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CONTINUITY OF A CERTAIN INVARIANT OF
A MEASURE ON A CAT(0) SPACE

TETSU TOYODA

Abstract. For a finitely supported probability measure µ on a complete CAT(0)
space Y , Izeki and Nayatani defined an invariant δ(µ) ∈ [0, 1] in [1]. The supremum
of those for all such measures on Y is an invariant of Y , called the Izeki-Nayatani
invariant, which plays an important role in the study of fixed-point property of
groups. In this paper, we establish continuity of δ on the space of finitely supported
probability measures. We prove the lower-semicontinuity of δ with respect to
the (L2-) Wasserstein metric, and continuity with respect to some metric which
induces a stronger topology.

1. Introduction

First we set up some notations. Let (Y, d) be a complete CAT(0) space. For any

p, q ∈ Y , there is a unique geodesic γ joining p to q, that is an isometric embedding

of the closed interval [0, d(p, q)] into Y with γ(0) = p and γ(d(p, q)) = q, and we

denote its image by [p, q]. We denote by P(Y ) the set of all finitely supported

probability measures on Y other than measures supported on a single point. For

any ν ∈ P(Y ), there exists a unique point ν ∈ Y which minimizes the function

x 7→
∫

Y

d(x, y)2ν(dy)

defined on Y . This point ν is called the barycenter of ν. For detailed accounts of

CAT(0) spaces and behaviors of probability measures on them, we refer the reader

to [5] and [6]. Throughout this paper, we fix an infinite dimensional Hilbert space

H.

Definition 1.1 (Izeki-Nayatani). Let Y be a complete CAT(0) space. For µ ∈
P(Y ), we denote by Φ(µ) the set of all maps φ : suppµ → H from the support of µ
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to H such that

‖φ(p)‖ = d(p, µ), (1.1)

‖φ(p) − φ(q)‖ ≤ d(p, q) (1.2)

for all p, q ∈ suppµ. For µ =
∑m

i=1 tiDiracpi
∈ P(Y ), we define a function Dµ :

Φ(µ) → R by

Dµ(φ) =
‖

∑m
i=1 tiφ(pi)‖2∑m

i=1 ti‖φ(pi)‖2
, φ ∈ Φ(µ).

Here and henceforth, Diracp denotes the Dirac measure at p. For µ ∈ P(Y ), we

define δ(µ) as

δ(µ) = inf
φ∈Φ(µ)

Dµ(φ).

And we define the Izeki-Nayatani invariant δ(Y ) of Y as

δ(Y ) = sup
µ∈P(Y )

δ(µ).

By definition, we have δ(µ) ∈ [0, 1] for all µ ∈ P(Y ). We can say that the Izeki-

Nayatani invariant measures a sort of singularity of a CAT(0) space. And it plays

an important role in the study of fixed-point property of groups; we refer the reader

to [1], [2], [3], [4], and [7].

However, computation of this invariant is generally hard. To estimate the Izeki-

Nayatani invariants of various CAT(0) spaces, and to understand this invariant

better, it must be helpful if continuity of δ is guaranteed. In this paper, we formulate

some continuity results for δ : P(Y ) → [0, 1].

Recall that the (L2-) Wasserstein distance dW (µ, ν) between

µ =
m∑

i=1

tiDiracpi
∈ P(Y )

and

ν =
n∑

j=1

sjDiracqj
∈ P(Y )

is defined by

dW (µ, ν)2 = inf
π

∫
Y ×Y

d(x, y)2dπ(x, y),

where the infimum is taken over all measures

π =
∑

1≤i≤m,1≤j≤n

TijDirac(pi,qj) (1.3)

on Y × Y such that
∑m

i=1 Tij = sj for all 1 ≤ j ≤ m and
∑n

j=1 Tij = ti for all

1 ≤ i ≤ n. Such a measure π is called a coupling of µ and ν, so we can restate that

the infimum is taken over all couplings of µ and ν. The Wasserstein distance makes
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P(Y ) a metric space. The Wasserstein distance can be formulated in more general

setting, and plays a significant role in the theory of optimal transport. For more

information about this distance, we refer the reader to [8].

In Section 2, we prove the lower-semicontinuity of δ with respect to dW :

Theorem 1.2. Let (Y, d) be a complete CAT(0) space. Then δ : P(Y ) → [0, 1] is a

lower-semicontinuous function on (P(Y ), dW ).

