On a Characterization of the Tensor Product of the Selfdual Cones Associated to the Standard von Neumann Algebras

By

Yasuhide MIURA and Jun TOMIYAMA

(Received April 27, 1983)

§1. Introduction

The notion of the selfdual cones in a Hilbert space was introduced by Araki [1] and Connes [2], and it is highly instrumental in determining the algebraic structure of the standard von Neumann algebra. Our purpose in the present paper is to discuss the characterization of the tensor product of the selfdual cones associated to the standard von Neumann algebras.

Let (M_1, H_1, J_1, P_1) and (M_2, H_2, J_2, P_2) be two standard von Neumann algebras defined by Haagerup [3] where M_i is a von Neumann algebra on a Hilbert space H_i and J_i is an isometric involution on H_i and P_i is a selfdual cone in H_i for i=1, 2. Then the closure of the algebraic tensor product of two selfdual cones P_1 and P_2 , i. e.,

$$P_1 \otimes P_2 = \overline{\operatorname{co}} \left\{ \boldsymbol{\xi} \otimes \boldsymbol{\eta} \, | \, \boldsymbol{\xi} \in P_1, \, \boldsymbol{\eta} \in P_2 \right\}$$

is not always seldual in $H_1 \otimes H_2$ where \overline{co} denotes the closed convex hull.

In §2 we shall characterize the selfdual cone associated to the tensor product of two standard von Neumann algebras modifying the idea of completely positive maps. With this characterization, we shall investigate some properties of the abelian standard von Neumann algebras in §3.

We refer mainly [6] and [7] for stnandard results in the theory of the operator algebras, and also refer [8] for the discussion of completely positive maps.

Before going into the discussion, the authors wish to express their hearty thank to Dr. Katayama for his many valuable suggestions.

§ 2. Characterizations of the tensor product of the selfdual cones

Let *M* be a von Neumann algebra on a Hilbert space *H*. Let *J* be an isometric involution on *H*, and *P* be a selfdual cone in *H*, i. e., *P* coincides with the dual cone $P' = \{\xi \in H | (\xi, \eta) \ge 0 \text{ for all } \eta \in P\}$.

DEFINITION 2.1. ([3; Definition 2.1]). The quadruple (M, H, J, P) is called the standard form of a von Neumann algebra M if it satisfies the following conditions:

Y. Miura and J. Tomiyama

- i) JMJ=M',
- ii) $JcJ = c^*, c \in M \cap M',$
- iii) $J\xi = \xi, \xi \in P$,
- iv) if x belongs to M, then $xJxJ(P) \subset P$.

DEFINITION 2. 2. Let (M, H, J, P) be a standard von Neumann algebra. A matrix $[\xi_{ij}]_{i,j=1}^{n} \in M_{n}(H)$ $(\xi_{ij} \in H)$ is said to be J-positive with respect to P if

$$\sum_{i,j=1}^{n} a_i J a_j J \xi_{ij} \in F$$

for these elements $\{a_i\}$ of M.

Let M be a von Neumann algebra on a Hilbert space H with a cyclic and separating vector ξ_0 and let J_{ξ_0} be the modular conjugation of the left Hilbert algebra $M\xi_0$. We put

$$P_{\xi_0} = \{ x J_{\xi_0} \ x J_{\xi_0} \xi_0 | x \in M \}.$$

Then, P_{ξ_0} is the selfdual cone in H and $(M, H, J_{\xi_0}, P_{\xi_0})$ is of standard form. In particular, we put $\widetilde{M} = B(H_n) \otimes I_n$, $\widetilde{H} = H_n \otimes H_n$ where H_n is an n-dimensional Hilbert space with a complete orthonormal basis $\{e_1, e_2, \ldots, e_n\}$. Then, $\eta_0 = e_1 \otimes e_1 + e_2 \otimes e_2 + \ldots + e_n \otimes e_n$ is the cyclic and separating vector for \widetilde{M} , and we have

$$J_{\eta_0}(\xi \otimes \eta) = \eta \otimes \xi, \ \xi, \ \eta \in H_n,$$
$$P_{\eta_0} = [(\mathbf{B}(H_n) \otimes I_n)^+ \eta_0].$$

LEMMA 2.3. Keep the notations as above. We identify $\mathcal{M}_n(H)$ with $H \otimes (H_n \otimes H_n)$ by the linear map: $[\xi_{ij}]_{i,j=1}^n \xrightarrow{\sim}_{i,j=1}^n \xi_{ij} \otimes (e_i \otimes e_j)$ of $\mathcal{M}_n(H)$ onto $H \otimes (H_n \otimes H_n)$. The canonical cone $P_{\xi_0 \otimes \eta_0}$ with respect to the cyclic and separating vector $\xi_0 \otimes \eta_0$ then coincides with the set of all J_{ξ_0} -positive elements with respect to P_{ξ_0} , and also coincides with the closure of the convex hull of the elements of matrices $[a_i J_{\xi_0} a_j J_{\xi_0} \xi_0]_{i,j=1}^n$ where each a_i is an element of M.

