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Introduction

F.P. Peterson has generalized the Borsuk’s cohomotopy groups to the sets of
homotopy classes of maps of a CW-pair into a pair of spaces in [2]. ‘

In this paper, we intend to generalize them to the sets of the homotopy classes
of maps of a CW-triad into a triad of spaces, and to study their two aspects, i.e.,
the aspect as a generalization of homotopy groups and that of cohomotopy groups.

We denote by n(K;L,M|X;Y,Z) the set of homotopy classes of maps of a
CW-triad (K; L, M) with a base point % into a triad (X; Y, Z) with a base point z,.

We shall give a group structure to n(K; L, M| X; Y, Z) under some conditions
in 81, get two kinds of exact sequences in §2, and consider of fibring in §3.

In this paper the notations S and C are used as follows; the cone CX of X is
the space obtained from XxI by shrinking (Xx1)~(x,xI) to a point x,, the sus-
pension SX is that obtained by shrinking (Xx0)~(x,xI)~(Xx1) to a point x,,
and for a map f: X—Y, Cf:CX—CY and Sf:SX—SY are naturally defined. We
note that C’'CX and CSX are homeomorphic, where C'CX is the cone of CX.

8§1. Group structure

Let f¢:2(K; L', M' |\ X;Y,Z)—>n(K; L,M| X; Y, Z) be induced by a map f:(K;
L, M)->(K;L''M), and ¢3:n(K; L, M| X; Y, Z)—>n(K; L, M| X"; Y, Z') by a map
¢:(X;Y,Z)~>(X"; Y, Z') as usual.
Let Sy:n(K; L, M| X; Y, Z)-»n(SK; SL, SM | SX; SY, SZ) be the function induced
by the suspension as in [6]. Then by Theorem 5.1 of [6], we have
THEOREM 1.1. Let X, Y and Z be (n—1), (I—1) and (m —1)-connected respectively,
and assume that dim K=<2n—2, dim L <2l—-2 and dim M<2m—2. Then S; is one
to one and natural with respect to maps f and ¢.
Let (X; Y, Z)%:L > denote a function space of maps of (K; L, M) into (X; Y, Z)
with the compact-open topology. Then by Theorem 6.1 of [1] we obtain
THEOREM 1.2. There is a function A:7,(X; 7Y, Z)‘K LMy 5 n(S"K; STL,S"™M | X; Y, Z)
which is one to one and natural with respect to maps f and ¢, where S™=S8(S"7).
Using these theorems we get
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THEOREM 1.3. Under the conditions givem im Theorem 1.1, we can introduce
into n(K; L, M| X; Y, Z) the group structure, which is Abelian and natural with

respect to maps f and ¢.

Proof. In the diagram
2

nK;L,M|\X;Y,Z) §i>n:(SzK; S*L, S?M | S2X; S?Y, SZZ)<—X—7z2((S2X; S?Y, S2Z) KL, 1),
S and 2 are one to one and natural with respect to maps f and ¢, and =(S*X;
S?Y, S?Z)%:L. 1) ig an Abelian group. Therefore, using 1-10S;?, we can define group
structure of n(K; L, M| X; Y, Z) which is Abelian and natural with respect to maps

S and ¢.

§2. Exact sequences

LEMMA 2.1. Let (K;L,M) be a CW-triad, fo: K—Y be a map such that
SoM) Y, Y, and suppose that go=f,| L admits the homotopy g.: L—Y such that
g(LNM)<Y,. Then f, admits the homotopy fi:K—Y such that f,|L=g. and
FiM)C Yy

Proof. By (J) of [7] the homotopy g:| L ~M admits an extension to g.’; M—Y,
and then g/ (L~M)=g(L~M)=fyL~M). Defining g.”: L~M—Y by g¢,”|L=g, and
9" | M=g./, we have g/(M)<Y,. Now using (J) of [7] again, g,” may be extended
to f,: K—Y. Thisis the required homotopy, for fi(M)=g,/(M)cY,and f|L=g,”|L
=g:.

Similarly to Theorem 7.5 of [5], we can prove

LEMMA 2.2. Let (K; L, M) be a CW-triad, and (Ky; Ly, py) be the CW-triad
obtained by identifying M to a point py as in [5]. Then the camonical map
S :(K; L, M)—>(Ky; Ly, py) induces a 1-1 correspondence f[#:rn(Kuy;Ly,pu|X; Y, %o)—
n(K; L, M| X; Y, x).