In Section 3, we introduce a new metric dHW on P(Y ), which induces a stronger

topology on P(Y ) than dW , and prove the continuity of δ with respect to this metric.

2. Lower-semicontinuity with respect to dW

In this section, we prove Theorem 1.2. But before starting the proof, we define an

invariant of a measure, which plays an important role in our proof.

Definition 2.1. Let (Y, d) be a CAT(0) space, and let ν ∈ P(Y ). We set

Sν =
{
(p, q) ∈ suppν × suppν

∣∣ p 6∈ [ν, q], q 6∈ [ν, p]
}
,

and define a positive real number Lν as

Lν = min
{
d(p, q)2 − (d(p, ν) − d(q, ν))2

∣∣ (p, q) ∈ Sν

}
.

Because of the triangle inequality, we have

d(p, q)2 − (d(p, ν) − d(q, ν))2 ≥ 0

for any p, q ∈ suppν, and the equality holds if and only if p ∈ [ν, q] or q ∈ [ν, p].

Therefore, we have Lν > 0 for any ν ∈ P(Y ).

Proof of Theorem 1.2. Let

ν =
n∑

j=1

sjDiracqj

be an arbitrary measure in P(Y ), and let J = {1, . . . , n}. Let

µ(N) =
m(N)∑
i=1

t
(N)
i Dirac

p
(N)
i

, N = 1, 2, 3, . . .

be an arbitrary sequence of measures in P(Y ) which converges to ν in (P(Y ), dW ),

and let I(N) = {1, . . . ,m(N)} for each N ∈ N. Then what we have to show is that

lim inf
N→∞

δ(µ(N)) ≥ δ(ν). (2.1)

Because the sequence of the barycenters {µ(N)} converges to ν in Y, for any η > 0,

we can find a positive real number Nη such that N ≥ Nη implies

dW (µ(N), ν) < η2, d(µ(N), ν) < η. (2.2)
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Then, to prove (2.1), it is sufficient to show that for any sufficiently small η > 0,

any N ≥ Nη and any φ ∈ Φ(µ(N)), there exists φ̃η ∈ Φ(ν) such that

D(µ(N))(φ) ≥ Dν(φ̃η) − F (η), (2.3)

where F is some function converging to 0 when η → 0.

In the proceeding argument, assume that η > 0 is an arbitrary positive real

number such that

η < min

{
1

2
d(qj, qj′)

∣∣∣∣ j, j′ ∈ J, j 6= j′
}

,

η2 < min {sj | j ∈ J} .

And suppose N be an arbitrary integer such that N ≥ Nη.

Let

I
(N)
j = {i ∈ I(N) | d(p

(N)
i , qj) ≤ η}

for any j ∈ J , and

I
(N)
0 = {i ∈ I(N) | ∀j ∈ J ; d(p

(N)
i , qj) > η}.

Then I
(N)
0 , I

(N)
1 , . . . , I

(N)
n satisfy the following three conditions.

• I(N) = I
(N)
0 ∪ I

(N)
1 ∪ · · · ∪ I

(N)
n ;

• If j 6= j′ then I
(N)
j ∩ I

(N)
j′ = φ;

• For every j ∈ J , I
(N)
j 6= φ.

The first two are obvious. The last one is shown as follows: If I
(N)
j were empty, then

for any coupling π =
∑

i,j′ Tij′Dirac
(p

(N)
i ,qj′ )

of µ(N) and ν, we would have

∫
Y ×Y

d(x, y)2dπ(x, y) ≥
∑

i∈I(N)

Tijd(p
(N)
i , qj)

2

≥ sjη
2 > η4.

But this contradicts the fact that dW (µ(N), ν) < η2.

Now, we will construct φ̃η ∈ Φ(ν) in (2.3) in three steps. As the first step, we

construct a vector Aj ∈ H for each j ∈ J . For each j ∈ J , since I
(N)
j is nonempty,

we can choose some i0 ∈ I
(N)
j . If pi0 6= µ(N), let

Aj =
d(ν, qj)

d(µ(N), p
(N)
i0

)
φ(p

(N)
i0

) ∈ H,
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and if pi0 = µ(N), let Aj be an arbitrary vector of length d(ν, qj). Then, by the

