A remark on linear mappings on Banach *-algebras

By

Seiji WATANABE

(Received October 15, 1972)

1. Introduction

Let A and B be complex Banach algebras with an identity. A linear map $\phi: A \to B$ is called a Jordan homomorphism if $\phi(ab+ba) = \phi(a)\phi(b) + \phi(b)\phi(a)$ for all a and b in A, (equivalently, $\phi(a^2) = (\phi(a))^2$). It is well known that such maps preserve the power structure, that is $\phi(a^n) = (\phi(a))^n$, for every positive integer n. But the following proposition is valid.

PROPOSITION 1. Let A and B be complex Banach algebras with an identity e_A , e_B respectively and ϕ be a continuous linear map from A into B such that $\phi(e_A) = e_B$. Suppose that there exists a positive integer $k(\geq 2)$ such that $\phi(a^k) = (\phi(a))^k$ for all element a in A. Then ϕ is a Jordan homomorphism.

PROOF. We shall use the vector-valued exponential functions. For each element a of a Banach algebra C, exp (a) is defined by exp $(a) = e_C + \sum_{n=1}^{\infty} \frac{1}{n!} a^n$ where e_C denotes the identity element of C. Then it is well known that exp $(a) = \lim_{n \to \infty} \left(e_C + \frac{1}{n}a\right)^n$. Now, by in-

duction, we have

$$\phi(a^{kn}) = (\phi(a))^{kn} \quad \text{for } n = 1, 2, 3, \dots \text{ and } a \in A.$$

Thus,

$$\phi(\exp(a)) = \lim_{n \to \infty} \phi\left(\left(e_A + \frac{1}{k^n} a\right)^{k^n}\right)$$
$$= \lim_{n \to \infty} \phi\left(e_B + \frac{1}{k^n} \phi(a)\right)^{k^n}$$
$$= \exp \phi(a) \qquad \text{for each } a \text{ in}$$

Replace a by λa with complex number λ , expand in power of λ , and equate coefficients of λ to obtain $\phi(a^n) = (\phi(a))^n (n=1, 2, 3, \cdots)$. We completes the proof.

Α.

In the next section, we shall specialize the above results to the case of Banach *-algebras.

2. A specialization to Banach *-algebras

Throughout this section, we consider complex *-Banach algebras with an identity (namely, complex Banach *-algebras with an isometric involution and an identity of norm one). By a C*-homomorphism of one*-Banach algebra into another, we mean a self-adjoint linear map preserving squares of self-adjoint elements in A.

Let A be a complex *-Banach algebra, we recall that A^+ is the subset of H_A consisting of all finite sums of elements of A, and that an element of A^+ is said to be positive.

A linear map of one *-Banach algebra into another is said to be positive if it carries positive elements into positive elements (See [5]). Such a map is self-adjoint ($\phi(a^*) = (\phi(a)^*)$.

Several authors have studied the condition that a linear maps of a C*-algebra becomes C*-homomorphism. For example, let ϕ be a self-adjoint linear mapping of a Von Neumann algebra A into a C*-algebra B with an identity e_B which preserves invertible operators and $\phi(e_A)=e_B$ then ϕ is a C*-homomorphism (Russo [3]).

PROPOSITION 2. Let A and B be two complex *-Banach algebras with an identity e_A , e_B respectively, and $\phi : A \rightarrow B$ be a positive linear map such that $\phi(e_A) = e_B$. Moreover suppose B is commutative and*-semi-smple.

Then the following statements are equivalent.

- (1) ϕ is C*-homomorphism.
- (2) There exists a positive integer $k \geq 2$ such that

 $\phi(h^k) = (\phi(h))^k$ for each self-adjoint heA.

- (3) $\phi(\exp(-h)) = (\phi(\exp(h)))^{-1}$ for each self-adjoint heA.
- (4) $\sup\{\|\phi(\exp(\xi h))\phi(\exp(-\xi h))\|-\infty<+\infty\}<+\infty$ for each self-adjoint heA.

REMARK. We should remark that when B is a C*-algebra, $\sup \{ \|\phi(\exp \hbar)\| \|\phi(\exp \hbar)\|$ $(-\xi h)\|; -\infty < +\infty \}$ is always divergent for self-adjoint element $\phi(h)$ whose spectrum contains more than two points.

We need some lemmas. For the moment, let A and B be C*-algebras. Then a positive linear map such as $\phi(e_A) = e_B$ is bounded and $\|\phi\| = 1$. For each self-adjoint h in A, $\exp(h)$ is positive element. Suppose that the identity element of a C*-algebra acting on a Hilbert space H is the identity operator on H.