LEMMA 2.3. Let (K; L, M) be a CW-triad, N be a subcomplex of L~M and
(Ky; Ly, My) be the CW-triad obtaimed by identifying N to a point. Then the
canonical map f:(K; L, M )—»(K y Ly, My) induces a 1-1 correspondence f%: n(Ky; Ly, My |
X; Y, x)n(K; L, M| X; Y, %,). '

Proof. In the following sequence

§ %
n(Ky; Ly, x| X; Y, xo)'g_)ﬂ(KN;LN,MN | X; Y, 20) L’ n(K; L, M| X; Y, %)

induced by

(K; L, M) i‘) (Kw; Ly, My) ~g_) (K L, Py,

we have (gof)#=f¥ogh,

On the other hand g# and (gof)¥ are one to one by Lemma 2.2, hence f* is also
one to one.

Similarly to Theorem 7.6 of [5], we have
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LEMMA 2.4. (EXCISION LEMMA) Let (K; L, M) be a CW-triad and N be a subset
of L~M such that (K—N; L— N, M—N) is a CW-triad. Then the inclusion map
1:(K—N; L—N,M— N)—(K; L, M) induces a 1-1 correspondence 1% : n(K; L, M| X; Y, 2,)
—+n(K—N; L—-N,M—-N | X; Y, x).

Using these lemmas the exact sequence of a pair given in [2] ean be generalized
to that of a triad as follows.

THEOREM 2.5. Let (K; L, M) be a CW-triad with a base point k such that LM
is @ CW-complex, and let X>Y 5y,. And suppose that X and Y are (n—1)- and
(m—1)-conmected respectively and that dim K <2n-2, dimL=<2m—2. Then the
Jollowing sequence (I) is exact and mnatural with respect to maps f:(K; L, M)—
(K5 L', My and ¢:(X; Y, 20)— (X', Y7, /)

: i Vs 2
2(K; L, M| X; Y, €) > n(K; L, k | X; Y, #0) ——>n(M; LM, k| X; Y, %)

(I A g%
—a(K; L, M| SX; SY, ) ~—> ++

where % and j* are induced by inclusions 1: (M; L~M, k)—(K; L, k) and j:(K; L, k)
—(K; L, M) respectively, and 4 is defined as follows: let a€[ale n(M; L ~M, k|
X; Y, %) and extend a toa map o' :(K; L, M)~ (CX; CY, X) by Lemma 2.1, then the
composition hoa':(K; L, M)—(SX; SY, x,) represents A([a]), where h:(CX;CY, X)
—(SX; SY, x,) s the canonical map collapsing X to x, as in [2].

Proof. The naturality and the relations Im j#=Ker i%¥ and Imi#*cC Ker 4 are
obvious. We prove the relation Im ¢#¥ >Ker 4 at first. In the following diagram

i3
aK; L, k| X; Y, x) i—) aM; LM, k| X; Y, x) A» n(K; L, M| SX; SY, ,)
S

2(SK; SL, & | SX; SY, %)

% — (¢, o

n(CK;CL, M | SX; SY, %)
the lower sequence is the exact sequence (8.1); of [6], where ¢ and ¢ are carriers
from (K, k; {K, L, M}) to (X, z,; {X, Y, {20}}) such that J(K)=X, {(L)=Y, J(M)=Y
or X according to Mc L or not, ¢(K)=X, ¢(L)={x,} or Y according to Lc M or
not, ¢(M)={x,}. And « is defined by a([a])=[ach] for [alen(¢i) and B is a
restriction. ,

Let [a]e Ker 4, and extend a: (M, L~M)—(X, Y) to a’: (K; L, M)-(CX; CY, X),
then hoa’:(K; L, M)—(SX; SY, x,) rebresents dlal, i.e., hoa’=0. Denote a’(p) by
(b(p), s(p)) for pe K, and define Ta’:(CK;CL, M)—-(CX;CY,X) by Ta'(p,t)=(b(p),
s(p)+t—s(p)-t) where t and s(p) are the parameters of a cone. Then [hoTa’]c Ker 8
in the preceding exact sequence, and accordingly there is a map f:(SK; SL, k)—
(SX; SY, x,) such that '[foh]=[hoTa’]. There is a map ¢: (K; L, k)—~>(X; Y, 2,) such

» 7(¢p5)
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that Sg=~f, as S;is one to one. Thus we have (Sg)och~hoTa’ as maps of (CK;CL,
M) into (SX; SY, x,), hence (Sg)oh |CM=~hoTa’|CM as maps of (CM;C(L~M), M)
into (SX; SY, x,). Since hoTa’| CM=hoCa=(Sa)o(h|CM), we have S(g| M)~Sa as
maps of (SM; S(L~M)) into (SX, SY). Hence g| M=~a as maps of (M, L~M) into
(X, Y), and accordingly i#¥{g]=[a]. Thus we have proved the relation Im i¥ >Ker 4
for the first part of (I), and the proof of the other parts are similar.