second inequality of (2.2) and the assumption on η, we have

‖φ(p
(N)
i ) − Aj‖ ≤ ‖φ(p

(N)
i ) − φ(p

(N)
i0

)‖ + ‖φ(p
(N)
i0

) − Aj‖

≤ d(p
(N)
i , p

(N)
i0

) +
∣∣∣‖φ(p

(N)
i0

)‖ − ‖Aj‖
∣∣∣

≤ d(p
(N)
i , p

(N)
i0

) +
∣∣∣d(p

(N)
i0

, µ(N)) − d(qj, ν)
∣∣∣

≤ d(p
(N)
i , p

(N)
i0

) +
∣∣∣d(p

(N)
i0

, µ(N)) − d(µ(N), qj)
∣∣∣ +

∣∣∣d(µ(N), qj) − d(ν, qj)
∣∣∣

≤ d(p
(N)
i , qj) + d(qj, p

(N)
i0

) + d(p
(N)
i0

, qj) + d(µ(N), ν)

≤ 4η

for any i ∈ Ij. For any j, j′ ∈ J , we have

‖Aj − Aj′‖ ≤ ‖Aj − φ(p
(N)
i )‖ + ‖φ(p

(N)
i ) − φ(p

(N)
i′ )‖ + ‖φ(p

(N)
i′ ) − Aj′‖

≤ 8η + d(p
(N)
i , qj) + d(qj, qj′) + d(qj′ , p

(N)
i′ )

≤ 10η + d(qj, qj′).

In the preceding inequality, i and i′ are arbitrary elements of Ij and Ij′ respectively.

Before moving to the next step, we set up some notations related to ν. We first

divide J into “branches”. We define a set J̃ ⊂ J , “representatives of branches” , by

declaring j ∈ J̃ if and only if qj 6= ν and there is no j′ ∈ J other than j itself such

that qj′ is on the geodesic segment [ν, qj] joining ν to qj. Let k be the cardinality of

J̃ , and we denote elements of J̃ as j1, . . . , jk. We define subsets J0, . . . , Jk of J as

follows:

Jl = {j ∈ J | qjl
∈ [ν, qj]}, 1 ≤ l ≤ k,

J0 = {j ∈ J | qj = ν}.

It follows immediately that J = ∪k
l=0Jl, and that l 6= l′ implies Jl ∩ Jl′ = φ. And

we claim that j, j′ ∈ J\J0 must be contained in the same Jl for some l ∈ {1, . . . , k}
whenever qj ∈ [ν, qj′ ] or qj′ ∈ [ν, qj]. We define Kν > 0 and kν > 0 as

Kν = max{d(ν, qj) | j ∈ J}, kν = min{d(ν, qj) | j ∈ J\J0}.

As the second step, we define

Bj =
d(qj, ν)

d(qjl
, ν)

Ajl
,
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for any j ∈ Jl (l = 1, . . . , k), and Bj = 0 for j ∈ J0. Using the cosine formula for

the triangle spanned by Ajl
and Aj, we have

cos ∠(Aj, Bj) ≥
d(ν, qj)

2 + d(ν, qjl
)2 − (10η + d(ν, qj) − d(ν, qjl

))2

2d(ν, qj)d(ν, qjl
)

= 1 − 100η2 − 20η(d(ν, qjl
) − d(ν, qj))

2d(ν, qj)d(ν, qjl
)

.

Then it follows that

‖Aj − Bj‖ ≤
√

Kν

kν

(100η2 + 20ηKν).

This is still true in the case of j ∈ J0. Hence, we have

‖Bj − Bj′‖2 ≤ (‖Bj − Aj‖ + ‖Aj − Aj′‖ + ‖Aj′ − Bj′‖)2

≤ d(qj, qj′)
2 + f(η),

for any j, j′ ∈ J , where

f(η) = 100η2 + 4
Kν

kν

(100η2 + 20ηKν) + 40η

√
Kν

kν

(100η2 + 20ηKν)

+ max
j,j′∈J

d(qj, qj′)

(
20η + 4

√
Kν

kν

(100η2 + 20ηKν)

)
.

Now we come to the final step. Let E ∈ H be a unit vector orthogonal to the

subspace spanned by B1, . . . , Bn. For 0 < θ < π
2
, we define

Bθ
j = sin θ · ‖Bj‖E + cos θ · Bj

for any j ∈ J . Then for any 0 < θ < π
2

and j ∈ J ,

‖Bθ
j ‖ = ‖Bj‖,

and for any j, j′ ∈ J ,

‖Bj − Bj′‖2 − ‖Bθ
j − Bθ

j′‖2 = sin2 θ · {‖Bj − Bj′‖2 − (‖Bj‖ − ‖Bj′‖)2}. (2.4)

Assuming that η > 0 is taken to be small enough if necessary, we define

θη = sin−1

√
f(η)

Lν

.

