A remark on linear mappings on Banach *-algebras

By
Seiji Watanabe

(Received October 15, 1972)

1. Introduction

Let A and B be complex Banach algebras with an identity. A linear map $\phi: A \rightarrow B$ is called a Jordan homomorphism if $\phi(a b+b a)=\phi(a) \phi(b)+\phi(b) \phi(a)$ for all a and b in A, (equivalently, $\left.\phi\left(a^{2}\right)=(\phi(a))^{2}\right)$. It is well known that such maps preserve the power structure, that is $\phi\left(a^{n}\right)=(\phi(a))^{n}$, for every positive integer n. But the following proposition is valid.

Proposition 1. Let A and B be complex Banach algebras with an identity e_{A}, e_{B} respectively and ϕ be a continuous linear map from A into B such that $\phi\left(e_{A}\right)=e_{B}$. Suppose that there exists a positive integer $k(\geqq 2)$ such that $\phi\left(a^{k}\right)=(\phi(a))^{k}$ for all element a in A. Then ϕ is a Jordan homomorphism.

Proof. We shall use the vector-valued exponential functions. For each element a of a Banach algebra $C, \exp (a)$ is defined by $\exp (a)=e_{C}+\sum_{n=1}^{\infty} \frac{1}{n!} a^{n}$ where e_{C} denotes the identity element of C. Then it is well known that $\exp (a)=\lim _{n \rightarrow \infty}\left(e_{C}+\frac{1}{n} a\right)^{n}$. Now, by induction, we have

$$
\phi\left(a^{k n}\right)=(\phi(a))^{k n} \quad \text { for } n=1,2,3, \cdots \text { and } a \in A
$$

Thus,

$$
\begin{aligned}
\phi(\exp (a)) & =\lim _{n \rightarrow \infty} \phi\left(\left(e_{A}+\frac{1}{k^{n}} a\right)^{k n}\right) \\
& =\lim _{n \rightarrow \infty} \phi\left(e_{B}+\frac{1}{k^{n}} \phi(a)\right)^{k n} \\
& =\exp \phi(a) \quad \text { for each } a \text { in } A .
\end{aligned}
$$

Replace a by λa with complex number λ, expand in power of λ, and equate coefficients of λ to obtain $\phi\left(a^{n}\right)=(\phi(a))^{n}(n=1,2,3, \cdots)$. We completes the proof.

In the next section, we shall specialize the above results to the case of Banach *-algebras.

2. A specialization to Banach *-algebras

Throughout this section, we consider complex *-Banach algebras with an identity (namely, complex Banach *-algebras with an isometric involution and an identity of norm one). By a C*-homomorphism of one*-Banach algebra into another, we mean a self-adjoint linear map preserving squares of self-adjoint elements in A.

Let A be a complex *-Banach algebra, we recall that A^{+}is the subset of H_{A} consisting of all finite sums of elements of A, and that an element of A^{+}is said to be positive.

A linear map of one *-Banach algebra into another is said to be positive if it carries positive elements into positive elements (See [5]). Such a map is self-adjoint ($\phi\left(a^{*}\right)$ $=\left(\phi(a)^{*}\right)$.

Several authors have studied the condition that a linear maps of a C^{*}-algebra becomes C^{*}-homomorphism. For example, let ϕ be a self-adjoint linear mapping of a Von Neumann algebra A into a C^{*}-algebra B with an identity e_{B} which preserves invertible operators and $\phi\left(e_{A}\right)=e_{B}$ then ϕ is a C*-homomorphism (Russo [3]).

Proposition 2. Let A and B be two complex *-Banach algebras with an identity e_{A}, e_{B} respectively, and $\phi: A \rightarrow B$ be a positive linear map such that $\phi\left(e_{A}\right)=e_{B}$. Moreover suppose B is commutative and*-semi-smple.

Then the following statements are equivalent.
(1) ϕ is C^{*}-homomorphism.
(2) There exists a positive integer $k(\geqq 2)$ such that
$\phi\left(h^{k}\right)=(\phi(h))^{k}$ for each self-adjoint $h \in A$.
(3) $\phi(\exp (-h))=(\phi(\exp (h)))^{-1}$ for each self-adjoint heA.
(4) $\operatorname{Sup}\{\|\phi(\exp (\xi h)) \phi(\exp (-\xi h))\|-\infty<+\infty\}<+\infty$ for each self-adjoint $h \in A$.

Remark. We should remark that when B is a C^{*}-algebra, sup $\{\|\phi(\exp \xi h)\| \| \phi(\exp$ $(-\xi h) \| ;-\infty<+\infty\}$ is always divergent for self-adjoint element $\phi(h)$ whose spectrum contains more than two points.

We need some lemmas. For the moment, let A and B be C^{*}-algebras. Then a positive linear map such as $\phi\left(e_{A}\right)=e_{B}$ is bounded and $\|\phi\|=1$. For each self-adjoint h in A, $\exp (h)$ is positive element. Suppose that the identity element of a C^{*}-algebra acting on a Hilbert space H is the identity operator on H.