Now we can complete the proof by showing that Im 4=Ker j#%. Denoting
NXxe by N, we consider the following diagram (x) analogously to [5]:

) #

(%) o(M; L~M, k| X; Y, xo)i’—» n(K; L, M| SX;SY, ) I (K L,k | SX; SY, @)
Q2 4 q,*

2(K~ Mo~k K~ (LAM)o~kz1, K=k | X; Y, %) —>n(Ks; K~ Ly, Ky~ My~k;| SX; SY, %,)
(K~ My=ks; KIV(LT\M)o"kh K~k | X; Y, @0) | ut

pa) , _

ot | 2y (B My KL AW 1, B M| SX; S, 20)
. ,rl#

o(M; L-M, k| X; Y, %) 4s ~(CM; C(L~M), M| SX; SY, )

where ¢q.:(K;L,M)— (K;; K,~L;, K;~"M,~k;) and gq.:(M;L~M,k)— (K,~"M,"k;;
K\~ (L~M)y~"k1, K;~k;) are defined by q;(x)=2 X0 for 1=1,2, ¢,:(K;~Mp; K,~(L~M);,
K, ~M,~"k)—(K; K™~ L, K~ M~k;) is inclusion, 7, : (K,~M;; K;~(L~M)r, K~ My~k;)
—(CM;C(L~M), M) and 7::(K;~My"kr; K;~(L~M),~k;, K;~k;)—>(M; L~M, k) are
given by identification of K,“~k; to k, and 4,, 4,, 4; are defined similarly to 4.
Then obviously Ker j#=Im q,¥, ¢.#¥ is an isomorphism by Lemma 2.4, ,# is an iso-
morphism because (K;“~"M;; K~(L~M);, K;~M,"k;) is the deformation retract of
(K;; K~ L, K~ M~ k), r# and r:# are isomorphisms by Lemma 2.3. In the follow-
ing diagram

4
n(M; LM, k| X;Y, %) —a(CM; C(L~M), M| SX; SY, )

Sy
n(SM; S(L/\M)”, k|SX; SY, x,)
7(@l) —> 7 ——F s, P> ()

the lower sequence is the exact sequence (3.1); of [6], where ¢ and ¢ are carriers
from (M, Fk;{M,L~M}) to (X, x;{X,Y,{x}}) such that ¢M)=X,¢L~M)=Y,
¢(M)=¢(L~M)={x,}. Here a is an isomorphism as n(¢1)=n(¢)=0, and S* is an
isomorphism also. On the other hand the diagram is commutative, because aSia]
=[Saoh]=[hoCal=4ds;[a]. Therefore 4; is an isomorphism. The commutativity
of each square of the diagram (%) is easily seen.

In the diagram (%), for each [al€ n(M; L-M,k|X; Y, x,) there is [b]le n(K,~
M~k K\~ (LAM)y~"k;, K~k | X; Y, 2,) such that gq.#[b]=[a]. Then j%4[a]l=
78494 [b]1=7%q#4,[b]=0. Hence Im dcKer j%.
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Conversely for each [a]¢ Ker j#=Im q,¥ there is [ble n(M; LM, k| X; Y, x,)
such that q.#i,# r#dsr# 1% 1 [b]=[a]. This formula may be reduced to A[b]=[a],
and thus the last relation Im 4 > Ker 5% is proved.

Now to generalize the homotopy sequence of a triad, we define a map
h:(CC'K; CK,C'K)—(CSK; k, SK) for CW-complex K by the following formulae:

h(y, )=k for (y,t)e CK,y<c K, tec I,
h(y, 8)=(y, s) for (y,8)c C'K,yc K,sec I
and h((y, 8), t)=(h(y, s), t) for (y, s)€ C’K and ((y, 8), t)€ CC'K.
Then the induced function
h#:n(CSK; k, SK | X; %y, Z) - n(CC'K; CK, C'K | X; 0, Z)
is natural with respect to maps f: K—K’ and ¢:(X, Z2)~(X, Z').