We define a map φ̃η : suppν → H by

φ̃η(qj) = B
θη

j , j ∈ J.

We have to confirm φ̃η ∈ Φ(ν). The condition (1.1) is obvious, so we examine the

condition (1.2) by considering three cases separately.
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Case I: (qj, qj′) 6∈ Sν . In this case, Bj and Bj′ are parallel vectors by definition,

so we have

‖Bθη

j − B
θη

j′ ‖ = ‖Bj − Bj′‖ = |‖Bj‖ − ‖Bj′‖|
= |d(qj, ν) − d(qj′ , ν)| ≤ d(qj, qj′).

Case II: (qj, qj′) ∈ Sν and ‖Bj − Bj′‖2 − (‖Bj‖ − ‖Bj′‖)2 < Lν . In this case, we

have

‖Bθη

j − B
θη

j′ ‖
2 ≤ ‖Bj − Bj′‖2

< Lν + (d(qj, ν) − d(qj′ , ν))2 ≤ d(qj, qj′)
2.

Case III: (qj, qj′) ∈ Sν and ‖Bj −Bj′‖2 − (‖Bj‖− ‖Bj′‖)2 ≥ Lν . In this case, by

(2.4) and the definition of θη, we have

‖Bθη

j − B
θη

j′ ‖
2 ≤ d(qj, qj′)

2.

Hence φ̃η ∈ Φ(ν).

Let

F (η) = Dν(φ̃η) − D(µ(N))(φ)

=

∥∥∥ ∑
j∈J sjB

θη

j

∥∥∥2

∑
j∈J sj

∥∥∥B
θη

j

∥∥∥2 −
‖

∑n
j=0

∑
i∈I

(N)
j

t
(N)
i φ(p

(N)
i )‖2∑n

j=0

∑
i∈I

(N)
j

t
(N)
i ‖φ(p

(N)
i )‖2

.
(2.5)

To complete our proof, it is sufficient to show that F (η) tends to 0 when η → 0.

And, since the limit

lim
η→0

∑
j∈J

sj

∥∥∥B
θη

j

∥∥∥2

=
∑
j∈J

sjd (ν, qj)
2

exists, it is sufficient to prove the following:

(i): limη→0

∑
i∈I

(N)
0

t
(N)
i φ(p

(N)
i ) = 0;

(ii): limη→0

∑
i∈I

(N)
0

t
(N)
i

∥∥∥φ(p
(N)
i )

∥∥∥2

= 0;

(iii): For every j ∈ J , limη→0

∥∥∥∑
i∈I

(N)
j

t
(N)
i φ(p

(N)
i ) − sjB

θη

j

∥∥∥ = 0;

(iv): For every j ∈ J , limη→0

(∑
i∈I

(N)
j

t
(N)
i ‖φ(p

(N)
i )‖2 − sj‖Bθη

j ‖2
)

= 0.

Let li = min{d(p
(N)
i , qj) | j ∈ J} for i ∈ I

(N)
0 . To prove the above assertions, we first

show the following:

(a): limη→0

∑
i∈I

(N)
0

t
(N)
i = 0;

(b): For each i ∈ I
(N)
0 , limη→0

∑
i∈I

(N)
0

t
(N)
i l2i = 0;

(c): For every j ∈ J , limη→0

∑
i∈I

(N)
j

t
(N)
i = sj.

(d): For any j ∈ J and i ∈ I
(N)
j , limη→0 ‖φ(p

(N)
i ) − B

θη

j ‖ = 0.
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Because d(p
(N)
i , qj) > η for any i ∈ I

(N)
0 and j ∈ J , we have∑

i∈I
(N)
0

t
(N)
i =

1

η2

∑
i∈I

(N)
0

t
(N)
i η2 ≤ 1

η2
dW (µ(N), ν)2 ≤ η2.

This implies (a). And (b) follows from the following:∑
i∈I

(N)
0

t
(N)
i l2i ≤ dW (µ(N), ν)2 ≤ η4.