PROOF. In this proof the modular conjugations J_{ξ_0} and J_{η_0} are simply denoted by Jand \widetilde{J} respectively, and we put $\widetilde{M} = B(H_n) \otimes I_n$. Let x be an arbitrary element of the weakly dense part of $M \otimes \widetilde{M}$ such that $x = \sum_{i=1}^m a_i \otimes b_i$, $a_i \in M$, $b_i \in \widetilde{M}$. We have then,

$$x = (J \otimes \widetilde{J}) x (J \otimes \widetilde{J}) (\xi_0 \otimes \eta_0) = \sum_{i,j=1}^m a_i J a_j J \xi_0 \otimes b_i \widetilde{J} b_j \widetilde{J} \eta_0.$$

On the other hand, if $b_i = y_i \otimes 1$ for $y_i = [\lambda_{st}^{(i)}] \in B(H_n)$, we have

$$b_i \widetilde{J} b_j \widetilde{J} \eta_0 = (y_i \otimes 1) \widetilde{J} (y_j \otimes 1) \widetilde{J} \eta_0$$
$$= (y_i \otimes 1) (1 \otimes \overline{y_j}) (\sum_{p=1}^n e_p \otimes e_p)$$

2

$$= \sum_{p=1}^{n} y_i e_p \bigotimes \overline{y_j} e_p$$
$$= \sum_{p,q=1}^{n} \sum_{t=1}^{n} \lambda_{pt}^{(i)} \lambda_{qt}^{\overline{(j)}} e_p \bigotimes e_q, \text{ where } \overline{y_i} = [\overline{\lambda_{st}^{(i)}}].$$

Therefore,

$$\sum_{i,j=1}^{m} a_i J a_j J \xi_0 \otimes b_j \widetilde{J} \widetilde{b}_i \widetilde{J} \eta_0 = \sum_{i,j=1}^{m} \sum_{p,q=1}^{n} \sum_{t=1}^{n} \lambda_{pt}^{(i)} a_i J \lambda_{qt}^{(j)} a_j J \xi_0 \otimes (e_p \otimes e_q)$$
$$= \sum_{t=1}^{n} \sum_{p,q=1}^{n} (\sum_{i=1}^{m} \lambda_{pt}^{(i)} a_i) J (\sum_{i=1}^{m} \lambda_{qt}^{(i)} a_i) J \xi_0 \otimes (e_p \otimes e_q).$$

Hence,

$$x(J \otimes \widetilde{J})x(J \otimes \widetilde{J})(\xi_0 \otimes \eta_0) = \sum_{t=1}^n \sum_{p,q=1}^n A_p^{(t)} J A_q^{(t)} J \xi_0 \otimes (e_p \otimes e_q),$$

where $A_p^{(t)} = \sum_{i=1}^m \lambda_{pt}^{(i)} a_i \in M$. It follows that $P_{\xi_0} \bigotimes_{\eta_0} \subset \overline{\operatorname{co}} \{ [a_i J a_j J \xi_0] | a_i \in M \}$.

Now, if a_i is an arbitrary element of M, then one sees that

$$\sum_{i,j=1}^{n} b_i J b_j J a_i J a_j J \xi_0 = \sum_{i=1}^{n} b_i a_i J b_j a_j J \xi_0$$
$$= (\sum_{i=1}^{n} b_i a_i) J (\sum_{i=1}^{n} b_i a_i) J \xi_0,$$

for all elements b_i of M. Hence we have

$$\sum_{i,j=1}^n b_i J b_j J a_i J a_j J \xi_0 \in P_{\xi_0}.$$

Therefore, the matrix $[a_i Ja_j J\xi_0]$ is a *J*-positive element with respect to P_{ξ_0} . Note that the set of all J-positive elements with respect to P_{ξ_0} is the closed cone. It follows that $\overline{co} \{[a_i Ja_j J\xi_0] | a_i \in M\} \subset Q_0$ where Q_0 denotes the set of all *J*-positive elements with respect to P_{ξ_0} .

On the other hand, if $[\xi_{ij}]$ is a J-positive element of $\mathcal{M}_n(H)$ with respect to P_{ξ_0} , then

$$([\xi_{ij}], [a_i Ja_j J\xi_0]) = \sum_{i,j=1}^n (\xi_{ij}, a_i Ja_j J\xi_0)$$
$$= \sum_{i,j=1}^n (a_i^* Ja_j^* J\xi_{ij}, \xi_0) \ge 0$$

for all elements a_i of M. It follows that $\overline{co} \{ [a_i J a_j J \xi_0] | a_i \in M \} \subset Q'_0$.

Therefore, we obtain that $P_{\xi_0 \otimes \eta_0} \subset Q_0$ and $P_{\xi_0 \otimes \eta_0} \subset Q'_0$. It follows that $P_{\xi_0 \otimes \eta_0} = Q_0$ because of the selfduality of $P_{\xi_0 \otimes \eta_0}$. Hence we obtain the required results. This completes the proof. Q.E.D.

Now we characterize the set of all J-positive elements of order n with respect to P

as the selfdual cone associated to the standard form of the matrix von Neumann algebra $\mathcal{M}_n(M)$. Namely we have the following:

PROPOSITION 2.4. With $(\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P})$ as before where $\widetilde{J}=J_{\eta_0}$ and $\widetilde{P}=P_{\eta_0}$, let (M, H, J, P) be a standard von Neumann algebra. And let Q be the set of all J-positive elements of $\mathcal{M}_n(H)$ (which is identified with $H\otimes\widetilde{H}$) with respect to P. Then, Q contains $P\otimes\widetilde{P}$ and is the selfdual cone in $H\otimes\widetilde{H}$ such that $(M\otimes\widetilde{M}, H\otimes\widetilde{H}, J\otimes\widetilde{J}, Q)$ is standard.

