} \widetilde{J} \breve{b}_{i} \widetilde{J \eta_{0}} & =\sum_{i, j=1}^{m} \sum_{p, q=1}^{n} \sum_{t=1}^{n} \lambda_{p t}^{(i)} a_{i} J \lambda_{q t}^{(j)} a_{j} J \xi_{0} \otimes\left(e_{p} \otimes e_{q}\right) \\
& =\sum_{t=1}^{n} \sum_{p, q=1}^{n}\left(\sum_{i=1}^{m} \lambda_{p t}^{(i)} a_{i}\right) J\left(\sum_{i=1}^{m} \lambda_{q t}^{(i)} a_{i}\right) J \xi_{0} \otimes\left(e_{p} \otimes e_{q}\right)
\end{aligned}
$$

Hence,

$$
x(J \otimes \widetilde{J}) x(J \otimes \widetilde{J})\left(\xi_{0} \otimes \eta_{0}\right)=\sum_{t=1}^{n} \sum_{p, q=1}^{n} A_{p}^{(t)} J A_{q}^{(t)} J \xi_{0} \otimes\left(e_{p} \otimes e_{q}\right),
$$

where $A_{p}^{(t)}=\sum_{i=1}^{m} \lambda_{p t}^{(i)} a_{i} \in M$. It follows that $P_{\xi_{0}} \bigotimes_{\eta_{0}} \subset \overline{\operatorname{co}}\left\{\left[a_{i} J a_{j} J \xi_{0}\right] \mid a_{i} \in M\right\}$.
Now, if a_{i} is an arbitrary element of M, then one sees that

$$
\begin{aligned}
\sum_{i, j=1}^{n} b_{i} J b_{j} J a_{i} J a_{j} J \xi_{0} & =\sum_{i \cdot j=1}^{n} b_{i} a_{i} J b_{j} a_{j} J \xi_{0} \\
& =\left(\sum_{i=1}^{n} b_{i} a_{i}\right) J\left(\sum_{i=1}^{n} b_{i} a_{i}\right) J \xi_{0}
\end{aligned}
$$

for all elements b_{i} of M. Hence we have

$$
\sum_{i, j=1}^{n} b_{i} J b_{j} J a_{i} J a_{j} J \xi_{0} \in P_{\xi_{0}} .
$$

Therefore, the matrix $\left[a_{i} J a_{j} J \xi_{0}\right]$ is a J-positive element with respect to $P_{\xi_{0}}$. Note that the set of all J-positive elements with respect to $P_{\xi_{0}}$ is the closed cone. It follows that $\overline{\mathrm{co}}\left\{\left[a_{i} J a_{j} J \xi_{0}\right] \mid a_{i} \in M\right\} \subset Q_{0}$ where Q_{0} denotes the set of all J-positive elements with respect to $P_{\xi_{0}}$.

On the other hand, if [$\left.\xi_{i j}\right]$ is a J-positive element of $\mathscr{M}_{n}(H)$ with respect to $P_{\xi_{0}}$, then

$$
\begin{aligned}
\left(\left[\xi_{i j}\right],\left[a_{i} J a_{j} J \xi_{0}\right]\right) & =\sum_{i, j=1}^{n}\left(\xi_{i j}, a_{i} J a_{j} J \xi_{0}\right) \\
& =\sum_{i, j=1}^{n}\left(a_{i}^{*} J a_{j}^{*} J \xi_{i j}, \xi_{0}\right) \geqq 0
\end{aligned}
$$

for all elements a_{i} of M. It follows that $\overline{\operatorname{co}}\left\{\left[a_{i} J a_{j} J \xi_{0}\right] \mid a_{i} \in M\right\} \subset Q^{\prime}{ }_{0}$.
Therefore, we obtain that $P_{\xi_{0} \otimes \eta_{0}} \subset Q_{0}$ and $P_{\xi_{0} \otimes \eta_{0}} \subset Q^{\prime}{ }_{0}$. It follows that $P_{\xi_{0} \otimes \eta_{0}}=Q_{0}$ because of the selfduality of $P_{\varepsilon_{0} \otimes n_{0}}$. Hence we obtain the required results. This completes the proof.
Q.E.D.

Now we characterize the set of all J-positive elements of order n with respect to P
as the selfdual cone associated to the standard form of the matrix von Neumann algebra $\mathscr{M}_{n}(M)$. Namely we have the following:

Proposition 2.4. With ($\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P}$) as before where $\widetilde{J}=J_{\eta_{0}}$ and $\widetilde{P}=P_{\eta_{0}}$, let $(M, H, J$, P) be a standard von Neumann algebra. And let Q be the set of all J-positive elements of $\mu_{n}(H)$ (which is identified with $H \otimes \widetilde{H}$) with respect to P. Then, Q contains $P \otimes \widetilde{P}$ and is the selfdual cone in $H \otimes \widetilde{H}$ such that $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is standard.

