An elementary proof of Gleason-Kahane-Zelazko's theorem for complex Banach algebra with a hermitian involution

By
Muneo Сно̄

(Received June 2, 1973)

1. Introduction

Gleason [2], Kahane and Zelazko [3] proved independently the following;
Theorem (Gleason-Kahane-Zelazko). Let A be a complex unital Banach algebra and let f be a linear functional on A. Then f is multiplicative if and only if $f(a) \in \operatorname{Sp}(a)(a \in A)$.

Their proof is based on Hadamard's factorization theorem. By Choda and Nakamura [1], an elementary proof of this theorem for B^{*}-algebra was presented without depending on such a theorem from the theory of functions.

The purpose of our paper is to present an elementary proof of this theorem for a complex Banach algebra with a hermitian involution. Throughout this paper, we use the standard notations and terminologies from [4].

2. The main theorem

Lemma. Let A be a complex Banach algebra with a hermitian involution and let f be a linear functional on A.
If $f(a) \in S p_{A}(a)(a \in A)$, then we have

$$
f(x h)=f(x) f(h)\left(x \in A, h \in A_{h}\right),
$$

where A_{h} denotes the set of all self-adjoint elements of A.
Proof. We shall suppose, without loss of generality, that A possesses an identity element 1.

Let $k \in A_{h}$ be such that $f(k)=0$, and B be a maximal commutative $*$-subalgebra of A which contains 1 and k, and Φ_{B} be the carrier space of B. Then we get

$$
\mathrm{Sp}_{A}(x)=\mathrm{Sp}_{B}(x)(x \in B)
$$

Since $k^{2}+i k \in B$ and $f\left(k^{2}+i k\right)=f\left(k^{2}\right)$, there exists, from our assumption, an element $\Psi \in \Phi_{B}$ such that

$$
\Psi\left(k^{2}+i k\right)=f\left(k^{2}\right),
$$

and so

$$
\Psi\left(k^{2}\right)+i \Psi(k)=f\left(k^{2}\right) .
$$

We have $\Psi(k) \in \operatorname{Sp}_{B}(k)=\operatorname{Sp}_{A}(k) \subset \mathbb{R}$ and $f\left(k^{2}\right) \in \operatorname{Sp}_{A}\left(k^{2}\right) \subset \mathbb{R}$.
It follows that $\Psi(k)=0$,
and consequently $f\left(k^{2}\right)=0$.
On the other hand, we have, from [5, Theorem 1],

$$
\mathrm{Sp}_{A}\left(x^{*} x\right) \subset \mathrm{R}^{+} \cup(0) \quad(x \in A)
$$

Therefore $f\left(x^{*} x\right) \geqq 0(x \in A)$, namely f is positive on A.
Hence we have

$$
|f(x k)|^{2} \leqq \mathrm{f}\left(x x^{*}\right) f\left(k^{2}\right) \quad\left(x \in A, k \in A_{h}\right) .
$$

Thus we have $f(x k)=0(x \in A)$ for any $k \in A_{h}$ such that $f(k)=0$.
Now, let h be an arbitrary element of A_{h}. Then we have

$$
f(h) 1-h \in A_{h}
$$

since $f(h) \in \operatorname{Sp}_{A}(h) \subset \mathbb{R}$.
Moreover, $f(f(h) 1-h)=0$.
Hence we have $f(x(f(h) 1-h))=0(x \in A)$.
Consequently, $f(x h)=f(x) f(h)\left(x \in A, h \in A_{h}\right)$.
This completes the proof.
Remark. It is easy to verify the following statement:
Let A be a complex Banach algebra and f be a linear functional on A such that $f(a) \in \operatorname{Sp}_{A}(a)(a \in A)$. Let $x \in A$ be such that $f(x)=0$ and $\|x\|<1$, then we have

$$
\lambda f\left(x^{2}\right) \in \operatorname{Sp}_{A}(x) \quad(\lambda \in \mathbb{C},|\lambda| \leqq 1) .
$$

Consequently, if the above element x satisfies $\mathrm{Sp}_{A}(x) \subset \mathbb{R}$, then it follows that $f\left(x^{2}\right)=$ 0.

Theorem. Let A and f be the same as in Lemma. Then f is multiplicative if and only if $f(a) \in S p_{A}(a)(a \in A)$.

Proof. The "necessary" part is well known. As for the sufficiency, suppose f is a linear functional on A such that $f(a) \in \operatorname{Sp}_{A}(a)(a \in A)$.