PROOF. We first assume that M is σ -finite. Then we can find a cyclic and separating vector ξ_0 in P, and (M, H, J_0, P_0) is standard where J_0 and P_0 denote the modular conjugation J_{ξ_0} and the canonical cone P_{ξ_0} with respect to ξ_0 respectively. Since (M, H, J, P) is standard, by [3; Theorem 2.18] there exists a unitary u on H such that

$$x = uxu^{-1} (x \in M), J = uJ_0 u^{-1}, P = uP_0.$$

The operator u belongs to M'. Suppose that $[\xi_{ij}]$ is J_0 -positive with respect to P_0 , then

$$\sum_{i,j=1}^{n} a_i J a_j J u \xi_{ij} = \sum_{i,j=1}^{n} u a_i J_0 a_j J_0 \xi_{ij} \in u P_0 = P,$$

for each element a_i of M. Therefore $[u\xi_{ij}]$ belongs to Q. By the symmetric argument, we see that

$$Q = \{ [u\xi_{ij}] \in \mathcal{M}_n(H) [\xi_{ij}] \text{ is } J_0 \text{-positive } w. r. t. P_0 \}.$$

Thus, by Lemma 2.3, we have that $Q = (u \otimes 1) P_{\xi_0 \otimes \eta_0}$. Therefore one easily sees that Q is selfdual and contains $P \otimes \widetilde{P}$. Since $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J_0 \otimes \widetilde{J}, P_{\xi_0 \otimes \eta_0})$ is standard, we see that $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is also standard without dufficulty.

In the general case, choose an increasing net $\{p_{\alpha}\}$ $(\alpha \in \mathbf{I})$ of σ -finite projections in Mwhich converges strongly to 1. If we put $q_{\alpha} = p_{\alpha}Jp_{\alpha}J$, the family $\{q_{\alpha}\}$ is also an increasing net which converges strongly to 1. Cosider the reduced standard von Neumann algebra $(q_{\alpha}Mq_{\alpha}, q_{\alpha}H, J_{\alpha}, q_{\alpha}P)$ where J_{α} means $q_{\alpha}Jq_{\alpha}$. Let Q_{α} be the set of all J_{α} -positive elements of $\mathcal{M}_{n}(q_{\alpha}H)$ with respect to $q_{\alpha}P$. By the first part of the proof, Q_{α} is selfdual in $q_{\alpha}H\otimes\widetilde{H}$. We shall show that $\{Q_{\alpha}\}$ is an increasing family. If $\alpha_{1}\leq \alpha_{2}$, then $q_{\alpha 1}\leq q_{\alpha 2}$. By Lemma 2.3, Q_{α} coincides with the closure of the convex hull of the elements $[q_{\alpha}a_{i}q_{\alpha}$ $Jq_{\alpha}\xi a_{j}q_{\alpha}Jq_{\alpha}\xi]$ for $a_{i}\in M$ and $\xi\in q_{\alpha}P$. Since

$$q_{a_1}a_i q_{a_1} J q_{a_1} a_j q_{a_1} J q_{a_1} \xi = q_{a_2} p_{a_1} a_i p_{a_1} q_{a_2} J q_{a_2} p_{a_1} a_j p_{a_1} q_{a_2} J q_{a_2} \xi$$

for $a_i \in M$ and $\xi \in q_{\alpha_1} P \subset q_{\alpha_2} P$, we obtain the inclusion $Q_{\alpha_1} \subset Q_{\alpha_2}$.

On the other hand, if $[\xi_{ij}]$ is a J-positive element with respect to P, then

$$\sum_{i,j=1}^{n} q_{\alpha} a_{i} J_{\alpha} a_{j} J_{\alpha} q_{\alpha} \xi_{ij} = q_{\alpha} (\sum_{i,j=1}^{n} p_{\alpha} a_{i} p_{\alpha} J p_{\alpha} a_{j} p_{\alpha} J \xi_{ij}) \in q_{\alpha} P$$

for $a_i \in M$. Therefore $[q_{\alpha}\xi_{ij}]$ belongs to Q_{α} . Hence we have $(q_{\alpha} \otimes 1)Q \subset Q_{\alpha}$. Furthermore, the equality

$$q_{\alpha}a_{i}J_{\alpha}a_{j}J_{\alpha}q_{\alpha}\xi = p_{\alpha}a_{i}p_{\alpha}Jp_{\alpha}a_{j}p_{\alpha}J\xi, a_{i}\in M, \xi\in P$$

implies that $Q_{\alpha} \subset Q$. It follows that

$$Q \subset \overline{\bigcup_{\alpha} (q_{\alpha} \otimes 1)Q} \subset \overline{\bigcup_{\alpha} Q_{\alpha}} \subset Q,$$

and then $Q = \bigcup_{\alpha} \overline{Q_{\alpha}}$. Since $\{Q_{\alpha}\}$ is an increasing family of selfdual cones in $q_{\alpha}H \otimes \widetilde{H}$, Q is selfdual in $H \otimes \widetilde{H}$. We easily see that Q contains $P \otimes \widetilde{P}$.

Finally, we shall show that $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is standard. It is easy to see the conditions i) to iii) in Definition 2. 1. For the condition iv) take an element $x \in M \otimes \widetilde{M}$, then there exists a bounded net $\{x_{\alpha}\}$ of the elements of $q_{\alpha}Mq_{\alpha} \otimes \widetilde{M}$ which converges strongly to x. Hence, for a vector ξ of Q we have

$$x(J \otimes \widetilde{J}) x(J \otimes \widetilde{J}) \xi = \lim_{\alpha} x_{\alpha}(J_{\alpha} \otimes \widetilde{J}) x_{\alpha}(J_{\alpha} \otimes \widetilde{J})(q_{\alpha} \otimes 1) \xi \subset Q$$

by the first part of the proof because $(q_{\alpha}\otimes 1)\xi \in Q_{\alpha}$. This completes the proof. Q.E.D.