Next we prove (c). Fix an arbitrary j ∈ J and let

π =
∑
i,j′

Tij′Dirac
(p

(N)
i ,qj′ )

be any coupling of µ(N) and ν. Then we have∑
i∈I

(N)
j ,j′∈J\{j}

Tij′d(p
(N)
i , qj′)

2 +
∑

i∈I(N)\I(N)
j

Tijd(p
(N)
i , qj)

2 ≥ |
∑

i∈I
(N)
j

t
(N)
i − sj|η2.

Therefore,

η4 > dW (µ(N), ν)2 ≥ |
∑

i∈I
(N)
j

t
(N)
i − sj|η2.

This implies (c). Finally, (d) is obvious from our construction of B
θη

j .

Now (i) follows from (a) and (b) since

‖
∑

i∈I
(N)
0

t
(N)
i φ(p

(N)
i )‖ ≤

∑
i∈I

(N)
0

t
(N)
i d(p

(N)
i , µ(N))

≤
∑

i∈I
(N)
0

t
(N)
i (d(p

(N)
i , ν) + η)

≤
∑

i∈I
(N)
0

t
(N)
i (Kν + li + η)

≤ (Kν + η)
∑

i∈I
(N)
0

t
(N)
i +

 ∑
i∈I

(N)
0

t
(N)
i


1
2
 ∑

i∈I
(N)
0

t
(N)
i l2i


1
2

.

(ii) also follows from (a) and (b) since∑
i∈I

(N)
0

t
(N)
i ‖φ(p

(N)
i )‖2 ≤

∑
i∈I

(N)
0

t
(N)
i (Kν + li + η)2.
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(iii) follows from (c) and (d) because

‖
∑

i∈I
(N)
j

t
(N)
i φ(p

(N)
i ) − sjB

θη

j ‖ ≤

∑
i∈I

(N)
j

t
(N)
i ‖φ(p

(N)
i ) − B

θη

j ‖ +

∣∣∣∣∣∣∣
∑

i∈I
(N)
j

t
(N)
i − sj

∣∣∣∣∣∣∣ ‖Bθη

j ‖.

Finally (iv) follows from (c) and (d) because

|
∑

i∈I
(N)
j

t
(N)
i ‖φ(p

(N)
i )‖2 − sj‖Bθη

j ‖2| ≤

∑
i∈I

(N)
j

t
(N)
i |‖φ(p

(N)
i )‖2 − ‖Bθη

j ‖2| +

∣∣∣∣∣∣∣
∑

i∈I
(N)
j

t
(N)
i − sj

∣∣∣∣∣∣∣ ‖Bθη

j ‖2.

Now, the proof is completed. ¤

Remark 2.2. One simple application of Theorem 1.2 is the possibility to restrict

the set of measures over which we take supremum when we define the Izeki-Nayatani

invariant δ(Y ): Let Y be a complete CAT(0) space and U ⊂ P(Y ) be a dense subset

in (P(Y ), dW ). Then our theorems guarantees that

δ(Y ) = sup
µ∈U

δ(µ).

For example, Let P0(Y ) ⊂ P(Y ) be a subset of all µ ∈ P(Y ) of the form µ =∑m
i=1

1
m

Diracpi
. Then, it is obvious that P0(Y ) is dense in P(Y ) with respect to dW .

So we have

δ(Y ) = sup
µ∈P0(Y )

δ(µ).

3. Continuity with respect to dHW

To establish the continuity of δ on P(Y ) we define another distance dHW on P(Y )

by declaring

dHW (µ, ν) = max
{
dW (µ, ν), dH(suppµ, suppν)

}
for any µ, ν ∈ P(Y ). Here, dH denotes the Hausdorff distance. Recall that the

Hausdorff distance between closed subsets A and B of Y is defined by

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

The distance dHW makes P(Y ) a metric space, and induces a topology which is

stronger than the one induced by dW . Then with respect to this topology, we can
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also prove the upper-semicontinuity of δ by the argument similar to that in the proof

of Theorem 1.2.

Theorem 3.1. Let (Y, d) be a complete CAT(0) space. Then δ : P(Y ) → [0, 1] is a

continuous function on (P(Y ), dHW ).

Proof. The lower-semicontinuity follows from Theorem 1.2. We prove the upper-

semicontinuity. We proceed as in the previous section. Let ν =
∑n

j=1 sjDiracqj
be

an arbitrary measure in P(Y ), and let

µ(N) =
m(N)∑
i=1

t
(N)
i Dirac

p
(N)
i

, N = 1, 2, 3, . . .

be an arbitrary sequence of measures in P(Y ) which converges to ν in (P(Y ), dHW ).

