On the limit behavior of some branching processes with immigration

By
Tetsuo Kaneko*

(Received October 31, 1979)

1. Introduction

We have considered in [1], Galton Watson processes in two districts, A and B, and a simplified type of immigration from B into A, and studied some limit behaviors.

In A-district, the primary Galton Watron process $\{X_n; n=0, 1, 2, ...\}$ is considered to be based on a probability distribution $\{p_k; k=0, 1, 2, ...\}$; i.e., after one unit of time each particle splits independently of others into a random number of offsprings according to the probability distribution $\{p_k\}$. Similarly in B-district, the primary Galton Watson process $\{Y_n; n=0, 1, 2, ...\}$ is considered to be based on a probability distribution $\{q_k\}$. Now we assume that when every particle in the n-th generation in A-district has no offspring then instantly one particle in B-district (if exists) immigrates into A-district. That is, let the number of particles in the n-th generation in A-district be \overline{X}_n , the number of their offsprings be \widetilde{X}_{n+1} , and let \overline{Y}_n , \widetilde{Y}_{n+1} be those in B-district (n=0, 1, 2, ...), then

$$\overline{X}_{n+1}=1$$
, $\overline{Y}_{n+1}=\widetilde{Y}_{n+1}-1$ if $\widetilde{X}_{n+1}=0$, $\widetilde{Y}_{n+1}>0$, $\overline{X}_{n+1}=\widetilde{X}_{n+1}$, $\overline{Y}_{n+1}=\widetilde{Y}_{n+1}$ otherwise.

 $\{Z_n=(\bar{X}_n, \bar{Y}_n); n=0, 1, 2, ...\}$ is a Markov chain on the pairs of nonnegative integers with homogenious transition probabilities

$$\pi(i, j \longrightarrow k, l) = P(Z_{n+1} = (k, l) | Z_n = (i, j)).$$

We assume $X_0=1$, $p_0+p_1<1$, $Y_0=1$, and define the generating functions of X_1 , Y_1 by

$$f(s) = \sum_{k=0}^{\infty} p_k s^k, \ g(s) = \sum_{k=0}^{\infty} q_k s^k, \ |s| < 1,$$

and those of X_n , Y_n by

$$f_{(n)}(s) = \sum_{k=0}^{\infty} P(X_n = k) s^k, \ g_{(n)}(s) = \sum_{k=0}^{\infty} P(Y_n = k) s^k$$

and denote the extinction probabilities of X_n and Y_n by Q_X and Q_Y respectively.

We denote the n-step transition functions of $\{Z_n\}$ by

^{*} Niigata University

$$\pi_{(n)}(i, j \longrightarrow k, l) = P\{Z_{m+n} = (k, l) | Z_m = (i, j)\} \ (n=1, 2, ...),$$

and define the generating function of Z_n by

$$\varphi_{(n)}(s, t) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(n)}(1, 1 \longrightarrow k, l) s^k t^l$$
 (n=1, 2, ...), $|s|, |t| \le 1$,

and $\varphi_{(0)}(s, t) = st$, and denote $\varphi_{(1)}(s, t)$ by $\varphi(s, t)$.

We obtained in [1] the following two results.

(i) In the subcritical case, i.e., when the mean M_X of $X_1 < 1$, if we denote the generating function of \overline{X}_n by $\overline{f}_{(n)}$, and assume that $\{\overline{f}_{(n)}(p_0) - \varphi_{(n)}(p_0, q_0)\}$ converges to α as $n \to \infty$, then we have

$$\lim_{n} E(\bar{X}_{n}) = \frac{\alpha}{1 - M_{X}}.$$

(ii) In the supercritical case, i.e. when $M_X > 1$, denoting $\lim_{n} \overline{f}_{(n)}(Q_X) = R_X$, we have

$$P(\bar{X}_n = k) \longrightarrow 0 \ (n \longrightarrow \infty) \text{ for } k = 1, 2, ...,$$

$$P(\bar{X}_n = 0) \longrightarrow R_X \ (n \longrightarrow \infty),$$

$$P(\bar{X}_n \longrightarrow \infty (n \longrightarrow \infty)) = 1 - R_X. \ ([1, \text{ Theorem 3}])$$

In this paper we study the limit behavior of $\varphi_{(n)}(s, t)$ and \overline{Y}_n in the supercritical case, and give a complementary note to the subcritical case.