The above result can easily be generalized to the case where \widetilde{H} is an infinite dimensional separable Hilbert space in the following way. Put $\widetilde{M}=B(K)\otimes I$, $\widetilde{H}=K\otimes K$, $\widetilde{J}=J_{\eta_0}$, $\widetilde{P}=P_{\eta_0}$ where $\eta_0=\sum_{n=1}^{\infty}\frac{1}{n}e_n\otimes e_n$ is cyclic and separating vector in \widetilde{H} for \widetilde{M} and $\{e_n\}$ is a countable orthonormal basis in K. Let p_n be the projection on K such that $p_ne_i=e_i$ $(i\leq n), p_ne_i=0$ (i<n). put $q_n=(p_n\otimes 1)\widetilde{J}(p_n\otimes 1)\widetilde{J}$ which is equal to $q_n\otimes p_n$. Since $\{q_n\}$ is an increasing sequence which converges strongly to 1, we have the following proposition 2. 4.

PROPOSITION 2.5. With $(\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P})$ as above, let (M, H, J, P) be the standard form. Put

$$Q = \bigcup_{n=1}^{\infty} \{ [\xi_{ij}]_{i,j=1}^n \in H \otimes q_n \widetilde{H} | [\xi_{ij}] \text{ is } J\text{-positive } w.r.t.P \}.$$

Then Q is selfdual in $H \otimes \widetilde{H}$ which contains $P \otimes \widetilde{P}$, and $(M \otimes \widetilde{M}, H \otimes \widetilde{H}, J \otimes \widetilde{J}, Q)$ is standard.

Before going into the discussion of the general case, we need the following lemma.

LEMMA 2.6. Let M and N be two von Neumann algebras on H and K both of which have cyclic and separating vectors ξ_0 and η_0 respectively. Then the closure of the union with respect to n of all elements $\sum_{i,j=1}^{n} \xi_{ij} \otimes \eta_{ij}$ such that $[\xi_{ij}]_{i,j=1}^{n}$ and $[\eta_{ij}]_{i,j=1}^{n}$ are J_{ξ_0} and J_{η_0} positive elements with respect to P_{ξ_0} and P_{η_0} respectively coincides with $P_{\xi_0 \otimes \eta_0}$, and therefore it is selfdual in $H \otimes K$.

PROOF. Let x be an arbitrary element of the strongly dense part of $M \otimes N$ such that $x = \sum_{n=1}^{n} a_i \otimes b_i$, $a_i \in M$, $b_i \in N$. Then we have

$$x(J_1 \otimes J_2) x(J_1 \otimes J_2) \xi_0 \otimes \eta_0 = \sum_{i,j=1}^n a_i J_1 a_j J_1 \xi_0 \otimes b_i J_2 b_j J_2 \eta_0,$$

where J_1 and J_2 denote the modular conjugations J_{ξ_0} and J_{η_0} respectively. Using Lemma

2. 3, we obtain the required result.

(

Let (M_1, H_1, J_1, P_1) and (M_2, H_2, J_2, P_2) be two standard von Neumann algebras. For any element ξ of H_1 , let R_{ξ} be the right slice map of $H_1 \otimes H_2$ into H_2 with respect to ξ such that $R_{\xi}(\xi' \otimes \eta') = (\xi', \xi)\eta', \xi' \in H_1, \eta' \in H_2$. For any element x of $H_1 \otimes H_2$, we put

$$r(x)(\xi) = R_{\xi}(x), \xi \in H_1.$$

Then, r(x) is a bounded conjugate linear map of H_1 into H_2 .

DEFINITION 2. 7. Keep the notations as above. For each natural number n we shall call that r(x) is an n-J-positive map of H_1 into H_2 if for any J_1 -positive element $[\xi_{ij}]_{i,j=1}^n$ of $\mathcal{M}_n(H_1)(\xi_{ij} \in H_1)$ with respect to P_1 , $[r(x)(\xi_{ij})]_{i,j=1}^n (\in \mathcal{M}_n(H_2))$ is J_2 -positive with respect to P_2 . If r(x) is n-J-positive for all natural number n, it is said to be completely J-positive. The set of all elements x of $H_1 \otimes H_2$ such that r(x) is a completely J-positive map of H_1 into H_2 is denoted by $P_1 \otimes P_2$.

With this definition we can characterize the selfdual cone associated to the tensor product of standard von Neumann algebras.

THEOREM 2.8. Let (M_1, H_1, J_1, P_1) and (M_2, H_2, J_2, P_2) be two standard von Neumann algebras. Then the cone $P_1 \otimes P_2$ contains $P_1 \otimes P_2$ and is the selfdual cone in $H_1 \otimes H_2$ such that $(M_1 \otimes M_2, H_1 \otimes H_2, J_1 \otimes J_2, P_1 \otimes P_2)$ is standard.