Then, for any η > 0, we can find a positive real number N ′
η such that N ≥ N ′

η

implies

dHW (µ(N), ν) < η2, d(µ(N), ν) < η. (3.1)

Now, what we have to show is that for any sufficiently small η > 0, any natural

number N ≥ N ′
η and any ϕ ∈ Φ(ν) there exists ϕ̃η ∈ Φ(µ(N)) such that

Dµ(N)

(ϕ̃η) ≤ Dν(ϕ) + G(η), (3.2)

where G is some function converging to 0 when η → 0.

As in the previous section, assume that η is an arbitrary positive real number

such that

η < min

{
1

2
d(qj, qj′)

∣∣∣∣ j, j′ ∈ J, j 6= j′
}

,

η2 < min {sj | j ∈ J} .

And let N be an arbitrary integer such that N ≥ Nη and let ϕ ∈ Φ(ν). Let

I
(N)
0 , . . . , I

(N)
n be as in the previous section. Then the following four assertions hold:

• I(N) = I
(N)
0 ∪ I

(N)
1 ∪ · · · ∪ I

(N)
n ;

• If j 6= j′ then I
(N)
j ∩ I

(N)
j′ = φ;

• For every j ∈ J , I
(N)
j 6= φ;

• I
(N)
0 = φ.

The first three are shown by the same argument as in the previous section, and the

last one follows immediately from the fact that dH(suppµ(N), suppν) < η.

Now, we will construct ϕ̃η ∈ Φ(µ(N)) in (3.2) in two steps. As the first step, we

construct a vector Ci ∈ H for each i ∈ I(N) as follows: For i ∈ I
(N)
j , let

Ci =
d(µ(N), p

(N)
i )

d(ν, qj)
ϕ(qj)
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if qj 6= ν, and let Ci be an arbitrary vector of length d(µ(N), p
(N)
i ) if qj = ν. Then

the second inequality of (3.1) and the assumption on η imply

‖ϕ(qj) − Ci‖ = |d(µ(N), p
(N)
i ) − d(ν, qj)|

≤ d(µ(N), ν) + d(p
(N)
i , qj) < 2η.

Hence for any i ∈ I
(N)
j and i′ ∈ I

(N)
j′ , if j 6= j′, we have

‖Ci − Ci′‖ ≤ ‖Ci − ϕ(qj)‖ + ‖ϕ(qj) − ϕ(qj′)‖ + ‖ϕ(qj′) − Ci′‖

≤ 4η + d(qj, p
(N)
i ) + d(p

(N)
i , p

(N)
i′ ) + d(p

(N)
i′ , qj′)

≤ 6η + d(p
(N)
i , p

(N)
i′ ).

Thus, with the fact that dH(suppµ(N), suppν) < η we have

‖Ci − Ci′‖2 ≤ d(p
(N)
i , p

(N)
i′ )2 + g(η), (3.3)

where g(η) is some function converging to 0 when η → 0. And in the case j = j′,

we have

‖Ci − Ci′‖ = |d(µ(N), p
(N)
i ) − d(µ(N), p

(N)
i′ )|

≤ d(p
(N)
i , p

(N)
i′ ).

Let us proceed to the second step. First, we set up one notation. We define a

subset T (N) ⊂ suppµ(N) × suppµ(N) by declaring (p
(N)
i , p

(N)
i′ ) ∈ T (N) if and only if

i ∈ I
(N)
j and i′ ∈ I

(N)
j′ for some j, j′ such that (qj, qj′) ∈ Sν . And let

L′
(N) = min

{
d(p

(N)
i , p

(N)
i′ )2 −

(
d(p

(N)
i , µ(N)) − d(p

(N)
i′ , µ(N))

)2 ∣∣
(p

(N)
i , p

(N)
i′ ) ∈ T (N)

}
.

Then observe that for all sufficiently small η > 0 we have

L′
(N) ≥

Lν

2
. (3.4)

This follows from the fact that for any (p
(N)
i , p

(N)
i′ ) ∈ T (N), there is (qj, qj′) ∈ Sν such

that

d(p
(N)
i , qj) < η, d(p

(N)
i′ , qj′) < η, d(µ(N), ν) < η.