For any pair x and y in A, there exist hermitian elements h_{1} and h_{2} such that $y=$ $h_{1}+i h_{2}$, so we have

$$
\begin{aligned}
& f(x y)=f\left(x\left(h_{1}+i h_{2}\right)\right)=f\left(x h_{1}\right)+i f(x) f\left(h_{2}\right) \\
& =f(x) f\left(h_{1}\right)+i f(x) f\left(h_{2}\right)=f(x) \cdot f(y) .
\end{aligned}
$$

This completes the proof.

Remark. 1. Theorem is false for real Banach algebra, e. g.

$$
A=C_{R}([0,1]) \text { and } f(x)=\int_{0}^{1} x(t) d t \text {, see [3]. }
$$

Remark 2. Let A be a commutative Banach algebra such that, for each $x \in A$, there exist h and k with the following properties;

$$
S p_{A}(h) \subset \mathbb{R}, S p_{A}(k) \subset \mathbb{R} \text { and } x=h+i k .
$$

Then, a linear functional on A is multiplicative if and only if

$$
f(a) \in S p_{A}(a)(a \in A) .
$$

Proof. We shall suppose, without loss of generality, that A possesses an identity element 1. As in the proof of Theorem, we shall sketch only the proof of "if" part. Let f be a linear functional on A such that $f(a) \in \operatorname{Sp}_{A}(a)(a \in A)$.

By the method in the proof of Lemma, we have $f\left(x^{2}\right)=0$ for any $x \in A$ such that $\mathrm{Sp}_{A}(x) \subset \mathbb{R}$ and $f(x)=0$. Therefore for any pair $x, y \in A$ such that

$$
\mathrm{Sp}_{A}(x) \subset \mathbb{R}, \mathrm{Sp}_{A}(y) \subset \mathbb{R} \text { and } f(x)=f(y)=0
$$

we have $f\left((x+y)^{2}\right)=2 f(x y)$.
Thus, there exists $\Psi \in \Phi_{A}$ such that $\Psi\left((x+y)^{2}\right)=2 f(x y)$.
Since $\Psi\left((x+y)^{2}\right)=(\Psi(x)+\Psi(y))^{2}, \Psi(x) \in \mathrm{Sp}_{A}(x) \subset \mathbb{R}, \Psi(y) \in \mathrm{Sp}_{A}(y) \subset \mathbb{R}$, we have $f(x y) \in \mathbb{R}$.

Let $\phi \in \Phi_{A}$ be such that $\phi(x y+i x)=f(x y+i x)=f(x y)$.
Since $\phi(x y)=\phi(x) \phi(y), \phi(x) \in \operatorname{Sp}_{A}(x) \subset \mathbb{R}, \phi(y) \in \mathrm{Sp}_{A}(y) \subset \mathbb{R}$, we have $\phi(x)=0$, consequently $f(x y)=0$.

Now, let $x \in A$ be any element such that $f(x)=0$.
From our assumption, there exist $h, k \in A$ such that

$$
\mathrm{Sp}_{A}(h) \subset \mathbb{R}, \mathrm{Sp}_{A}(k) \subset \mathbb{R} \text { and } x=h+i k
$$

Therefore $f(h) \in \mathbb{R}, f(k) \in \mathbb{R}$ and $f(h)+i f(k)=0$, hence $f(h)=f(k)=0$.

We have $f\left(x^{2}\right)=f\left(h^{2}\right)+2 i f(h k)-f\left(k^{2}\right)=0$.
For any $x \in A$, put $f(x)=\lambda$.
Since $f(x-\lambda \cdot 1)=0, f\left((x-\lambda \cdot 1)^{2}\right)=0$.
It follows that

$$
0=f\left(x^{2}\right)-2 \lambda f(x)+\lambda^{2}=f\left(x^{2}\right)-\lambda^{2},
$$

thus we have $f\left(x^{2}\right)=f\left(x^{2}\right)$.
Consequently for any pair $x, y \in A$, we have $f\left((x+y)^{2}\right)=f(x+y)^{2}$, hence $f(x y)=$ $f(x) f(y)$. This completes the proof.

Nigata University

References

[1] H. Choda and M. Nakamura, Elementary proofs of Gleason-Kahane-Zelazko's Theorem for B^{*} algebra, M. Osaka K. U., 20, Ser. III (1971), 111-112.
[2] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171-172.
[3] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebra, Studia Math., 29 (1968), 339-343.
[4] C. E. Rickart, General Theory of Banach algebras, D. Van Nostrand, 1960.
[5] S. Shirali and J. W. M. Ford,, Symmetry in complex involutory Banach algebras II, Duke Math. J., 37 (1970), 275-280.
[6] W. Zelazko, A characterization of multiplcative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.