Proof. We first assume that M is σ-finite. Then we can find a cyclic and separating vector ξ_{0} in P, and (M, H, J_{0}, P_{0}) is standard where J_{0} and P_{0} denote the modular conjugation $J_{\xi_{0}}$ and the canonical cone $P_{\xi_{0}}$ with respect to ξ_{0} respectively. Since (M, H, J, P) is standard, by [3; Theorem 2.18] there exists a unitary u on H such that

$$
x=u x u^{-1}(x \in M), J=u J_{0} u^{-1}, P=u P_{0} .
$$

The operator u belongs to M^{\prime}. Suppose that [$\left.\xi_{i j}\right]$ is J_{0}-positive with respect to P_{0}, then

$$
\sum_{i, j=1}^{n} a_{i} J a_{j} J u \xi_{i j}=\sum_{i, j=1}^{n} u a_{i} J_{0} a_{j} J_{0} \xi_{i j} \in u P_{0}=P,
$$

for each element a_{i} of M. Therefore $\left[u \xi_{i j}\right]$ belongs to Q. By the symmetric argument, we see that

$$
Q=\left\{\left[u \xi_{i j}\right] \in \mathcal{M}_{n}(H)\left[\xi_{i j}\right] \text { is } J_{0} \text {-positive w.r.t. } P_{0}\right\} .
$$

Thus, by Lemma 2.3, we have that $Q=(u \otimes 1) P_{\xi_{0} \otimes \eta_{0}}$. Therefore one easily sees that Q is selfdual and contains $P \otimes \widetilde{P}$. Since ($\left.M \otimes \widetilde{M}, H \otimes \widetilde{H}, J_{0} \otimes \widetilde{J}, P_{\xi_{0} \otimes \eta_{0}}\right)$ is standatd, we see that $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is also standard without dufficulty.

In the general case, choose an increasing net $\left\{p_{\alpha}\right\}(\alpha \in \mathbf{I})$ of σ-finite projections in M which converges strongly to 1 . If we put $q_{\alpha}=p_{\alpha} J p_{\alpha} J$, the family $\left\{q_{\alpha}\right\}$ is also an increasing net which converges strongly to 1 . Cosider the reduced standard von Neumann algebra ($q_{\alpha} M q_{\alpha}, q_{\alpha} H, J_{\alpha}, q_{\alpha} P$) where J_{α} means $q_{\alpha} J q_{\alpha}$. Let Q_{α} be the set of all J_{α}-positive elements of $\mathscr{M}_{n}\left(q_{\alpha} H\right)$ with respect to $q_{\alpha} P$. By the first part of the proof, Q_{α} is selfdual in $q_{\alpha} H \otimes \widetilde{H}$. We shall show that $\left\{Q_{\alpha}\right\}$ is an increasing family. If $\alpha_{1} \leqq \alpha_{2}$, then $q_{\alpha 1} \leqq q_{\alpha_{2}}$. By Lemma 2.3, Q_{α} coincides with the closure of the convex hull of the elements [$q_{\alpha} a_{i} q_{\alpha}$ $\left.J q_{\alpha} \xi a_{j} q_{\alpha} J q_{\alpha} \xi\right]$ for $a_{i} \in M$ and $\xi \in q_{\alpha} P$. Since

$$
q_{\alpha_{1}} a_{i} q_{\alpha_{1}} J q_{\alpha_{1}} a_{j} q_{\alpha_{1}} J q_{\alpha_{1}} \xi=q_{\alpha_{2}} p_{\alpha_{1}} a_{i} p_{\alpha_{1}} q_{\alpha_{2}} J q_{\alpha_{2}} p_{\alpha_{1}} a_{j} p_{\alpha_{1}} q_{\alpha_{2}} J q_{\alpha_{2}} \xi
$$

for $a_{i} \in M$ and $\xi \in q_{\alpha_{1}} P \subset q_{\alpha 2} P$, we obtain the inclusion $Q_{\alpha 1} \subset Q_{\alpha_{2}}$.
On the other hand, if $\left[\xi_{i j}\right]$ is a J-positive element with respect to P, then

$$
\sum_{i, j=1}^{n} q_{\alpha} a_{i} J_{\alpha} a_{j} J_{\alpha} q_{\alpha} \xi_{i j}=q_{\alpha}\left(\sum_{i, j=1}^{n} p_{\alpha} a_{i} p_{\alpha} J p_{\alpha} a_{j} p_{\alpha} J \xi_{i j}\right) \in q_{\alpha} P
$$

for $a_{i} \in M$. Therefore [$q_{\alpha} \xi_{i j}$] belongs to Q_{α}. Hence we have $\left(q_{\alpha} \otimes 1\right) Q \subset Q_{\alpha}$. Furthermore, the equality

$$
q_{\alpha} a_{i} J_{\alpha} a_{j} J_{\alpha} q_{\alpha} \xi=p_{\alpha} a_{i} p_{\alpha} J p_{\alpha} a_{j} p_{\alpha} J \xi, a_{i} \in M, \xi \in P
$$

implies that $Q_{\alpha} \subset Q$. It follows that

$$
Q \subset \overline{U_{\alpha}\left(q_{\alpha} \otimes 1\right) Q} \subset \overline{\bigcup_{\alpha}} \overline{Q_{\alpha}} \subset Q,
$$

and then $Q=\widetilde{\bigcup_{\alpha}} Q_{\alpha}$. Since $\left\{Q_{\alpha}\right\}$ is an increasing family of selfdual cones in $q_{\alpha} H \otimes \widetilde{H}, Q$ is selfdual in $H \otimes \widetilde{H}$. We easily see that Q contains $P \otimes \widetilde{P}$.