2. The limit behavior of $\varphi_{(n)}$ (s. t) in the supercritical case

When $M_X > 1$, as we have seen in [1, p. 53],

$$\varphi_{(n)}(s, 1) = \overline{f}_{(n)}(s) \longrightarrow R_X \quad (n \longrightarrow \infty) \text{ for } 0 \le s < 1$$

$$\varphi_{(n)}(0, t) = \sum_{l=0}^{\infty} \pi_{(n)}(1, 1 \longrightarrow 0, l) t^l$$

$$= \pi_{(n)}(1, 1 \longrightarrow 0, 0) \longrightarrow R_X \quad (n \longrightarrow \infty).$$
(2)

When 0 < s < 1 and $0 \le t \le 1$,

$$\varphi_{(n)}(0, t) \leq \varphi_{(n)}(s, t) \leq \varphi_{(n)}(s, 1).$$

Therefore by (1) and (2),

$$\lim_{n} \varphi_{(n)}(s, t) = R_X.$$

$$\overline{g}_{(n)}(t) = \varphi_{(n)}(1, t)$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(n)}(1, 1 \longrightarrow k, l) t^{l}$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \pi_{(n-1)}(1, 1 \longrightarrow i, j) \pi(i, j \longrightarrow k, l) t^{l}$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \pi_{(n-1)}(1, 1 \longrightarrow i, j) \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (i, j \longrightarrow k, l) t^{l}.$$

We denote the transition probabilities of the processes $\{X_n\}$ and $\{Y_n\}$ by $\{p_{ij}\}$ and $\{q_{ij}\}$ respectively. Then

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi(i, j \longrightarrow k, l) t^{l}$$

$$= \sum_{k=1}^{\infty} \sum_{l=0}^{\infty} p_{ik} q_{jl} t^{l} + p_{i0} q_{j0} + p_{i0} \sum_{l=1}^{\infty} q_{jl} t^{l-1}$$

$$\geq \sum_{l=0}^{\infty} q_{jl} t^{l} = [g(t)]^{j}.$$

Accordingly

$$\overline{g}_{(n)}(t) \ge \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \pi_{(n-1)}(1, 1 \longrightarrow i, j) [g(t)] j$$

$$= \overline{g}_{(n-1)}[g(t)]. \tag{3}$$

When $0 \le t \le Q_Y$, since $g(t) \ge t$, we have

$$\overline{g}_{(n)}(t) \geq \overline{g}_{(n-1)}(t),$$

and so $\overline{g}_{(n)}(t)$ converges.

Let $R_Y = \lim_{n} \overline{g}_{(n)}(Q_Y)$, then $R_Y \ge Q_Y$. We can see by (3),

$$\overline{g}_{(n)}(t) \geq \overline{g}_{(k)}(g_{(n-k)}(t))$$
 if $0 \leq k \leq n$.

Here if $n \longrightarrow \infty$, then $g_{(n-k)}(t) \longrightarrow Q_Y$ and so

$$\lim_{n} \overline{g}_{(n)}(t) \ge g_{(k)}(Q_Y)$$
 for every k.

Accordingly

$$\lim_{n} \bar{g}_{(n)}(t) \geq R_{Y} \text{ if } 0 \leq t \leq Q_{Y}.$$

On the other hand, if $0 \le t \le Q_Y$

$$\overline{g}_{(n)}(t) \leq \overline{g}_{(n)}(Q_Y) \leq R_Y.$$

Thus we have

$$\lim_{n} \overline{g}_{(n)}(t) = RY \text{ if } 0 \leq t \leq QY.$$
 (4)

Next we prove that when $Q_Y > 0$ this equality holds for $0 \le t < 1$.

Let
$$g_{(n)}(t) = \sum_{k=0}^{\infty} a_k(n)t^n$$
, then

$$a_k(n) \ge 0$$
 for $k=0, 1, 2, ..., n=0, 1, 2, ...$

and (4) implies

$$\lim_{n} a_{0}(n) = R_{Y}$$

$$\lim_{n} a_{k}(n) = 0 \quad k = 1, 2, \dots$$
(5)

Now we put $t \in [0, 1)$. For arbitrary positive number ε , we can put sufficiently large number K such that

$$\sum_{k=K+1}^{\infty} a_k(n)t^k < \varepsilon \text{ for } n=1, 2, \dots$$

For another positive number δ , since (5) holds, we can put N such that if n > N then

$$\sum_{k=0}^{K} a_k(n) t^k < R_Y + \delta.$$

Thus we have for sufficiently large n

$$R_Y \leq \sum_{k=0}^{\infty} a_k(n) t^k < R_Y + \varepsilon + \delta$$
.

Here ε and δ are arbitrary positive numbers, so we have

$$\lim_{n} \bar{g}_{(n)}(t) = R_Y \text{ if } 0 \leq t < 1.$$

Thus we have;

THEOREM 1. If $M_X > 1$ and $Q_Y > 0$, then

$$\lim_{n} \varphi_{(n)}(s, t) = \begin{cases} R_{X} & (0 \le t < 1) \\ R_{Y} & (s = 1, 0 \le t < 1) \\ 1 & (s = t = 1) \end{cases}$$

COROLLARY. If $M_X > 1$ and $Q_Y > 0$, then

- 1) $P(\bar{Y}_n = k) \longrightarrow 0 \ (n \longrightarrow \infty)$ for k = 1, 2, ...
- 2) $P(\overline{Y}_n = 0) \longrightarrow R_Y(n \longrightarrow \infty)$
- 3) $P(\overline{Y}_n \longrightarrow \infty(n \longrightarrow \infty)) = 1 R_Y$.