Now we assume that η > 0 is sufficiently small so that (3.4) holds.

Let E ∈ H be a unit vector orthogonal to the subspace spanned by C1, . . . , Cm(N) .

For 0 < θ < π
2
, we define

Cθ
i = sin θ · ‖Ci‖E + cos θ · Ci

for any i ∈ I(N). Then for any 0 < θ < π
2

and i ∈ I(N),

‖Cθ
i ‖ = ‖Ci‖ = d(µ(N), p

(N)
i ),
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and for any i, i′ ∈ I(N),

‖Ci − Ci′‖2 − ‖Cθ
i − Cθ

i′‖2 = sin2 θ{‖Ci − Ci′‖2 − (‖Ci‖ − ‖Ci′‖)2}. (3.5)

Assuming that η > 0 is taken to be small enough if necessary, we set

ϑη = sin−1

√
2g(η)

Lν

,

and define a map ϕ̃η : suppµ(N) → H by

ϕ̃η(p
(N)
i ) = C

ϑη

i , i ∈ I(N).

We want to confirm ϕ̃η ∈ Φ(µ(N)). The condition (1.1) is obvious, so we examine

the condition (1.2) by considering three cases separately.

Case I: (p
(N)
i , p

(N)
i′ ) 6∈ T (N). In this case, Ci and Ci′ must be parallel vectors, so

we have

‖Cϑη

i − C
ϑη

i′ ‖ = ‖Ci − Ci′‖ = |‖Ci‖ − ‖Ci′‖|

=
∣∣∣d(p

(N)
i , µ(N)) − d(p

(N)
i′ , µ(N))

∣∣∣ ≤ d(p
(N)
i , p

(N)
i′ ).

Case II: (p
(N)
i , p

(N)
i′ ) ∈ T (N) and ‖Ci − Ci′‖2 − (‖Ci‖ − ‖Ci′‖)2 < L′

(N). In this

case, we have

‖Cϑη

i − C
ϑη

i′ ‖
2 ≤ ‖Ci − Ci′‖2

< L′
(N) + (d(p

(N)
i , µ(N)) − d(p

(N)
i′ , µ(N)))2 ≤ d(p

(N)
i , p

(N)
i′ )2.

Case III: (p
(N)
i , p

(N)
i′ ) ∈ T (N) and ‖Ci − Ci′‖2 − (‖Ci‖ − ‖Ci′‖)2 ≥ L′

(N). In this

case, by (3.3), (3.4), (3.5) and the definition of ϑη, we have

‖Cϑη

i − C
ϑη

i′ ‖
2 ≤ d(p

(N)
i , p

(N)
i′ )2.

Hence ϕ̃η ∈ Φ(µ(N)).

Let

G(η) = D(µ(N))(ϕ) − Dν(ϕ̃η)

=
‖

∑n
j=0

∑
i∈I

(N)
j

t
(N)
i ϕ(p

(N)
i )‖2∑n

j=0

∑
i∈I

(N)
j

t
(N)
i ‖ϕ(p

(N)
i )‖2

−

∥∥∥ ∑
j∈J sjC

ϑη

j

∥∥∥2

∑
j∈J sj

∥∥∥C
ϑη

j

∥∥∥2 .

It is sufficient to show that G(η) tends to 0 when η → 0. It is quite obvious that

this follows from the same argument by which we show that F (η) tends to 0 in the

previous section, so our proof is completed. ¤
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congrès, 18, 375–422, Soc. Math. France, Paris (2008).

[3] H. Izeki, T. Kondo, S. Nayatani, Fixed-Point Property of Random Groups, Ann.

Global Anal. Geom., 35 (2009), 363–379.

[4] T. Kondo, Fixed-point property for CAT(0) spaces, preprint.

[5] M. R. Bridson and A Haefliger, Metric spaces of non-positive curvature, Springer-

Verlag, Berlin, Heidelberg, 1999.

[6] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature,

Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002),

357–390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.

[7] T. Toyoda, CAT(0) spaces on which a certain type of singularity is bounded, to

appear in Kodai Math. J.

[8] C. Villani, Optimal transport, old and new, Grundlehren der mathematischen

Wissenshaften 338, Springer, 2009.

(Tetsu Toyoda) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464–
8602, Japan
E-mail address: tetsu.toyoda@math.nagoya-u.ac.jp

Received January 12, 2009

Revised June 3, 2009

— 97 —