Finally, we shall show that $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is standard. It is easy to see the conditions i) to iii) in Definition 2. 1. For the condition iv) take an element $x \in M \otimes \widetilde{M}$, then there exists a bounded net $\left\{x_{\alpha}\right\}$ of the elements of $q_{\alpha} M q_{\alpha} \otimes \widetilde{M}$ which converges strongly to x. Hence, for a vector ξ of Q we have

$$
x(J \otimes \widetilde{J}) x(J \otimes \widetilde{J}) \xi=\lim _{\alpha} x_{\alpha}\left(J_{\alpha} \otimes \widetilde{J}\right) x_{\alpha}\left(J_{\alpha} \otimes \widetilde{J}\right)\left(q_{\alpha} \otimes 1\right) \xi \subset Q
$$

by the first part of the proof because $\left(q_{\alpha} \otimes 1\right) \xi \in Q_{\alpha}$. This completes the proof. Q.E.D.
The above result can easily be generalized to the case where \widetilde{H} is an infinite dimensional separable Hilbert space in the following way. Put $\widetilde{M}=B(K) \otimes I, \widetilde{H}=K \otimes K, \widetilde{J}=J_{\eta_{0}}$, $\widetilde{P}=P_{\eta_{0}}$ where $\eta_{0}=\sum_{n=1}^{\infty} \frac{1}{n} e_{n} \otimes e_{n}$ isa cyclic and separating vector in \widetilde{H} for \widetilde{M} and $\left\{e_{n}\right\}$ is a countable orthonormal basis in K. Let p_{n} be the projection on K such that $p_{n} e_{i}=e_{i}$ $(i \leqq n), p_{n} e_{i}=0(i<n)$. put $q_{n}=\left(p_{n} \otimes 1\right) \widetilde{J}\left(p_{n} \otimes 1\right) \widetilde{J}$ which is equal to $q_{n} \otimes p_{n}$. Since $\left\{q_{n}\right\}$ is an increasing sequence which converges strongly to 1 , we have the following proposition using Proposition 2. 4.

Proposition 2. 5. With $(\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P})$ as above, let (M, H, J, P) be the standard form. Put

$$
Q=\overline{\bigcup_{n=1}^{\infty}\left\{\left[\xi_{i j}\right]_{i, j=1}^{n} \in H \bigotimes q_{n} \widetilde{H} \mid\left[\xi_{i j}\right] \text { is J-positive w.r.t.P }\right\}} .
$$

Then Q is selfdual in $H \otimes \widetilde{H}$ which contains $P \otimes \widetilde{P}$, and $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is standard.
Before going into the discussion of the general case, we need the following lemma.
Lemma 2.6. Let M and N be two von Neumann algebras on H and K both of which have cyclic and separating vectors ξ_{0} and η_{0} respectively. Then the closure of the union with respect to n of all elements $\sum_{i, j=1}^{n} \xi_{i j} \otimes \eta_{i j}$ such that $\left[\xi_{i j}\right]_{i, j=1}^{n}$ and $\left[\eta_{i j}\right]_{i, j=1}^{n}$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}$ positive elements with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ respectively coincides with $P_{\xi_{0}} \otimes \eta_{0}$, and therefore it is selfdual in $H \otimes K$.

Proof. Let x be an arbitrary element of the strongly dense part of $M \otimes N$ such that $x=\sum_{n=1}^{n} a_{i} \otimes b_{i}, a_{i} \in M, b_{i} \in N$. Then we have

$$
x\left(J_{1} \otimes J_{2}\right) x\left(J_{1} \otimes J_{2}\right) \xi_{0} \otimes \eta_{0}=\sum_{i, j=1}^{n} a_{i} J_{1} a_{j} J_{1} \xi_{0} \otimes b_{i} J_{2} b_{j} J_{2} \eta_{0}
$$

where J_{1} and J_{2} denote the modular conjugations $J_{\xi_{0}}$ and $J_{\eta_{0}}$ respectively. Using Lemma

2.3, we obtain the required result.

Q.E.D.

Let ($M_{1}, H_{1}, J_{1}, P_{1}$) and ($M_{2}, H_{2}, J_{2}, P_{2}$) be two standard von Neumann algebras. For any element ξ of H_{1}, let R_{ξ} be the right slice map of $H_{1} \otimes H_{2}$ into H_{2} with respect to ξ such that $R_{\xi}\left(\xi^{\prime} \otimes \eta^{\prime}\right)=\left(\xi^{\prime}, \xi\right) \eta^{\prime}, \xi^{\prime} \in H_{1}, \eta^{\prime} \in H_{2}$. For any element x of $H_{1} \otimes H_{2}$, we put

$$
r(x)(\xi)=R_{\xi}(x), \xi \in H_{1} .
$$

Then, $r(x)$ is a bounded conjugate linear map of H_{1} into H_{2}.
Definition 2.7. Keep the notations as above. For each natural number n we shall call that $r(x)$ is an n - J-positive map of H_{1} into H_{2} if for any J_{1}-positive element $\left[\xi_{i j}\right]_{i, j=1}^{n}$ of $\mathscr{M}_{n}\left(H_{1}\right)\left(\xi_{i j} \in H_{1}\right)$ with respect to $P_{1},\left[r(x)\left(\xi_{i j}\right)\right]_{i, j=1}^{n}\left(\in \mathcal{M}_{n}\left(H_{2}\right)\right)$ is J_{2}-positive with respect to P_{2}. If $r(x)$ is n - J-positive for all natural number n, it is said to be completely J-positive. The set of all elements x of $H_{1} \otimes H_{2}$ such that $r(x)$ is a completely J-positive map of H_{1} into H_{2} is denoted by $P_{1} \widehat{\otimes} P_{2}$.

With this definition we can characterize the selfdual cone associated to the tensor product of standard von Neumann algebras.