THEOREM 2.6. Let (X; Y, Z) be a triad with a base point x,, K be a CW-complex
with a base point k. And suppose that X, Y, Z and Y~Z are (n—1)-connected and
dim K=N<2n—-38. Then the following sequence (II) is exact and natural with
respect to maps f:K—K' and ¢:(X; Y, Z)~(X"; Y, Z'):

. 0# N .
(I1) #(CS™K; S"K, k| Y; YAZ, w) 2, 2(CS™K; S™K, k | X; Z, x0)

-JL =(CC'S™'K; CS™'K,C'S™" 1Kl XY, Z) _im(csm K S*" 'K, k| Y; YAZ, %)

’b# . ——-——-) n‘(CK K k I X Z -’170);

where m=2n—3—N, and i: (Y Y -2Z2)~(X, Z) and 3 :(X; w0, Z2)HX; Y, Z) are injec-
tions and jy=7zohd, and 4 is a restriction.

Proof. The naturality is obvious. Let ¢, ¢, and ¢; be carriers from (K, k; {K})
to (X, 2;{X, Y, Z}) such that ¢(K)=X, ¢.(K)=Y, ¢(K)=Z. Let 0=¢i~¢s; then
(¢, ¢2)1 and (gpl; 0), are carriers from C(K, k;{K}) to (X,x;{X,Y,Z}) such that
¢, @W(CEK)=X, (¢, o0:(K)=Z, (¢1, O(CK)=Y, (g1, O)1(K)=Y ~Z. Replacing ¢ and
¢ by (¢, ¢2); and (¢4, 0); in the exact sequence (3.1), of [6], we have

R, 9y (@10 O)os > 1y O — 7D, 21— (P @1 (P11 )oY

£,...4 (P, @2t
Here (¢, @215 (@1, 0)1)241=n(CC'S’K; CS'K,C'S'K | X; Y, Z),

(@1, 0)0s1=n(CS'K; S'K, k| Y; YAZ, ),
(¢, ¢o)r+1=n(CS"K; S'K, k | X; Z, %)
for r=0,1,2,---, and obviously r and B consist with 73y and 4 respectively. We
now show that « consists with 3# For amap fe[fl€ n(CS'K; S'K, k| X; Z, x,), we
have af f1=[feh]€ n(CC'S™'K;CS"'K,C'S" 'K | X; Y, Z). On the other hand,
i F1=5sl'[f 1=44( foh] where [foh]€ n(CC'S""'K;CS"'K, C'S" 'K | X; %, Z)
=[jofoh]e n(CC’'S™K;CS"'K,C'S" 'K | X; Y, Z),
hence we have a[f1=7i[f].
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Thus the exactness is an immediate consequence of (3.1), of [6].

REMARK. In Theorem 2.5 and Theorem 2.6, we can exclude the conditions about
connectedness and dimension, if we weaken the meaning of exactness as in [6], }
i.e., a sequence is said to be exact when the inverse image of the distinguished
element at any stage is the image of the preceding map. '

§3. Fibring

In this section we generalize Proposition 1 in Chapter II of [4] and get an
exact sequence.

THEOREM 8.1. Let (X, p, Y) be a fibre space givern in [8], and let Y, Y, X,
=p Y(Y,), p&o)=%. Then for any contractible finite complex' K and its sub-
complex L, p:(X; Xo, o) = (Y; Yo, ¥o) induces a 1-1 correspondence py:n(K; L, k|
X; Xo, @0)—~n(K; L, k| Y; Yo, 90).

Proof. 1°. Put gel[glen(K;L,k|Y; Y, ¥,). Define f,:k—X by fo(k)=x,. Then
g is an extension of pof,. By Proposition 1 in Chapter IT of [3], fo may be extended
to f: K—X such that pof=g. Then f(L)€ X, because pf(L)=g(L)CY,, hence [f]
€en(K; L, k| X; Xy, v;). We have ps[f]1=[g], and thus p; is onto.

20, Let f'e[f']len(K; L, k| X; X,, %), and suppose that pof’/~0 as maps of
(K; L, k) into (Y; Y, ¥,), and denote the homotopy by g:(KxI; L X I, kx I)>(Y; Yo, ¥o).
Define fy: Kx0~kXxI—>X by fo(p, 0)=f"(p) for p€ K and by fi(k, t)=2x, for t€ I, then
g is the extension of pof,: Kx0~kxI—Y. Hence, by Proposition 1 in Chapter II
of [3], fo may be extended to f:KxI—-X such that pof=g. Then f(LxI)cX,
because pf(LxI)=g(LxI)cY, and f(Kx1)c X, because pf(Kx1)=g(Kx1)CY,.
Thus defining f” : K—X by f"(x)=f(x,1), we have f(K)c X,. Since K is contrac-
tible, we have [f”]=0 in n(K; L, k| X; X,, £,). On the other hand f’/~f”, there-
fore [f’]=0. Hence p; is one to one.