PROOF. We fist assume that M_1 and M_2 are σ -finite. Then both M_1 and M_2 have cyclic and separating vectors ξ_0 and η_0 in P_1 and P_2 respectively. We shall show that $P_{\xi_0} \bigotimes P_{\eta_0} = P_{\xi_0 \otimes \eta_0}$. If $x = \sum_{k=1}^{m} \xi_k \otimes \eta_k$ is an arbitrary element of the dense part of $P_{\xi_0 \otimes \eta_0}$, and if $[\xi_{ij}]_{i,j=1}^n$ and $[\eta_{ij}]_{i,j=1}^n$ are J_{ξ_0} and J_{η_0} -positive with respect to P_{ξ_0} and P_{η_0} respectively, then we have

$$[r(x)(\xi_{ij})], [\eta_{ij}]) = \sum_{i,j=1}^{n} (r(x)(\xi_{ij}), \eta_{ij})$$
$$= \sum_{i,j=1}^{n} \sum_{k=1}^{m} (\xi_k, \xi_{ij})(\eta_k, \eta_{ij})$$
$$= (x, \sum_{i,j=1}^{n} \xi_{ij} \otimes \eta_{ij}) \ge 0$$

by Lemma 2.6. Hence, by Theorem 2.4, $[r(x)(\xi_{ij})]$ is J_{η_0} -positive with respect to P_{η_0} . It follows that r(x) is a completely *J*-positive map and $P_{\xi_0 \otimes \eta_0} \subset P_{\xi_0} \otimes P_{\eta_0}$ because of the closedness of $P_{\xi_0} \otimes P_{\eta_0}$. Similarly we obtain the converse inclusion using the above equalities.

Next, we assert that $P_1 \bigotimes P_2 = (u_1 \bigotimes u_2)(P_{\xi_0} \bigotimes P_{\eta_0})$ for some unitary elements u_1 and u_2 of M'_1 and M'_2 respectively. By [3; Theorem 2.18], there exists unitaries u_1 and u_2 in M'_1 and M'_2 respectively such that $P_1 = u_1 P_{\xi_0}$ and $P_2 = u_2 P_{\eta_0}$. Take an element x of $P_{\xi_0} \bigotimes P_{\eta_0}$ and let $[\xi_{ii}]$ and $[\eta_{ii}]$ be J_1 and J_2 -positive with respect to P_1 and P_2 respec-

6

Q.E.D.

tively, then by the first equalities of the proof we have

$$([r((u_1\otimes u_2)x)(\xi_{ij})], [\eta_{ij}]) = (x, \sum_{i,j=1}^n u_1^{-1} \xi_{ij} \otimes u_2^{-1} \eta_{ij}).$$

Note that $[u_1^{-1} \xi_{ii}]$ and $[u_2^{-1} \eta_{ii}]$ are J_{ξ_0} and J_{η_0} -positive with respect to P_{ξ_0} and P_{η_0} respectively by the proof of Proposition 2. 4. It follows that $(u_1 \otimes u_2) P_{\xi_0} \otimes P_{\eta_0} \subset P_1 \otimes P_2$. We obtain the converse inclusion by the symmetric argument. Therefore, we see that $P_1 \otimes P_2$ is the selfdual cone in $H_1 \otimes H_2$ which contains $P_1 \otimes P_2$, and $(M_1 \otimes M_2, H_1 \otimes H_2, J_1 \otimes J_2, P_1 \otimes P_2)$ is the standard form.

In the general case, let P_1 and P_2 be σ -finite projections of M_1 and M_2 respectively. Put $q_1 = p_1 J_1 p_1 J_1$ and $q_2 = p_2 J_2 P_2 J_2$. We assert that $(q_1 \otimes q_2)(P_1 \otimes P_2) \subset q_1 P_1 \otimes q_2 P_2$. In fact if x belongs to $P_1 \otimes P_2$, we have

$$([r((q_1 \otimes q_2)x)(q_1\xi_{ij})], [q_2\eta_{ij}]) = (x, \sum_{i,j=1}^n q_1\xi_{ij} \otimes q_2\eta_{ij})$$
$$= ([r(x)(q_1\xi_{ij})], [q_2\eta_{ij}]) \ge 0,$$

where $[q_1\xi_{ij}]$ and $[q_2\eta_{ij}]$ are $q_1J_1q_1$ and $q_2J_2q_2$ -positive with respect to q_1P_1 and q_2P_2 respectively because $[q_1\xi_{ij}]$ and $[q_2\eta_{ij}]$ are also J_1 and J_2 -positive with respect to P_1 and P_2 respectively by the last half of the proof of Proposition 2. 4. Furthermore, We have another inclusion $q_1P_1 \bigotimes q_2P_2 \subset P_1 \bigotimes P_2$. For, if $x = \sum_{s,t=1}^m q_1\xi_{st} \bigotimes q_2\eta_{st}$ is an arbitrary element of the dense part of $q_1P_1 \bigotimes q_2P_2$ where $[q_1\xi_{st}]$ and $[q_2\eta_{st}]$ are $q_1J_1q_1$ and $q_2J_2q_2$ -positive elements with respect to q_1P_1 and q_2P_2 respectively, and if $[\xi'_{ij}]$ and $[\eta'_{ij}]$ are J_1 and J_2 -positive with respect to P_1 and P_2 respectively, then by the first part of the proof,

$$([r(x)(\xi'_{ij})], [\eta'_{ij}]) = (x, \sum_{i,j=1}^{n} q_1 \xi'_{ij} \otimes q_2 \eta'_{ij}) \ge 0,$$

because of the selfduality of $q_1P_1 \bigotimes q_2P_2$. Therefore x belongs to $P_1 \bigotimes P_2$.

