ON THE ℓ -CLASS FIELD TOWERS OF CYCLIC FIELDS OF DEGREE ℓ

By

Teruo TAKEUCHI*

(Received October 31, 1979)

1. Let ℓ be an odd prime, let K/\mathbb{Q} be a cyclic extension of degree ℓ , and let p_1, \ldots, p_ℓ be the primes ramified in K. Assume ℓ is not ramified in K, Then $p_i \equiv 1 \mod \ell$ for i=1, \ldots, t . Let M_K denote the ℓ -Sylow subgroup of the ideal class group of K and put r=rank (M_K) .

As is well-known, if $r \ge 2+2\sqrt{\ell}$, then the ℓ -class field tower of K is infinite. Moreover, we know from a result of Y. Furuta [2] that the ℓ -class field tower of K is infinite on the condition that $t \ge 8$. On the other hand, if t = 1 or r = 1, then the ℓ -class field tower of K is finite.

In the previous paper [4], the author studied in the case where t=2 and proved the following.

THEOREM A, Let $l \ge 13$. Then there exist infinitely many couples of primes (p_1, p_2) with the following conditions:

(i) $p_i \equiv 1 \mod \ell \text{ for } i=1, 2.$

 p_1 is an l-th power residue mod p_2 .

 p_2 is an *l*-th power residue mod p_1 .

(ii) If K/\mathbf{Q} is a cyclic extension of degree ℓ with only p_1 , p_2 ramified, then the ℓ class field tower of K is infinite.

THEOREM B. Let p_1 be an odd prime with $p_1 \equiv 1 \mod \ell$. Let k_1/\mathbf{Q} be the unique cyclic extension of degree ℓ with only p_1 ramified. Assume $4(2+\ell) \leq h(k_1)$, where $h(k_1)$ is the class number of k_1 . Then there exist infinitely many primes p_2 with the following conditions:

- (i) $p_2 \equiv 1 \mod \ell$ and p_2 is not an ℓ -th power residue mod p_1 .
- (ii) If K/\mathbf{Q} is a cyclic extension of degree ℓ with only p_1, p_2 ramified, then the ℓ -class field tower of K is finite but the class field tower of K is infinite.

The above results are concerned with the number t of primes ramified in K. Corresponding to them we are able to prove theorems concerned with the ℓ -rank r of the ideal class group of K. In fact, in this note we consider the case where r=2 and prove the following.

^{*} Niigata University

T. Takeuchi

THEOREM 1. Let $l \ge 13$. Then there exist infinitely many triples of primes (p_1, p_2, p_3) with the following conditions:

- (i) $p_i \equiv 1 \mod \ell \text{ for } i = 1, 2, 3.$
- (ii) If K/Q is a cyclic extension of degree ℓ with only p_1 , p_2 , p_3 ramified, then $M_K \approx \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z}$,

and the l-class field tower of K is infinite.

THEOREM 2. Let p_1 be an odd prime with $p_1 \equiv 1 \mod \ell$. Let k_1/\mathbf{Q} be the unique cyclic extension of degree ℓ with only p_1 ramified. Assume $4(2+\ell) \leq h(k_1)$. Then there exist infinitely many couples of primes (p_2, p_3) with the following conditions:

- (i) $p_i \equiv 1 \mod \ell \quad for i = 2, 3.$
- (ii) If K/Q is a cyclic extension of degree l with only p₁, p₂, p₃ ramified, then M_K ≈ Z/lZ ⊕ Z/lZ, and the l-class field tower of K is finite but the class field tower of K is infinite.

2. PROOF of Theorem 1, Let p_1, p_2 be primes satisfying the conditions in Theorem A. Then we can choose a prime p_3 with $p_3 \equiv 1 \mod \ell$, such that p_1 and p_2 are not ℓ -th power residues $\mod p_3$. (See, for instance, [3], II, Lemma 1.) Let K/\mathbf{Q} be a cyclic extension of degree ℓ with only p_1, p_2, p_3 ramified. For a generator σ of Gal (K/\mathbf{Q}) , let

$$\left(\left(\frac{p_i:K/\mathbf{Q}}{p_j}\right)\right) = (\sigma^{aij}), a_{ij} \in \mathbf{Z}/\ell\mathbf{Z},$$

where $\left(\frac{p_i:K/\mathbf{Q}}{p_j}\right)$ denotes the norm residue symbol locally at p_j of K/\mathbf{Q} . Since $\left(\frac{p_i:K/\mathbf{Q}}{p_3}\right) \neq 1$ for i = 1, 2, it follows that

rank
$$(a_{ij}) = rank \begin{pmatrix} *, & 0, & * \\ 0, & *, & * \\ ?, & ?, & ? \end{pmatrix} = 2,$$

where * means a non-zero element. Hence by [3], I, Theorem 2 we have $M_K \approx \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z}$. Let k_i/\mathbb{Q} be the unique cyclic extension of degree ℓ with only p_i ramified. By Theorem A the ℓ -class field tower of k_1k_2 is infinite, hence that of $k_1k_2k_3$ is also infinite. Since $k_1k_2k_3/K$ is an unramified abelian ℓ -extension, the ℓ -class field tower of K is infinite. This completes the proof.

PROOF of Theorem 2. Let p_1 , p_2 be primes satisfying the conditions in Theorem B. Then we can choose a prime p_3 with the following conditions:

- (i) $p_3 \equiv 1 \mod \ell$.
- (ii) p_1 is not an ℓ -th power residue mod p_3 .
- (iii) p_3 is an ℓ -th power residue mod p_1 but not an ℓ -th power residue mod p_2 .

(See, for instance, [3], II, Lemma 1.) Let L/Q be the elementary abelian extension of degree ℓ^3 with only p_1 , p_2 , p_3 ramified, i.e., $L=k_1k_2k_3$. Then by Fröhlich's criterion [1], Theorem 3 (or by [3], II, Theorem 2) we see that $\ell \not\land h(L)$, hence the ℓ -class field tower of

24

L and that of K are finite. On the other hand, the class field tower of k_1k_2 is infinite by Theorem B. Thus the class field tower of K is also infinite. It is easy to see that $\ell \not \sim h(L)$ implies $M_K \approx \mathbf{Z}/\ell \mathbf{Z} \oplus \mathbf{Z}/\ell \mathbf{Z}$. This completes the proof.

Rererences

- [1] A. FRÖHLICH On the absolute class-group of abelian field, J. London Math. Soc., 29 (1954), 211-217.
- [2] Y. FURUTA On class field towers and the rank of ideal class group, Nagoya Math. J. 48 (1972), 147-157.
- [3] T. TAKEUCHI On the structure of p-class groups of certain number fields I, II, Sci. Rep. Niigata Univ. Ser. A 14 (1977), 25-33; ibid. 15 (1978), 35-42.
- [4] T. TAKEUCHI Notes on the class field towers of cyclic fields of degree ℓ, Tōhoku Math. J. 31 (1979), 301-307.

Department of Mathematics Faculty of General Education Niigata University Niigata, 950–21 Japan