LEMMA 3. Let A and B be C*-algebras and $\phi : A \rightarrow B$ be a positive linear map such as $\phi(e_A) = e_B$. Suppose B is commutative. Then $\phi(exp \ h) \ge exp \ \phi(h)$ for each self-adjoint element

h of A.

PROOF It follows from "generalized Schwartz inequality" and boundedness of ϕ .

LEMMA 4. Let A and B be C*-algebras. Suppose that B acts on some Hilbert space and ϕ is completely positive.

Then $\phi(x^*) \phi(x) \leq \phi(x^*x)$ for each $x \in A$.

PROOF Let the canonical expression of ϕ be $V^*\pi V$, where π is a *-representation of A on some Hilbert space K and V is a bounded linear operator from H into K such that $\pi(A)VH$ generates K.

Since $(e_A) = V^* \pi(e_A) V = V^* V = e_B$, V is an isometry. Thus VV^* is a projection. We have

$$\phi(x^*)\phi(x) = V^*\pi(x^*)VV^*\pi(x)V$$

$$\leq V^*\pi(x^*x)V$$

$$= \phi(x^*x) \quad \text{for each } x \in A.$$
q. e. d.

Now we proceed to proof of proposition 2.

 $(1) \rightarrow (2)$ It is well known.

(2) \rightarrow (3) Since A has an identity and B is *-semi-simple, ϕ is continuous. [5]. Hence it is contained in proposition 1.

(3) \rightarrow (4) Since ϕ is continuous, it is clear.

(4) \rightarrow (1) Since B is *-semi-simple, we may assume that B is a C*-algebra. Let h be a selfadjoint element of A. We consider the complex variable B-valued entire function $\Psi(\lambda) = \exp(\lambda\phi(h))\phi(\exp-\lambda h)$.

Then

$$\begin{split} \|\Psi(\lambda)\|^2 &= \|\phi(\exp(-\overline{\lambda}h))\exp(\overline{\lambda}\phi(h))\exp(\lambda\phi(h))\phi(\exp(-\lambda h))\| \\ &= \|\phi(\exp(-\overline{\lambda}h))\exp(2Re\lambda\phi(h))\phi(\exp(-\lambda h))\| \\ &\leq \|\phi(\exp(-\overline{\lambda}h))\phi(\exp(2Re\lambda(h)\phi(\exp(-\lambda h))\| \\ &= \|\phi(\exp(-\overline{\lambda}h))\phi(\exp(-\lambda h)\phi(\exp(2Re\lambda(h))\|) \end{split}$$

Since ϕ is positive and exp $(2\text{Re}\lambda h) \ge 0$, there exists a positive square root $(\phi(\exp 2\text{Re}\lambda h))^{\frac{1}{2}}$

$$\begin{split} \|\Psi(\lambda)\|^{2} &\leq \|(\phi(\exp 2\operatorname{Re}\lambda.h))^{\frac{1}{2}}\phi(\exp(-2\operatorname{Re}\lambda)h)(\phi(\exp 2\operatorname{Re}\lambdah))^{\frac{1}{2}}\|\\ &= \|\phi(\exp(-2\operatorname{Re}\lambda)h)\phi(\exp(2\operatorname{Re}\lambda)h\| \end{split}$$

Consequently $\Psi(\lambda)$ is bounded in the whole plane. Thus $\Psi(\lambda)$ is contant by Liouville's theorem for vector-valued entire functions. Since $\Psi(0) = e_B$, we have $\exp \lambda \phi(h) = \phi(\exp \lambda h)$. Equate coefficients of λ to obtain $\phi(h^2) = (\phi(h))^2$. q. e. d.

NIIGATA UNIVERSITY

S. Watanabe

References

- [1] R. V. KADISON: A generalized Schwartz inequality and algebraic invariants for operator algebras. Ann. of Math. 56 (1952).
- [2] C. E. RICKART: General theory of Banach algebras, D. Van Nostrand, New York, 1960.
- [3] B. Russo: Linear mappings of operator algebras. Proc. Amer. Math. Soc., 17 (1966), 1019-1022.
- [4] W. F. SEINSPRING: Positive functions on C*-algebras. Proc. Amer. Math. Soc., 6 (1955), 211-216.
- [5] S. WATANABE: Note on positive linear maps of Banach algebras with an involution. Sci. Rep. Niigata. Univ., Ser. A, No. 7 (1969), 17-21.