Theorem 2.8. Let $\left(M_{1}, H_{1}, J_{1}, P_{1}\right)$ and $\left(M_{2}, H_{2}, J_{2}, P_{2}\right)$ be two standard von Neumann algebras. Then the cone $P_{1} \widehat{\otimes} P_{2}$ contains $P_{1} \otimes P_{2}$ and is the selfdual cone in $H_{1} \otimes H_{2}$ such that ($M_{1} \otimes M_{2}, H_{1} \otimes H_{2}, J_{1} \otimes J_{2}, P_{1} \widehat{\otimes} P_{2}$) is standard.

Proof. We fist assume that M_{1} and M_{2} are σ-finite. Then both M_{1} and M_{2} have cyclic and separating vectors ξ_{0} and η_{0} in P_{1} and P_{2} respectively. We shall show that $P_{\xi_{0}} \widehat{\otimes} P_{\eta_{0}}=P_{\xi_{0} \otimes \eta_{0}}$. If $x=\sum_{k=1}^{m} \xi_{k} \otimes \eta_{k}$ is an arbitrary element of the dense part of $P_{\xi_{0} \otimes \eta_{0}}$, and if $\left[\xi_{i j}\right]_{i, j=1}^{n}$ and $\left[\eta_{i}\right]_{i, j=1}^{n}$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}$-positive with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ respectively, then we have

$$
\begin{aligned}
\left.\left(\left[r(x)\left(\xi_{i j}\right)\right],\left[\eta_{i}\right]\right]\right) & =\sum_{i, j=1}^{n}\left(r(x)\left(\xi_{i j}\right), \eta_{i j}\right) \\
& =\sum_{i, j=1}^{n} \sum_{k=1}^{m}\left(\xi_{k}, \xi_{i j}\right)\left(\eta_{k}, \eta_{i j}\right) \\
& =\left(x, \sum_{i, j=1}^{n} \xi_{i j} \otimes \eta_{i j}\right) \geqq 0
\end{aligned}
$$

by Lemma 2.6. Hence, by Theorem 2. 4, $\left[r(x)\left(\xi_{i j}\right)\right]$ is $J_{\eta_{0}}$-positive with respect to $P_{\eta_{0}}$. It follows that $r(x)$ is a completely J-positive map and $P_{\xi_{0} \otimes \eta_{0}} \subset P_{\xi_{0}} \widehat{\otimes} P_{\eta_{0}}$ because of the closedness of $P_{\varepsilon_{0}} \widehat{\otimes} P_{\eta_{0}}$. Similarly we obtain the converse inclusion using the above equalities.

Next, we assert that $P_{1} \widehat{\otimes} P_{2}=\left(u_{1} \otimes u_{2}\right)\left(P_{\xi_{0}} \widehat{\otimes} P_{\eta_{0}}\right)$ for some unitary elements u_{1} and u_{2} of $M^{\prime}{ }_{1}$ and $M^{\prime}{ }_{2}$ respectively. By [3; Theorem 2.18], there exists unitaries u_{1} and u_{2} in $M^{\prime}{ }_{1}$ and $M^{\prime}{ }_{2}$ respectively such that $P_{1}=u_{1} P_{\xi_{0}}$ and $P_{2}=u_{2} P_{\eta_{0}}$. Take an element x of $P_{\xi_{0}} \widehat{\otimes} P_{\eta_{0}}$ and let $\left[\xi_{i j}\right]$ and $\left[\eta_{i j}\right]$ be J_{1} and J_{2}-positive with respect to P_{1} and P_{2} respec-
tively, then by the first equalities of the proof we have

$$
\left(\left[r\left(\left(u_{1} \otimes u_{2}\right) x\right)\left(\xi_{i j}\right)\right],\left[\eta_{i j}\right]\right)=\left(x, \sum_{i, j=1}^{n} u_{1}^{-1} \xi_{i j} \otimes u_{2}^{-1} \eta_{i j}\right) .
$$

Note that $\left[u_{1}^{-1} \xi_{i j}\right]$ and $\left[u_{2}^{-1} \eta_{i j}\right]$ are $J_{\xi_{0}}$ and $J_{\eta_{0}}$-positive with respect to $P_{\xi_{0}}$ and $P_{\eta_{0}}$ respectively by the proof of Proposition 2.4. It follows that $\left(u_{1} \otimes u_{2}\right) P_{\xi_{0}} \widehat{\otimes} P_{\eta_{0}} \subset P_{1} \widehat{\otimes} P_{2}$. We obtain the converse inclusion by the symmetric argument. Therefore, we see that $P_{1} \widehat{\otimes} P_{2}$ is the selfdual cone in $H_{1} \otimes H_{2}$ which contains $P_{1} \otimes P_{2}$, and $\left(M_{1} \otimes M_{2}, H_{1} \otimes H_{2}, J_{1} \otimes J_{2}\right.$, $P_{1} \widehat{\otimes} P_{2}$) is the standard form.

In the general case, let P_{1} and P_{2} be σ-finite projections of M_{1} and M_{2} respectively. Put $q_{1}=p_{1} J_{1} p_{1} J_{1}$ and $q_{2}=p_{2} J_{2} P_{2} J_{2}$. We assert that $\left(q_{1} \otimes q_{2}\right)\left(P_{1} \widehat{\otimes} P_{2}\right) \subset q_{1} P_{1} \widehat{\otimes} q_{2} P_{2}$. In fact if x belongs to $P_{1} \widehat{\otimes} P_{2}$, we have

$$
\begin{aligned}
\left(\left[r\left(\left(q_{1} \otimes q_{2}\right) x\right)\left(q_{1} \xi_{i j}\right)\right],\left[q_{2} \eta_{i j}\right]\right) & =\left(x, \sum_{i, j=1}^{n} q_{1} \xi_{i j} \otimes q_{2} \eta_{i j}\right) \\
& =\left(\left[r(x)\left(q_{1} \xi_{i j}\right)\right],\left[q_{2} \eta_{i j}\right]\right) \geqq 0,
\end{aligned}
$$