REMARK. 1°. In this theorem if =(K; L, k| X; X,, %,) and =n(K; L,k | Y; Yo, %o)
have the group structure defined in Theorem 1.8, p; is an isomorphism. |

2°, Letting Y,=y, in this theorem, py:n(K;L,k|X; F,20)—>n(K; L,k | Y; Yo, Yo)
is one to one, where F'=p (y,).

THEOREM 8.2. Let (X, p,Y) be a fibre space given in [3], and let (X; X, Xz)
and (Y; Yy, Y:) be triads such that p™(Y,)=X;, p (Y2)=X: and p(xo)=y,. Suppose
that X, X, X;, X;~X;, Y, Y, Y, and Y,~Y; are (n—1)-connected. Then the pro-
jection p: (X; X, Xo)—(Y; Yy, Y,) induces an isomorphism

p3:n(CC'K;CK,CK | X; X3, X;) >n(CC'K;CK,C'K | Y; Y,,Y,)
Sfor every finite complex K such that dim K <2n—4.
Proof. In the following diagram



On the sets of homotopy classes of maps between triads 75

#(CSK; SK, k | Xi; Xi~Xz, x(,)ﬁ»n(csz{; SK, k| X; X;, 00) 4>
{ ps® { P> .
n(CSK SK ’C l Yl, Y1/\Y2, yo) *‘% TL'(CSK SK k l Y Yz, yo) —)

#(CC'K; CK, CK | X; Xo, X2)—25 n(CK: K, I | X5 Xym Koy 2) — >
D3 lp#“)
n(CC’K;CK,C'K|Y; Y, Y,) ~‘>n(CK K, k| Yy Yi~Ys, 40) H,
n(CK; K, k | X; X5, x0)
p#(‘!) }
a(CK; K, k| Y Y3, 4o)
upper and lower sequences are exact and natural with respect to the projection p.
Moreover pzV, p3®, pg““"and p3® are isomorphisms by Remark of Theorem 3.1,
thus p is also an isomorphism by the five lemma. '

LEMMA 8.8. h#:n(CSK;k, SK| X; %0, Z) = n(CC'K; CK, C'K | X; &, Z) given in
Theorem 2.6 is one to one. '

Proof. 1°. For each ac[ale n(CC'K;CK, C'K | X; x,, Z), define b:(CSK; k, SK)
—(X; 2o, Z) by blk)=2, and b(p)=ah (p) for pc CSK—k. Then, if pc CK we have
bh(p)=bk)=x,=a(p), if p ¢ CK we have bh(p)=ah 'h(p)=a(p), and thus in either
case we have boh=a. This means h* b]=[a], that is h* is onto.

20, Let be[ble n(CSK;k, SK | X; 20, Z), and suppose that boh=~0 as maps of
(CC'K; CK, C’K) into (X; 2y, Z). Let F:(CC’KxI;CKXxI, C’'KxI)—(X;x,, Z) be the
homotopy between boh and 0. Defining G:(CSKxI;kxI, SKXI)— (X; %, Z) by
Gk, ty=2, and G(p, t)=F(h~(p), t) for pc CSK—k, we can see that G is a homotopy
between b and 0 as follows: ‘

Gk, 0)=x,=b(k),

G(p, 0)=F(h~'(p), 0)=bh(h™'(p))=b(p) for pe CSK—F,

Gk, 1)=x,,

G(p, )=F*hYp), 1)==x, for pe€ CSK—k.

Thus [b]=0, consequently h# is one to one.

Using the 1-1 correspondences pj and h# given in Theorem 3.1 and Lemma 3.8,
we can transform the exact sequence (II) given in Theorem 2.6, as follows:

THEOREM 3.4. Let (X,p,Y) be a fibre space given in [3], F be its fibre, and
K be a finite complex. And suppose that X, Y and F are (n— 1)-connected and
dim K=N<2n—-38. Then the following sequence 1is eacact where jy=pgoht-logy,
Ad=Adohkopyt and m=2n—-8—N:

2(CS™K, S"K | F, 0)) — n(CS™E, S"K | X, #0) 2> n(CS™K, S"K | Y, o)

4, HCS™IK, SPK | F a0 2 oo D n(CK, K| Y, w0).
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REMARK. In this theorem we can exclude the conditions about connectedness
and dimension by weakening the meaning of exactness as in the Remark of §2.

An important special case is obtained by letting X be a path space on Y.

COROLLARY 3.5. Denote by 2(Y) the loop épace on Y, and by x, the constant
loop. Then we have a 1-1 correspondence

Ad:72(CSK,SK | Y, yo)—» n(CK, K | 2(Y), ).
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