Now, choose two increasing net $\{p_{\alpha}\}(\alpha \in I)$ and $\{p_{\beta}\}(\beta \in J)$ of σ -finite projections of M_1 and M_2 which converge strongly to 1 respectively. Put $q_{\alpha} = p_{\alpha}J_1p_{\alpha}J_1$ and $r_{\beta} = p_{\beta}J_2p_{\beta}J_2$. Then $\{q_{\alpha}\}$ and $\{r_{\beta}\}$ are also increasing nets which converge strongly to 1. By the above arguments, we have

$$P_1 \widehat{\otimes} P_2 \subset \overline{\bigcup_{\alpha,\beta} (q_\alpha \otimes r_\beta)(P_1 \widehat{\otimes} P_2)} \subset \overline{\bigcup_{\alpha,\beta} q_\alpha P_1 \widehat{\otimes} r_\beta P_2} \subset P_1 \widehat{\otimes} P_2.$$

Therefore we have $P_1 \widehat{\otimes} P_2 = \overline{\bigcup_{\alpha,\beta} q_\alpha P_1 \widehat{\otimes} r_\beta P_2}$.

By the last half of the proof of Proposition 2.4 and the first half of the proof of this theorem, $\{q_{\alpha}P_1 \bigotimes r_{\beta}P_2\}$ is an increasing family of selfdual cones. Therefore, we see that $P_1 \bigotimes P_2$ is also selfdual in $H_1 \bigotimes H_2$ and contains $P_1 \bigotimes P_2$. It is now easy to see that $(M_1 \bigotimes M_2, M_2)$

 $H_1 \otimes H_2$, $J_1 \otimes J_2$, $P_1 \otimes P_2$) is standard using the same argument of the last half of the proof of Proposition 2.4. This completes the proof. Q.E.D.

As an immediate consequence of the above discussion we have the following corollary, which is the extension of Lemma 2. 6.

COROLLARY 2.9. With standard forms (M_1, H_1, J_1, P_1) and (M_2, H_2, J_2, P_2) as before, the cone $P_1 \bigotimes P_2$ conincides with the closure of the union with respect to n of all elements

 $\sum_{i,j=1}^{n} \xi_{ij} \otimes \eta_{ij} \text{ where } [\xi_{ij}] \text{ and } [\eta_{ij}] \text{ are } J_1 \text{ and } J_2 \text{-positive elements with respect to } P_1 \text{ and } P_2 \text{ respectively.}$

§ 3. Some properties of the abelian standard von Neumann algebras

In this section we shall investigate some properties of the abelian standard von Neumann algebras from the point of view of the tensor product of the selfdual cones.

PROPOSITION 3.1. Let (M, H, J, P) be a standard form for an infinite dimensional separable Hilbert space H. Then, M is isomorphic to the algebra ℓ^{∞} of all bounded sequences if and only if P contains a complete orthonormal basis of H.

PROOF. Consider the von Neumann algebra $N = \ell^{\infty}$ on the Hilbert space $K = \ell^2$. Let P_0 be the set of positive ℓ^2 -sequences. One then easily sees that P_0 is a selfdual cone in K and contains a complete orthonormal basis of K. Let J_0 be the isometric involution on K such that $J_0\xi = \xi, \xi \in P_0$. Without difficulty, one can show that (N, K, J_0, P_0) is standard. If (M, H, J, P) is standard and M is isomorphic to N, then there exists an isometry u of K onto H such that $P = uP_0$ by [3; Theorem 2.18]. Therefore P contains a complete orthonormal basis of H.

Conversely, let (M, H, J, P) be a standard form and suppose P contains a countable orthonormal basis $\{e_i\}$ of H. Let \widetilde{M} be the algebra of all operators x on H such that xe_i $=\lambda_i e_i$ and $\{\lambda_i\}$ is a bounded sequence. If we note that P is generated by $\{e_i\}$, we see that (\widetilde{M}, H, J, P) is the standard form by the first part of the proof. Since \widetilde{M} is commutative, we have $M=\widetilde{M}$ by [3; Corollary 5.11]. Therefore M is isomorphic to the algebra ℓ^{∞} . This completes the proof. Q.E.D.

THEOREM 3.2. Let (M_1, H_1, J_1, P_1) and (M_2, H_2, J_2, P_2) be two standard forms. If either M_1 or M_2 is abelian, then $P_1 \otimes P_2$ is selfdual in $H_1 \otimes H_2$, and $(M_1 \otimes M_2, H_1 \otimes H_2, J_1 \otimes J_2, P_1 \otimes P_2)$ is the standard form.

PROOF. Suppose that both M_1 and M_2 are σ -finite. We can then find cyclic and separating vectors ξ_0 and η_0 in P_1 and P_2 respectively. If either M_1 or M_2 is abelian, The convex cone of the algebraic tensor product $M_1^+ \otimes M_2^+$ is σ -weakly dense in $(M_1 \otimes M_2)^+$.

In fact, let x_0 be an element of $(M_1 \otimes M_2)^+$ which does not belong to the σ -weak closure of $M_1^+ \otimes M_2^+$. By the Hahn-Banach theorem, there exists a σ -weakly continuous

linear functional ϕ_0 on $M_1 \otimes M_2$ such that $\phi_0(x_0) < 0$ and $\phi_0(x) \ge 0$ for $x \in M_1^+ \otimes M_2^+$. However, if either M_1 or M_2 is abelian the functional ϕ_0 must be a positive functional on M_1 $\otimes M_2$ by [5; Theorem 3.4], a contradiction.