It is easily known that $R_X \leq Q_X$, $R_Y \geq Q_Y$ and $R_X \leq R_Y$, and that $R_X = R_Y$ if and only if $Q_X \geq Q_Y$.

3. The limit behavior of $E(\overline{X}_n)$ in subcritical case

In the Theorem 2 of [1], we have assumed the convergence of $\{\overline{f}_{(n)}(p_0) - \varphi_{(n)}(p_0, q_0)\}$. But yet now we cannot know whether it converges or not. So in this section we give some complementary notes.

LEMMA. If $0 \le s$, $t \le 1$ and N is a positive integr, then

$$\bar{f}_{(N)}(s) - \varphi_{(N)}(s, t) \le f_{(N)}(s)(1 - g_{(N)}(t)).$$
 (1)

Proof. We prove it by the induction.

(I) When N=1,

$$\overline{f}_{(1)}(s) - \varphi_{(1)}(s, t) = \varphi_{(1)}(s, 1) - \varphi_{(1)}(s, t)$$

$$\begin{split} &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \pi(1, 1 \longrightarrow m, n) s^{m}(1-t^{n}) \\ &= \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} p_{1m} q_{1n} s^{m}(1-t^{n}) + p_{10} \sum_{n=1}^{\infty} q_{1n} s(1-t^{n-1}) \\ &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} p_{1m} q_{1n} s^{m}(1-t^{n}) - p_{10} \sum_{n=0}^{\infty} q_{1n}(1-t^{n}) + p_{10} \sum_{n=1}^{\infty} q_{1n} s(1-t^{n}) \\ &= f(s) - f(s) g(t) - p_{10} \sum_{n=1}^{\infty} q_{1n} \{1 - s - t^{n-1} (t - s)\} \\ &\leq f(s)(1 - g(t)). \end{split}$$

(II) Now we assume

$$\overline{f}_{(N)}(s) - \varphi_{(N)}(s, t) \leq f_{(N)}(s) (1 - g_{(N)}(t)) (0 \leq s, t \leq 1).$$

As in (I)

$$\overline{f}_{(N+1)}(s) - \varphi_{(N+1)}(s, t)
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \pi_{(N+1)}(1, 1 \longrightarrow m, n) s^{m}(1-t^{n})
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(N)}(1, 1 \longrightarrow k, l) \pi(k, l \longrightarrow m, n) s^{m}(1-t^{n})
= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(N)}(1, 1 \longrightarrow k, l) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \pi(k, l \longrightarrow m, n) s^{m}(1-t^{n})
= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(N)}(1, 1 \longrightarrow k, l) \left\{ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} p_{km} q_{ln} s^{m}(1-t^{n}) - p_{k_{0}} \sum_{n=1}^{\infty} q_{1n}(1-s-t^{n-1}) \right\}.$$
(2)

Here we can see by the assumption,

$$\begin{split} &\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(N)}(1, 1 \longrightarrow k, l) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} p_{km} q_{ln} s^{m} (1 - t^{n}) \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \pi_{(N)}(1, 1 \longrightarrow k, l) \left\{ f(s)^{k} - f(s)^{k} g(t)^{l} \right\} \\ &= \overline{f}_{(N)}(f(s)) - \varphi_{(N)}(f(s), g(t)) \\ &\leq f_{(N)}(f(s)) (1 - g_{(N)}(g(t))) \\ &= f_{(N+1)}(s) (1 - g_{(N+1)}(t)). \end{split}$$

Therefore we have

$$\overline{f}_{(N+1)}(s) - \varphi_{(N+1)}(s, t) \leq f_{(N+1)}(s) (1 - g_{(N+1)}(t)).$$

(I) and (II) prove (1).

If we consider $N \longrightarrow \infty$ in (1), then we have

$$\overline{\lim}_{n} \left\{ \overline{f}_{(n)}(s) - \varphi_{(n)}(s, t) \right\} \leq Q_{X}(1 - Q_{Y}). \tag{2}$$

THEOREM 2. If $M_X > 1$, then

$$\overline{\lim}_{n} E(\bar{X}_{n}) \leq \frac{1 - Q_{Y}}{1 - M_{X}} . \tag{3}$$

PROOF. Since $M_X < 1$, we have $Q_X = 1$, hence by (2)

$$\overline{\lim}_{n} \left\{ \overline{f}_{(n)}(s) - \varphi_{(n)}(s, t) \right\} \leq 1 - Q_{Y}.$$

Thus by the expansion of $E(\overline{X}_n)$ in [1, p. 51] and [2, p. 22, lemma A], we get (3).

References

- [1] KANEKO, T. The immigration between branching processes. Sci. Rep. Niigata Univ. Ser. A, 12 (1975), 47-53.
- [2] Chung, K. L. Markov Chains with Stationary Transition Probabilities. Springer-Verlag.