where $\left[q_{1} \xi_{i j}\right]$ and $\left[q_{2} \eta_{i j}\right]$ are $q_{1} J_{1} q_{1}$ and $q_{2} J_{2} q_{2}$-positive with respect to $q_{1} P_{1}$ and $q_{2} P_{2}$ respectively because $\left[q_{1} \xi_{i j}\right]$ and $\left[q_{2} \eta_{i j}\right]$ are also J_{1} and J_{2}-positive with respect to P_{1} and P_{2} respectively by the last half of the proof of Proposition 2.4. Furthermore, We have another inclusion $q_{1} P_{1} \widehat{\otimes} q_{2} P_{2} \subset P_{1} \widehat{\otimes} P_{2}$. For, if $x=\sum_{s, t=1}^{m} q_{1} \xi_{s t} \otimes q_{2} \eta_{s t}$ is an arbitrary element of the dense part of $q_{1} P_{1} \widehat{\otimes} q_{2} P_{2}$ where [$q_{1} \xi_{s t}$] and [$q_{2} \eta_{s t}$] are $q_{1} J_{1} q_{1}$ and $q_{2} J_{2} q_{2}$-positive elements with respect to $q_{1} P_{1}$ and $q_{2} P_{2}$ respectively, and if [$\xi^{\prime}{ }_{i j}$] and [$\eta^{\prime}{ }_{i j}$] are J_{1} and $J_{2^{-}}$ positive with respect to P_{1} and P_{2} respectively, then by the first part of the proof,

$$
\left(\left[r(x)\left(\xi^{\prime} i j\right)\right],\left[\eta^{\prime} i j\right]\right)=\left(x, \sum_{i, j=1}^{n} q_{1} \xi^{\prime} i j \otimes q_{2} \eta^{\prime} i j\right) \geqq 0,
$$

because of the selfduality of $q_{1} P_{1} \widehat{\otimes} q_{2} P_{2}$. Therefore x belongs to $P_{1} \widehat{\otimes} P_{2}$.
Now, choose two increasing net $\left\{p_{\alpha}\right\}(\alpha \in \boldsymbol{I})$ and $\left\{p_{\beta}\right\}(\beta \in \boldsymbol{J})$ of σ-finite projections of M_{1} and M_{2} which converge strongly to 1 respectively. Put $q_{\alpha}=p_{\alpha} J_{1} p_{\alpha} J_{1}$ and $r_{\beta}=p_{\beta} J_{2} p_{\beta} J_{2}$. Then $\left\{q_{\alpha}\right\}$ and $\left\{r_{\beta}\right\}$ are also increasing nets which converge strongly to 1 . By the above arguments, we have

$$
P_{1} \widehat{\otimes} P_{2} \subset \bar{\bigcup} \overline{\alpha, \beta}\left(q_{\alpha} \otimes r \beta\right)\left(P_{1} \widehat{\otimes} P_{2}\right) \subset \overline{\bigcup_{\alpha, \beta} q_{\alpha} P_{1} \widehat{\otimes} r_{\beta} P_{2} \subset P_{1} \widehat{\otimes} P_{2} . . . ~}
$$

Therefore we have $P_{1} \widehat{\otimes} P_{2}=\underset{\alpha, \beta}{\bigcup_{\alpha} P_{1} \widehat{\otimes} r_{\beta} P_{2}}$.
By the last half of the proof of Proposition 2.4 and the first half of the proof of this theorem, $\left\{q_{\alpha} P_{1} \widehat{\otimes} r_{\beta} P_{2}\right\}$ is an increasing family of selfdual cones. Therefore, we see that $P_{1} \widehat{\otimes} P_{2}$ is also selfdual in $H_{1} \otimes H_{2}$ and contains $P_{1} \otimes P_{2}$. It is now easy to see that ($M_{1} \otimes M_{2}$,
$\left.H_{1} \otimes H_{2}, J_{1} \otimes J_{2}, P_{1} \widehat{\otimes} P_{2}\right)$ is standard using the same argument of the last half of the proof of Proposition 2.4. This completes the proof. Q.E.D.

As an immediate consequence of the above discussion we have the following corollary, which is the extension of Lemma 2.6.

Corollary 2.9. With standard forms $\left(M_{1}, H_{1}, J_{1}, P_{1}\right)$ and $\left(M_{2}, H_{2}, J_{2}, P_{2}\right)$ as before, the cone $P_{1} \widehat{\otimes} P_{2}$ conincides with the closure of the union with respect to n of all elements $\sum_{i, j=1}^{n} \xi_{i j} \otimes \eta_{i j}$ where $\left[\xi_{i j}\right]$ and $\left[\eta_{i j}\right]$ are J_{1} and J_{2}-positive elements with respect to P_{1} and P_{2} respectively.

§ 3. Some properties of the abelian standard von Neumann algebras

In this section we shall investigate some properties of the abelian standard von Neumann algebras from the point of view of the tensor product of the selfdual cones.

Proposition 3. 1. Let (M, H, J, P) be a standard form for an infinite dimensional separable Hilbert space H. Then, M is isomorphic to the algebra ℓ^{∞} of all bounded sequences if and only if P contains a complete orthonormal basis of H.