It follows that $M_1^+ \otimes M_2^+$ is also strongly dense in $(M_1 \otimes M_2)^+$. Therefore the closure of the algebraic tensor product of two convex cones $M_1^+ \xi_0$ and $M_2^+ \eta_0$ in $H_1 \otimes H_2$ coincides with that of $(M_1 \otimes M_2)^+ (\xi_0 \otimes \eta_0)$. Put $\Delta = \Delta_1 \otimes \Delta_2$ where Δ_1 and Δ_2 are the modular operators with respect to ξ_0 and η_0 respectively. For an arbitrary element ξ in $(M_1 \otimes M_2)^+ (\xi_0 \otimes \eta_0)$, there exists a sequence $\{\xi_n\}$ in the algebraic tensor product of $M_1^+ \xi_0$ and $M_2^+ \eta_0$ which is convergent to ξ . Since $\Delta^{1/2}\eta = \Delta^{1/2}S\eta = J\eta$ for $\eta \in (M_1 \otimes M_2)^+ (\xi_0 \otimes \eta_0)$ where S and J denote the \sharp -involution and the modular conjugation with respect to $\xi_0 \otimes \eta_0$ respectively, (cf. [6]). The sequence $\{\Delta^{1/2}\xi_n\}$ is convergent and therefore $\{\Delta^{1/4}\xi_n\}$ is also convergent. Thus we obtain

that is, $P_{\xi_0} \otimes P_{\eta_0} = P_{\xi_0 \otimes \eta_0}$. New by [3; Theorem 2.18], there exists two unitaries u_1 and u_2 in M'_1 and M'_2 such that $J_1 = u_1 J_{\xi_0} u_1^{-1}$, $J_2 = u_2 J_{\xi_0} u_2^{-1}$ and $P_1 = u_1 P_{\xi_0}$, $P_2 = u_2 P_{\xi_0}$. It follows that $P_1 \otimes P_2 = (u_1 \otimes u_2)(P_{\xi_0} \otimes P_{\eta_0}) = (u_1 \otimes u_2) P_{\xi_0 \otimes \eta_0}$ is a selfdual cone and satisfies required condition.

In the general case, considering increasing nets of σ -finite projections of M_1 and M_2 converging strongly to 1 and the reduced standard von Neumann algebras, we obtain the conclusion by the similar arguments of the proof of Proposition 2.4. This completes the proof. Q.E.D.

PROPOSITION 3.3. Let $(\widetilde{M}, \widetilde{H}, \widetilde{J}, \widetilde{P})$ and (M, H, J, P) are two standard von Neumann algebras where $\widetilde{M} = B(K) \otimes I$ and $\widetilde{H} = K \otimes K$ for a sequrable Hilbert space K and dim $K \ge 2$. If $P \otimes \widetilde{P}$ is selfdual, then M is abelian.

PROOF. Let $\{e'_n\}$ be a countable orthonormal basis in K. By [3; Theorem 2.18], there exists a unitary u on \widetilde{H} such that $\widetilde{J}=uJ_{\eta_0'}u^{-1}$ and $\widetilde{P}=uP_{\eta_0'}$ for a cyclic and separating vector $\eta'_0 = \sum_{n=1}^{\infty} \frac{1}{n} e'_n \otimes e'_n$ in \widetilde{H} for \widetilde{M} . Let p_n be an *n*-dimensional projection on K such that $p_n e_i = e_i$ ($i \leq n$) and $p_n e_i = 0$ (i < n) for a natural number *n*. Put $q_n = (p_n \otimes 1)J_{\eta'_0}(p_n \otimes 1)$ $J_{\eta'_0}$, which is equal to $p_n \otimes p_n$. If $P \otimes \widetilde{P}$ is selfdual, then $P \otimes P_{\eta'_0}$ is also selfdual in $H \otimes \widetilde{H}$. Hence one easily sees that $P \otimes q_n P_{\xi'_0}$ is selfdual in $H \otimes q_n H$ for each *n*. Consequently, if we consider the reduced standard von Neumann algebra ($q_n \widetilde{M}q_n, q_n \widetilde{H}, q_n J_{\eta'_0}q_n, q_n P_{\eta'_0}$), we may assume that $\widetilde{M} = B(H_n) \otimes I_n$, $\widetilde{H} = H_n \otimes H_n$, $\widetilde{J} = J_{\eta_0}$ and $\widetilde{P} = P_{\eta_0}$ where η_0 is a canonical cyclic and separating vector if an n^2 -dimensional Hilbert space $H_n \otimes H_n$ used in Lemma 2.3 and $n \geq 2$.

As usual, we first assume that M is σ -finite and consider a cyclic and separating vector ξ_0 in P. Without loss of generality, we may then assume that $J=J_{\xi_0}$ and $P=P_{\xi_0}$. Let $b=y\otimes 1$ be an element of \widetilde{M} where $y=[\lambda_{ij}]\in B(H_n)$. Then we have

$$b\widetilde{J}b\widetilde{J}_{\eta_0} = \sum_{i,j=1}^n \sum_{k=1}^n \lambda_{ik} \overline{\lambda_{jk}} e_i \otimes e_j.$$

If each a_i and a belong to M, then

$$(\sum_{i,j=1}^{n} a_{j}Ja_{i}J\xi_{0} \otimes (e_{i} \otimes e_{j}), aJaJ\xi_{0} \otimes b\widetilde{J}b\widetilde{J}\eta_{0})$$

$$=(\sum_{i,j=1}^{n} \sum_{k=1}^{n} \lambda_{jk}a^{*}a_{j}J\lambda_{ik}a^{*}a_{i}J\xi_{0}, \xi_{0})$$

$$=\sum_{k=1}^{n}((\sum_{i=1}^{n} \lambda_{ik}a^{*}a_{i})J(\sum_{i=1}^{n} \lambda_{ik}a^{*}a_{i})J\xi_{0}, \xi_{0}) \ge 0.$$