Lemma 3. Let A and B be C^{*}-algebras and $\phi: A \rightarrow B$ be a posiitve linear map such as $\phi\left(e_{A}\right)=e_{B}$. Suppose B is commutative. Then $\phi(\exp h) \geqq \exp \phi(h)$ for each self-adjoint element
h of A.
Proof It follows from "generalized Schwartz inequality" and boundedness of ϕ.
Lemma 4. Let A and B be C^{*}-algebras. Suppose that B acts on some Hilbert space and ϕ is completely positive.

Then $\phi\left(x^{*}\right) \phi(x) \leqq \phi\left(x^{*} x\right)$ for each $x \in A$.
Proof Let the canonical expression of ϕ be $V^{*} \pi V$, where π is a *-representation of A on some Hilbert space K and V is a bounded linear operator from H into K such that $\pi(A) V H$ generates K.

Since $\left(e_{A}\right)=V^{*} \pi\left(e_{A}\right) V=V^{*} V=e_{B}, V$ is an isometry. Thus $V V^{*}$ is a projection. We have

$$
\begin{aligned}
\phi\left(x^{*}\right) \phi(x) & =V^{*} \pi\left(x^{*}\right) V V^{*} \pi(x) V \\
& \leqq V^{*} \pi\left(x^{*} x\right) V \\
& =\phi\left(x^{*} x\right) \quad \text { for each } x \in A .
\end{aligned}
$$

Now we proceed to proof of proposition 2.
(1) \rightarrow (2) It is well known.
(2) \rightarrow (3) Since A has an identity and B is *-semi-simple, ϕ is continuous. [5]. Hence it is contained in proposition 1.
(3) \rightarrow (4) Since ϕ is continuous, it is clear.
(4) \rightarrow (1) Since B is *-semi-simple, we may assume that B is a C*-algebra. Let h be a selfadjoint element of A. We consider the complex variable B-valued entire function $\Psi(\lambda)$ $=\exp (\lambda \phi(h)) \phi(\exp -\lambda h)$.

Then

$$
\begin{aligned}
\|\Psi(\lambda)\|^{2} & =\|\phi(\exp (-\bar{\lambda} h)) \exp (\bar{\lambda} \phi(h)) \exp (\lambda \phi(h)) \phi(\exp (-\lambda h))\| \\
& =\|\phi(\exp (-\bar{\lambda} h)) \exp (2 R \operatorname{e} \lambda \phi(h)) \phi(\exp (-\lambda h))\| \\
& \leqq \| \phi(\exp (-\bar{\lambda} h)) \phi(\exp (2 R \operatorname{e} \lambda(h) \phi(\exp (-\lambda h)) \| \\
& =\| \phi(\exp (-\bar{\lambda} h)) \phi(\exp (-\lambda h) \phi(\exp (2 \operatorname{Re} \lambda(h)) \|
\end{aligned}
$$

Since ϕ is positive and $\exp (2 \operatorname{Re} \lambda h) \geqq 0$, there exists a positive square root $(\phi(\exp 2 \operatorname{Re} \lambda . h))^{\frac{1}{2}}$

$$
\begin{aligned}
\|\Psi(\lambda)\|^{2} & \leqq\left\|(\phi(\exp 2 \operatorname{Re} \lambda \cdot h))^{\frac{1}{3}} \phi(\exp (-2 \operatorname{Re} \lambda) h)(\phi(\exp 2 \operatorname{Re} \lambda h))^{\frac{1}{2}}\right\| \\
& =\| \phi(\exp (-2 \operatorname{Re} \lambda) h) \phi(\exp (2 \operatorname{Re} \lambda) h \|
\end{aligned}
$$

Consequently $\Psi(\lambda)$ is bounded in the whole plane. Thus $\Psi(\lambda)$ is contant by Liouville's theorem for vector-valued entire functions. Since $\Psi(0)=e_{B}$, we have $\exp \lambda \phi(h)=\phi(\exp \lambda h)$. Equate coefficients of λ to obtain $\phi\left(h^{2}\right)=(\phi(h))^{2}$.
q. e. d.

References

[1] R. V. Kadison: A generalized Schwartz inequality and algebraic invariants for operator algebras. Ann. of Math. 56 (1952).
[2] C. E. Rickart: General theory of Banach algebras, D. Van Nostrand, New York, 1960.
[3] B. Russo: Linear mappings of operator algebras. Proc. Amer. Math. Soc., 17 (1966), 1019-1022.
[4] W. F. Seinspring: Positive functions on C^{*}-algebras. Proc. Amer. Math. Soc., 6 (1955), 211-216.
[5] S. Watanabe: Note on positive linear maps of Banach algebras with an involution. Sci. Rep. Niigata. Univ., Ser. A, No. 7 (1969), 17-21.