Proof. Consider the von Neumann algebra $N=\ell^{\infty}$ on the Hilbert space $K=\ell^{2}$. Let P_{0} be the set of positive ℓ^{2}-sequences. One then easily sees that P_{0} is a selfdual cone in K and contains a complete orthonormal basis of K. Let J_{0} be the isometric involution on K such that $J_{0} \xi=\xi, \xi \in P_{0}$. Without difficulty, one can show that (N, K, J_{0}, P_{0}) is standard. If (M, H, J, P) is standard and M is isomorphic to N, then there exists an isometsy u of K onto H such that $P=u P_{0}$ by [3; Theorem 2.18]. Therefore P contains a complete orthonormal basis of H.

Conversely, let (M, H, J, P) be a standard form and suppose P contains a countalbe orthonormal basis $\left\{e_{i}\right\}$ of H. Let \widetilde{M} be the algebra of all operators x on H such that $x e_{i}$ $=\lambda_{i} e_{i}$ and $\left\{\lambda_{i}\right\}$ is a bounded sequence. If we note that P is generated by $\left\{e_{i}\right\}$, we see that ($\widetilde{M}, H, J, P)$ is the standard form by the first part of the proof. Since \widetilde{M} is commutative, we have $M=\widetilde{M}$ by [3; Corollary 5.11]. Therefore M is isomorphic to the algebra ℓ^{∞}. This completes the proof.
Q.E.D.

Theorem 3.2. Let ($M_{1}, H_{1}, J_{1}, P_{1}$) and ($M_{2}, H_{2}, J_{2}, P_{2}$) be two standard forms. If either M_{1} or M_{2} is abelian, then $P_{1} \otimes P_{2}$ is selfdual in $H_{1} \otimes H_{2}$, and $\left(M_{1} \otimes M_{2}, H_{1} \otimes H_{2}, J_{1} \otimes J_{2}\right.$, $\left.P_{1} \otimes P_{2}\right)$ is the standard form.

Proof. Suppose that both M_{1} and M_{2} are σ-finite. We can then find cyclic and separating vectors ξ_{0} and η_{0} in P_{1} and P_{2} respectively. If either M_{1} or M_{2} is abelian, The convex cone of the algebraic tensor product $M_{1}^{+} \otimes M_{2}^{+}$is σ-weakly dense in ($M_{1} \otimes$ $\left.M_{2}\right)^{+}$.

In fact, let x_{0} be an element of $\left(M_{1} \otimes M_{2}\right)^{+}$which does not belong to the σ-weak closure of $M_{1}^{+} \otimes M_{2}^{+}$. By the Hahn-Banach theorem, there exists a σ-weakly continuous
linear functional ϕ_{0} on $M_{1} \otimes M_{2}$ such that $\phi_{0}\left(x_{0}\right)<0$ and $\phi_{0}(x) \geqq 0$ for $x \in M_{1}^{+} \otimes M_{2}^{+}$. However, if either M_{1} or M_{2} is abelian the functional ϕ_{0} must be a positive functional on M_{1} $\otimes M_{2}$ by [5; Theorem 3.4], a contradiction.

It follows that $M_{1}^{+} \otimes M_{2}^{+}$is also strongly dense in $\left(M_{1} \otimes M_{2}\right)^{+}$. Therefore the closure of the algebraic tensor product of two convex cones $M_{1}^{+} \xi_{0}$ and $M_{2}^{+} \eta_{0}$ in $H_{1} \otimes H_{2}$ coincides with that of $\left(M_{1} \otimes M_{2}\right)+\left(\xi_{0} \otimes \eta_{0}\right)$. Put $\Delta=\Lambda_{1} \otimes \Delta_{2}$ where Δ_{1} and Δ_{2} are the modular operators with respect to ξ_{0} and η_{0} respectively. For an arbitrary element ξ in $\left(M_{1} \otimes M_{2}\right)+\left(\xi_{0}\right.$ $\otimes \eta_{0}$), there exists a sequence $\left\{\xi_{n}\right\}$ in the algebraic tensor product of $M_{1}^{+} \xi_{0}$ and $M_{2}^{+} \eta_{0}$ which is convergent to ξ. Since $\Delta^{1 / 2} \eta=\Delta^{1 / 2} S \eta=J \eta$ for $\eta \in\left(M_{1} \otimes M_{2}\right)+\left(\xi_{0} \otimes \eta_{0}\right)$ where S and J denote the \#-involution and the modular conjugation with respect to $\xi_{0} \otimes \eta_{0}$ respectively, (cf. [6]). The sequence $\left\{\Delta^{1 / 2} \xi_{n}\right\}$ is convergent and therefore $\left\{\Delta^{1 / 4} \xi_{n}\right\}$ is also convergent. Thus we obtain

$$
\overline{\Delta_{1}^{1 / 4} M_{1}^{+} \xi_{0} \otimes \Delta_{2}^{1 / 4} M_{2}^{+} \eta_{0}=\Delta^{1 / 4}\left(M_{1} \otimes M_{2}\right)+\left(\xi_{0} \otimes \eta_{0}\right)}
$$

that is, $P_{\xi_{0}} \otimes P_{\eta_{0}}=P_{\xi_{0} \otimes \eta_{0}}$. New by [3; Theorem 2.18], there exists two unitaries u_{1} and u_{2} in $M^{\prime}{ }_{1}$ and $M^{\prime}{ }_{2}$ suchthat $J_{1}=u_{1} J_{\xi_{0}} u_{1}^{-1}, J_{2}=u_{2} J_{\xi_{0}} u_{2}^{-1}$ and $P_{1}=u_{1} P_{\xi_{0}}, P_{2}=u_{2} P_{\xi_{0}}$. It follows that $P_{1} \otimes P_{2}=\left(u_{1} \otimes u_{2}\right)\left(P_{\xi_{0}} \otimes P_{\eta_{0}}\right)=\left(u_{1} \otimes u_{2}\right) P_{\xi_{0}} \otimes \eta_{0}$ is a selfdual cone and satisfies required condition.