Note that the cone $P \otimes \widetilde{P}$ is generated by the elements $aJaJ\xi_0 \otimes b\widetilde{J}b\widetilde{J}\eta_0$, $a \in M$, $b \in \widetilde{M}$. It follows that the transpose $t[a_iJa_jJ\xi_0]$ belongs to $P \otimes \widetilde{P}$ if $P \otimes \widetilde{P}$ is selfdual. By Proposition 2.4 we see that $t[a_iJa_jJ\xi_0]$ is a *J*-positive element with respect to *P*. Hence we have

$$0 \leq (\sum_{i,j=1}^{n} x_i J x_j J a_j J a_i J \xi_0, \xi_0) = \sum_{i,j=1}^{n} (a_j J x_j a_i J \xi_0, x_i^* \xi_0)$$
$$= \sum_{i,j=1}^{n} (a_j \Delta^{1/2} a_j^* x_i^* \xi_0, x_i^* \xi_0)$$

for all elements a_i and x_i of M where Δ is the modular operator with respect to ξ_0 . Let A_0 be the maximal Tomita algebra in the left Hilbert algebra $M\xi_0$. If we put $a = \pi(\Delta^{-1/4}a\xi_0), a \in \pi(A_0)$, then

$$\sum_{i,j=1}^{n} \widehat{a_{j} a_{i}^{*}} \mathcal{\Delta}^{1/4} x_{i}^{*} \xi_{0}, \ \mathcal{\Delta}^{1/4} x_{i}^{*} \xi_{0}) = \sum_{i,j=1}^{n} (a_{j} \mathcal{\Delta}^{1/2} a_{i}^{*} x_{j}^{*} \xi_{0}, x_{i}^{*} \xi_{0}) \ge 0$$

for all elements a_i and x_i of $\pi(A_0)$. Note that $\Delta^{1/4}A_0 = A_0$ is dense in H, and we see that ${}^t[a_i a_j^*](\in \mathcal{M}_n(\pi(A_0)))$ is positive. Because of the strong *-density of $\pi(A_0)$ in M, ${}^t[a_i a_j^*]$ must be positive for all elements a_i of M. However, this is a contradiction if M is not abelian.

In fact, if M is non-abelian, then there exist two orthogonal projections p and q of M such that p=u*u, q=uu*, $u \in M$. Put $a_1=p$, $a_2=u$, $a_i=0$ $(3 \le i \le n)$. We obtain

$$\left(\begin{bmatrix}p & up\\ pu^* & q\end{bmatrix}\begin{bmatrix}qu\xi\\ -p\xi\end{bmatrix}, \begin{bmatrix}qu\xi\\ -p\xi\end{bmatrix}\right) = -2(p\xi,\xi) < 0,$$

for non-zero vectors ξ of pH. This implies that $t[a_i a_i^*]$ is not positive.

In the general case, there exists an increasing net $\{p_i\}$ of σ -finite projections of M which is strongly convergent to the identity of M. We put $q_i = p_i J p_i J$. Considering the

reduced standard von Neumann algebra $(q_iMq_i, q_iH, q_iJq_i, q_iP)$, one easily sees that $q_iP\otimes\widetilde{P}$ is selfdual in $q_iH\otimes\widetilde{H}$ if $P\otimes\widetilde{P}$ is selfdual. By the first part of the proof, we see that q_iMq_i is abelian. Therefore, M is abelian. This completes the proof. Q.E.D.

References

- [1] H. Araki, Some properties of the modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math., 50 (1974), 309–354.
- [2] A. Connes, Caractérisation des espaces vectoriels ordonnées sousjacents aux algèbres de von Neumann, Ann. Inst Fourier, 24 (1974), 121–155.
- [3] U. Haagerup, The standard form of von Neumann algebras, preprint, Univ. of Copenhagen, 1973.
- [4] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283.
- [5] T. Takasaki and J. Tomiyama, Stinespring type theorem for various types of completely positive maps associated to operator algebras, Math. Japonica, 27 No. 1 (1982), 129–139.
- [6] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lectures Notes in Math., No. 128, Springer-Verlag, 1970.
- [7] M. Takesaki, Theory of operator algebras I, Springer-Verlag, 1979.
- [8] J. Tomiyama, Complete positivity in operator algebras, Lecture Note No. 4 in RIMS Kyoto Univ., 1978. (in Japanese)

Yasuhide MIURA Department of Mathematics College of Humanities and Social Sciences Iwate University Morioka 020 Japan Jun TOMIYAMA Faculty of Science Niigata University Niigata 950–21 Japan

Added in proof

After we had finished our manuscript we have learned from S. Watanabe about two papers by L. M. Schmitt and G. Wittstock: Characterization of matrix-ordered standard forms of W*-algebras, preprint, Univ. of Saarland (1981); Kernel representations of completely positive Hilbert-Schmidt operators on standard forms, Arch. Math., 38 (1982), 453-458. We have found that parts of their results are deeply related to ours and their starting Lemma 1.1 in their first paper happens to coincide essentially with the last half of our Lemma 2.3. The first different point of our present argument from theirs is the introduction of the notion of J-positive matrices of order n by which we have given an intrinsic characterization of the cone \mathcal{H}_n^+ (in their notation) and the further characterization of the cone $P_1 \otimes P_2 = (\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)})^+$. Thus with this notion and with the result (Proposition 2.4) one can see that our Theorem 2.8 is actually equivalent to their main theorem in the second paper. We should remark here that Theorem 2.8 may be regarded as the natural counterpart of the Effros' theorem about the characterization of the positive portion of the tensor product of von Neumann algebras as a convex cone of certain completely positive maps from the predual of one von Neumann algebra into the other. The problems of §3 are not discussed in their papers.