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1. Introduction

We have considered in [11, Galton Watson processes in two districts, A and B, and a
simplified type of immigration from Binto A, and studied some limit behaviors.

In A-district, the primary Galton Watron process {X,; n=0, 1, 2, ...} is considered to
be based on a probabirity distribution {pr; £=0, 1, 2, ...}; i.e., after one unit of time each
particle splits independently of others into a random number of offsprings according to
the probability distribution {pz}. Similarly in B-district, the primary Galton Watson
process {Y,; n=0, 1, 2,...} is considered to be based on a probability distribution {qr}.
Now we assume that when every particle in the »-th generation in A-district has no off-
spring then instantly one particle in B-district (if exists) immigrates into A-district.
That is, let the number of particles in the n-th generation in A-district be X,,, the number
of their offsprings be %,,.,.1, and let Y, ﬁ,ﬂ be those in B-district (#=0, 1, 2,...), then

Xn+1:19 Yn+1=?n+1—1 if §n+1=0» ?n+1>0,

— ~

Xn+1:Xn+11 Yn+1: Y,.+1 otherwise.

(Zy=Xn, Y,); n=0, 1,2, ...} is a Markov chain on the pairs of nonnegative integers with
homogenious transition probabilities

n(i. j—>ky, )=P(Zn+1=(k, 1)| Zu=C(, 7).
We assume Xy=1, po+p:1<1, Y,=1, and define the generating functions of X;, Y; by
F$)= S prsk, g(s)= 3 qusk, |s|<I,
k=0 =0
and those of X», Y. by
Fon(s)= 33 P(Xu=B)st, gon(s)= g;op( Yu=F)sk

and denote the extinction probabilities of X, and Y. by Qx and Qy respectively.
We denote the n-step transition functions of {Z»} by
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Tf(n)(i, j—"k, l)=P{Zm+n=(k, l)lZmz(i, j)} (n=1, 2) "'))

and define the generating function of Zx by
‘P(n)(S, t)=ki0 :ion‘(”)(ly 1—"k: l)skﬂ (n':l’ 2’ ): Isl ’ Itl_él’

and ¢g)(s, £)=st, and denote ¢(s, £) by ¢(s, ?).

We obtained in [1] the following two results.
(i) In the subcritical case, i.e., when the mean Mx of X;<1, if we denote the generating
function of X» by f(ny, and assume that { f(ny(po)—@my(Por 20)} converges to @ as n— oo,
then we have

. T o\ a
im BXw) =335

(ii) In the supercritical case, i.e. when Mx >1, denoting li’in Fon(Qx)=Rx, we have

P(Xn=k)—>0 (n—>0) for k=1, 2,...,
P(X»=0)—>Rx (n—> o),
P(Xn—> co(n—>0))=1—Rx. ([1, Theorem 3])
In this paper we study the limit behavior of ¢(ay(s, £) and ¥, in the supercritical case,

and give a complementary note to the subcritical case.

2. The limit behavior of ¢ (s. t) in the supercritical case |
When Mx>1, as we have seen in [1, p. 53],
e (s, )= fimy(s)—>Rx (n—> ) for 0=<s5<1 Q)
@n)(0, t)=1<;:) 21, 1—0, Ht!
=nm(l, 1—>0, 0)—> Rx (n—>0). 2)
When 0<s<{land 0<t¢=<1,
20, H=pnx(s, H=em(s, 1).
Therefore by (1) and (2),

li;n om(s, H)=Rx.

gm®=em(l, b
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=3 D @, 1—>i. i) 3G, i—k, DE.
i=0 5=0 E=01=0

We denote the transition probabilities of the processes {X.} and {Y»} by {pi;} and {gi;}

respectively. Then

0

3 D7, j—sk, DH
k=0 [=0

=kz_‘,l Z_}opik g1t pig qio+Dio lz_}lquﬂ -1

-~

_2_126 it 1= [g(#)14.