In the general case, considering increasing nets of σ-finite projections of M_{1} and M_{2} converging strongly to 1 and the reduced standard von Neumann algebras, we obtain the conclusion by the similar arguments of the proof of Proposition 2.4. This completes the proof.
Q.E.D.

Proposition 3.3. Let $(\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P})$ and (M, H, J, P) are two standard von Neumann algebras where $\widetilde{M}=\mathrm{B}(K) \otimes I$ and $\widetilde{H}=K \otimes K$ for a seqarable Hilbert space K and $\operatorname{dim} K \geqq 2$. If $P \otimes \widetilde{P}$ is selfdual, then M is abelian.

Proof. Let $\left\{e^{\prime}{ }_{n}\right\}$ be a countable orthonormal basis in K. By [3; Theorem 2.18], there exists a unitary u on \widetilde{H} such that $\widetilde{J}=u J_{\eta_{0}} u^{-1}$ and $\widetilde{P}=u P_{\eta_{0^{\prime}}}$ for a cyclic and separating vector $\eta^{\prime}{ }_{0}=\sum_{n=1}^{\infty} \frac{1}{n} e^{\prime}{ }_{n} \otimes e^{\prime}{ }_{n}$ in \widetilde{H} for \widetilde{M}. Let p_{n} be an n-dimensional projection on K such that $p_{n} e_{i}=e_{i}(i \leqq n)$ and $p_{n} e_{i}=0(i<n)$ for a natural number n. Put $q_{n}=\left(p_{n} \otimes 1\right) J_{\eta^{\prime}}\left(p_{n} \otimes 1\right)$ $J_{\eta^{\prime} o,}$, which is equal to $p_{n} \otimes p_{n}$. If $P \otimes \widetilde{P}$ is selfdual, then $P \otimes P_{\eta^{\prime},}$ is also selfdual in $H \otimes \widetilde{H}$. Hence one easily sees that $P \otimes q_{n} P_{\xi^{\prime} 0}$ is selfdual in $H \otimes q_{n} H$ for each n. Consequently, if we consider the reduced standard von Neumann algebra ($q_{n} \widetilde{M} q_{n}, q_{n} \widetilde{H}, q_{n} J_{\eta^{\prime} 0} q_{n}, q_{n} P_{\eta^{\prime} 0}$), we may assume that $\widetilde{M}=\mathrm{B}\left(H_{n}\right) \otimes I_{n}, \widetilde{H}=H_{n} \otimes H_{n}, \widetilde{J}=J_{\eta_{0}}$ and $\widetilde{P}=P_{\eta_{0}}$ where η_{0} is a canonical cyclic and separating vector if an n^{2}-dimensional Hilbert space $H_{n} \otimes H_{n}$ used in Lemma 2.3 and $n \geqq 2$.

As usual, we first assume that M is σ-finite and consider a cyclic and separating vector ξ_{0} in P. Without loss of generality, we may then assume that $J=J_{\xi_{0}}$ and $P=P_{\xi_{0}}$.

Let $b=y \otimes 1$ be an element of \widetilde{M} where $y=\left[\lambda_{i j}\right] \in B\left(H_{n}\right)$. Then we have

$$
b \widetilde{J} b \widetilde{J}_{\eta_{0}}=\sum_{i, j=1}^{n} \sum_{k=1}^{n} \lambda_{i k} \overline{\lambda_{j k}} e_{i} \otimes e j .
$$

If each a_{i} and a belong to M, then

$$
\begin{aligned}
& \left(\sum_{i, j=1}^{n} a_{j} J a_{i} J \xi_{0} \otimes\left(e_{i} \otimes e_{j}\right), a J a J \xi_{0} \otimes b \widetilde{J} b \widetilde{J} \eta_{0}\right) \\
& \quad=\left(\sum_{i, j=1}^{n} \sum_{k=1}^{n} \lambda_{j k} a^{*} a_{j} J \lambda_{i k} a * a_{i} J \xi_{0}, \xi_{0}\right) \\
& \quad=\sum_{k=1}^{n}\left(\left(\sum_{i=1}^{n} \lambda_{i k} a * a_{i}\right) J\left(\sum_{i=1}^{n} \lambda_{i k} a * a_{i}\right) J \xi_{0}, \xi_{0}\right) \geqq 0 .
\end{aligned}
$$

Note that the cone $P \otimes \widetilde{P}$ is generated by the elements $a J a J \xi_{0} \otimes \widetilde{J} b \widetilde{J}_{0}, a \in M, b \in \widetilde{M}$. It follows that the transpose $t\left[a_{i} J a_{j} J \xi_{0}\right]$ belongs to $P \otimes \widetilde{P}$ if $P \otimes \widetilde{P}$ is selfdual. By Proposition 2.4 we see that $t\left[a_{i} J a_{j} J \xi_{0}\right]$ is a J-positive element with respect to P. Hence we have

$$
\begin{aligned}
0 \leqq\left(\sum_{i, j=1}^{n} x_{i} J x_{j} J a_{j} J a_{i} J \xi_{0}, \xi_{0}\right) & =\sum_{i, j=1}^{n}\left(a_{j} J x_{j} a_{i} J \xi_{0}, x_{i}^{*} \xi_{0}\right) \\
& =\sum_{i, j=1}^{n}\left(a_{j} \Delta^{1 / 2} a_{j}^{*} x_{i}^{*} \xi_{0}, x_{i}^{*} \xi_{0}\right)
\end{aligned}
$$

for all elements a_{i} and x_{i} of M where Δ is the modular operator with respect to ξ_{0}. Let A_{0} be the maximal Tomita algebra in the left Hilbert algebra $M \xi_{0}$. If we put $a=$ $\pi\left(\Delta^{-1 / 4} a \xi_{0}\right), a \in \pi\left(A_{0}\right)$, then

$$
\left.\sum_{i, j=1}^{n} \widehat{a_{j}} \widehat{a}_{i}^{*} \Delta^{1 / 4} x_{i}^{*} \xi_{0}, \Delta^{1 / 4} x_{i}^{*} \xi_{0}\right)=\sum_{i, j=1}^{n}\left(a_{j} \Delta^{1 / 2} a_{i}^{*} x_{j}^{*} \xi_{0}, x_{i}^{*} \xi_{0}\right) \geqq 0
$$

for all elements a_{i} and x_{i} of $\pi\left(A_{0}\right)$. Note that $\Delta^{1 / 4} A_{0}=A_{0}$ is dense in H, and we see that ${ }^{t}\left[a_{i} a_{j}^{*}\right]\left(\in \mu_{n}\left(\pi\left(A_{0}\right)\right)\right)$ is positive. Because of the strong $*$-density of $\pi\left(A_{0}\right)$ in $M, t\left[a_{i} a_{j}^{*}\right]$ must be positive for all elements a_{i} of M. However, this is a contradiction if M is not abelian.

In fact, if M is non-abelian, then there exist two orthogonal projections p and q of M such that $p=u^{*} u, q=u u^{*}, u \in M$. Put $a_{1}=p, a_{2}=u, a_{i}=0(3 \leqq i \leqq n)$. We obtain

$$
\left(\left[\begin{array}{ll}
p & u p \\
p u^{*} & q
\end{array}\right]\left[\begin{array}{c}
q u \xi \\
-p \xi
\end{array}\right],\left[\begin{array}{c}
q u \xi \\
-p \xi
\end{array}\right]\right)=-2(p \xi, \xi)<0,
$$

for non-zero vectors $\boldsymbol{\xi}$ of $p H$. This implies that $t\left[a_{i} a_{j}^{*}\right]$ is not positive.
In the general case, there exists an increasing net $\left\{p_{i}\right\}$ of σ-finite projections of M which is strongly convergent to the identity of M. We put $q_{i}=p_{i} J p_{i} J$. Considering the
reduced standard von Neumann algebra ($q_{i} M q_{i}, q_{i} H, q_{i} J q_{i}, q_{i} P$), one easily sees that $q_{i} P \otimes \widetilde{P}$ is selfdual in $q_{i} H \otimes \widetilde{H}$ if $P \otimes \widetilde{P}$ is selfdual. By the first part of the proof, we see that $q_{i} M q_{i}$ is abelian. Therefore, M is abelian. This completes the proof. Q.E.D.

References

[1] H. Araki, Some properties of the modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math., 50 (1974), 309-354.
[2] A. Connes, Caractérisation des espaces vectoriels ordonnées sousjacents aux algèbres de von Neumann, Ann. Inst Fourier, 24 (1974), 121-155.
[3] U. Haagerup, The standard form of von Neumann algebras, preprint, Univ. of Copenhagen, 1973.
[4] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283.
[5] T. Takasaki and J. Tomiyama, Stinespring type theorem for various types of completely positive maps associated to operator algebras, Math. Japonica, 27 No. 1 (1982), 129-139.
[6] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lectures Notes in Math., No. 128, Springer-Verlag, 1970.
[7] M. Takesaki, Theory of operator algebras I, Springer-Verlag, 1979.
[8] J. Tomiyama, Complete positivity in operator algebras, Lecture Note No. 4 in RIMS Kyoto Univ., 1978. (in Japanese)

Yasuhide Miura
Department of Mathematics
College of Humanities and Social Sciences
Iwate University
Morioka 020
Japan

Jun Tomiyama
Faculty of Science
Niigata University
Niigata 950-21
Japan

Added in proof

After we had finished our manuscript we have learned from S . Watanabe about two papers by L. M. Schmitt and G. Wittstock: Characterization of matrix-ordered standard forms of W^{*}-algebras, preprint, Univ. of Saarland (1981); Kernel representations of completely positive Hilbert-Schmidt operators on standard forms, Arch. Math., 38 (1982), 453-458. We have found that parts of their results are deeply related to ours and their starting Lemma 1.1 in their first paper happens to coincide essentially with the last half of our Lemma 2.3. The first different point of our present argument from theirs is the introduction of the notion of J-positive matrices of order n by which we have given an intrinsic characterization of the cone \mathscr{H}_{n}^{+}(in their notation) and the further characterization of the cone $P_{1} \widehat{\otimes} P_{2}=\left(\mathscr{H}^{(1)} \otimes \mathscr{H}^{(2)}\right)^{+}$. Thus with this notion and with the result (Proposition 2.4) one can see that our Theorem 2.8 is actually equivalent to their main theorem in the second paper. We should remark here that Theorem 2.8 may be regarded as the natural counterpart of the Effros' theorem about the characterization of the positive portion of the tensor product of von Neumann algebras as a convex cone of certain completely positive maps from the predual of one von Neumann algebra into the other. The problems of $\S 3$ are not discussed in their papers.