Accordingly
é(”)(t) gzi) _ion(”—l)(ls 1 ’i’ ])[g(t)]J
<0 4=

= gm-ple(t)].
When 0< < Qy, since g(¢)=t¢, we have
E(”)(t) —2—2(”—1)( t),

and so gy(¢) converges.
Let Ry =lim gmn(Qr), then Ry=Qy. We can see by (3),

Em( )2 &k (gn-i(1) if 0<k=n.
Here if n—> 0, then gn—r)(¢)—>Qy and so

Hm gen(#)= gw(Qy) for every k.
Accordingly

lirrzn gn(t)=Ry if 0<¢t=<Qy.
On the otherh_and, if0=t<Qy

En(1)=gwm(Qv)=< Ry.

Thus we have

lim gm(t)=Ry if 0<t<Qy.

_ Next we prove that when Qy >0 this equality holds for 0<¢<1.
Let gn)(8)= éi‘,oak(n)t”, then

ar(n)=0 for k=0, 1, 2, ....,, n=0, 1, 2, ....
and (4) implies

3
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lim ay(n)=Ry
li'x‘n arin)=0 k=1,2,.... )

Now we put £&[0,1). For arbitrary positive number ¢, we can put sufficiently large
number K such that

f‘. ar(n)tk<e for n=1, 2, ....
k=K-+1
For another positive number J, since (5) holds, we can put N such that if > N then
K
kZ.oak(n)tk < Ry+d.
Thus we have for sufficiently large »
Rygkﬁoak(n)tk <Ry-+e+d.

Here ¢ and d are arbitrary positive numbers, so we have

lim gm(t)=Ry if 0=1<1.

Thus we have;
THEOREM 1. If Mx>1 and Qv >0, then

. Rx (0=t<1)
ll;n emy(s, H= Ry (s=1,0=¢t<1)
1 (s=t=1)

CoROLLARY. If Mx>1 and Qv >0, then
1) P(Ya=k)—>0 (n—>c0) fork=1,2,....
2) P(Y»=0)—>Ry(n—> o)
3) P(Yp—>o(n—>))=1—Ry. :
It is easily known that Rx< Qx, Ry=Qy and Rx<Ry, and that Rx= Ry if and only
if Qx=Qy.

3. The limit behavior of E(X>) in subcritical case

In the Theorem 2 of [1], we have assumed the convergence of {f(ny( Do) —em(Dos 90)} -
But yet now we cannot know whether it converges or not. So in this section we give

some complementary notes.
LEmMA. If 0<s, <1 and N is a positive integr, then

JT(N)(S)—SO(N;(s, ) = fny(s)A—gvy(t)). | €))

Proor. We prove it by the induction.
(I) When N=1,

Fa®)—ew(s, H=ewys, D—ew(s, 1)
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= ()=f()&()=b1o 3} qn{l—s—1"73 (t=5))
= F(A—2(H).

(II) Now we assume

T ()= (s, H=Fan(s) A—gan(8) 0<s, t=<1).
Asin (I)

foN+p ()—ow+1(s, D

=§_‘,0 ni_i TN+, I—>m, n)s"™(1—t")
=3, 2 5 B ranl, Lk, Dk, I—>m, i1~
=3 5wl 1k, 31 Sk, I—>m, m)s"(1—1")

Il
lMs

M=( =0

t—sn}.

Here we can see by the assumption,

ST S (L, 1=k, D) 33 32 prm qns™(L—27)
k=01=0 M=( e=()

=31 Syman(l, 1—k, ) {fsp—ror(t) }

= Fan(F(s)—ean( f(s), £(£)

=S (f()A—gwy(g(£)

= [N+ ()L — &N +1y(E)).
Therefore we have

FN+p(s)—owN+n(s, D= fv+n(s) A—gav+n()).
(I) and (II) prove (1).
If we consider N—> oo in (1), then we have

5 e, 1—k, D{Z2 3 B (A=) g3} qua(l—s =t

2
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T { Fom (—om (s, 1) | <Qx(1—Qr). @
THEOREM 2. If Mx>1, then

= oy 1-Qv

ll'lll'l E(Xn)_é—l—:m—‘ . (3)

Proor. Since Mx<1, we have Qx=1, hence by (2)
Tm | Fom(®)—pon (s, D} =1-Qr.

Thus by the expansion of E(X») in [1, p. 51] and [2, p. 22, lemma A], we get (3).
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