CONTINUITY OF A CERTAIN INVARIANT OF A MEASURE ON A CAT(0) SPACE

TETSU TOYODA

ABSTRACT. For a finitely supported probability measure μ on a complete CAT(0) space Y, Izeki and Nayatani defined an invariant $\delta(\mu) \in [0, 1]$ in [1]. The supremum of those for all such measures on Y is an invariant of Y, called the Izeki-Nayatani invariant, which plays an important role in the study of fixed-point property of groups. In this paper, we establish continuity of δ on the space of finitely supported probability measures. We prove the lower-semicontinuity of δ with respect to the (L^2-) Wasserstein metric, and continuity with respect to some metric which induces a stronger topology.

1. Introduction

First we set up some notations. Let (Y, d) be a complete CAT(0) space. For any $p, q \in Y$, there is a unique geodesic γ joining p to q, that is an isometric embedding of the closed interval [0, d(p, q)] into Y with $\gamma(0) = p$ and $\gamma(d(p, q)) = q$, and we denote its image by [p, q]. We denote by $\mathcal{P}(Y)$ the set of all finitely supported probability measures on Y other than measures supported on a single point. For any $\nu \in \mathcal{P}(Y)$, there exists a unique point $\overline{\nu} \in Y$ which minimizes the function

$$x \mapsto \int_Y d(x,y)^2 \nu(dy)$$

defined on Y. This point $\overline{\nu}$ is called the *barycenter* of ν . For detailed accounts of CAT(0) spaces and behaviors of probability measures on them, we refer the reader to [5] and [6]. Throughout this paper, we fix an infinite dimensional Hilbert space \mathcal{H} .

Definition 1.1 (Izeki-Nayatani). Let Y be a complete CAT(0) space. For $\mu \in \mathcal{P}(Y)$, we denote by $\Phi(\mu)$ the set of all maps $\phi : \operatorname{supp} \mu \to \mathcal{H}$ from the support of μ

²⁰⁰⁰ Mathematics Subject Classification. 51F99.

Key words and phrases. CAT(0) space, Wasserstein distance, Izeki-Nayatani invariant.

to ${\mathcal H}$ such that

$$\|\phi(p)\| = d(p,\overline{\mu}),\tag{1.1}$$

$$\|\phi(p) - \phi(q)\| \le d(p,q)$$
 (1.2)

for all $p, q \in \text{supp}\mu$. For $\mu = \sum_{i=1}^{m} t_i \text{Dirac}_{p_i} \in \mathcal{P}(Y)$, we define a function $D^{\mu} : \Phi(\mu) \to \mathbb{R}$ by

$$D^{\mu}(\phi) = \frac{\|\sum_{i=1}^{m} t_i \phi(p_i)\|^2}{\sum_{i=1}^{m} t_i \|\phi(p_i)\|^2}, \quad \phi \in \Phi(\mu).$$

Here and henceforth, Dirac_p denotes the Dirac measure at p. For $\mu \in \mathcal{P}(Y)$, we define $\delta(\mu)$ as

$$\delta(\mu) = \inf_{\phi \in \Phi(\mu)} D^{\mu}(\phi)$$

And we define the *Izeki-Nayatani* invariant $\delta(Y)$ of Y as

$$\delta(Y) = \sup_{\mu \in \mathcal{P}(Y)} \delta(\mu).$$

By definition, we have $\delta(\mu) \in [0, 1]$ for all $\mu \in \mathcal{P}(Y)$. We can say that the Izeki-Nayatani invariant measures a sort of singularity of a CAT(0) space. And it plays an important role in the study of fixed-point property of groups; we refer the reader to [1], [2], [3], [4], and [7].

However, computation of this invariant is generally hard. To estimate the Izeki-Nayatani invariants of various CAT(0) spaces, and to understand this invariant better, it must be helpful if continuity of δ is guaranteed. In this paper, we formulate some continuity results for $\delta : \mathcal{P}(Y) \to [0, 1]$.

Recall that the (L²-) Wasserstein distance $d^{W}(\mu, \nu)$ between

$$\mu = \sum_{i=1}^{m} t_i \operatorname{Dirac}_{p_i} \in \mathcal{P}(Y)$$

and

$$\nu = \sum_{j=1}^{n} s_j \operatorname{Dirac}_{q_j} \in \mathcal{P}(Y)$$

is defined by

$$d^{W}(\mu,\nu)^{2} = \inf_{\pi} \int_{Y \times Y} d(x,y)^{2} d\pi(x,y),$$

where the infimum is taken over all measures

$$\pi = \sum_{1 \le i \le m, 1 \le j \le n} T_{ij} \operatorname{Dirac}_{(p_i, q_j)}$$
(1.3)

on $Y \times Y$ such that $\sum_{i=1}^{m} T_{ij} = s_j$ for all $1 \leq j \leq m$ and $\sum_{j=1}^{n} T_{ij} = t_i$ for all $1 \leq i \leq n$. Such a measure π is called a *coupling* of μ and ν , so we can restate that the infimum is taken over all couplings of μ and ν . The Wasserstein distance makes

 $\mathcal{P}(Y)$ a metric space. The Wasserstein distance can be formulated in more general setting, and plays a significant role in the theory of optimal transport. For more information about this distance, we refer the reader to [8].

In Section 2, we prove the lower-semicontinuity of δ with respect to d^W :

Theorem 1.2. Let (Y, d) be a complete CAT(0) space. Then $\delta : \mathcal{P}(Y) \to [0, 1]$ is a lower-semicontinuous function on $(\mathcal{P}(Y), d^W)$.

In Section 3, we introduce a new metric d_{HW} on $\mathcal{P}(Y)$, which induces a stronger topology on $\mathcal{P}(Y)$ than d^W , and prove the continuity of δ with respect to this metric.

2. Lower-semicontinuity with respect to d^W

In this section, we prove Theorem 1.2. But before starting the proof, we define an invariant of a measure, which plays an important role in our proof.

Definition 2.1. Let (Y, d) be a CAT(0) space, and let $\nu \in \mathcal{P}(Y)$. We set

$$S_{\nu} = \{ (p,q) \in \operatorname{supp}\nu \times \operatorname{supp}\nu \mid p \notin [\overline{\nu},q], \ q \notin [\overline{\nu},p] \},\$$

and define a positive real number L_{ν} as

$$L_{\nu} = \min \left\{ d(p,q)^2 - (d(p,\overline{\nu}) - d(q,\overline{\nu}))^2 \mid (p,q) \in S_{\nu} \right\}.$$

Because of the triangle inequality, we have

$$d(p,q)^2 - (d(p,\overline{\nu}) - d(q,\overline{\nu}))^2 \ge 0$$

for any $p, q \in \text{supp}\nu$, and the equality holds if and only if $p \in [\overline{\nu}, q]$ or $q \in [\overline{\nu}, p]$. Therefore, we have $L_{\nu} > 0$ for any $\nu \in \mathcal{P}(Y)$.

Proof of Theorem 1.2. Let

$$\nu = \sum_{j=1}^{n} s_j \operatorname{Dirac}_{q_j}$$

be an arbitrary measure in $\mathcal{P}(Y)$, and let $J = \{1, \ldots, n\}$. Let

$$\mu^{(N)} = \sum_{i=1}^{m^{(N)}} t_i^{(N)} \text{Dirac}_{p_i^{(N)}}, \quad N = 1, 2, 3, \dots$$

be an arbitrary sequence of measures in $\mathcal{P}(Y)$ which converges to ν in $(\mathcal{P}(Y), d^W)$, and let $I^{(N)} = \{1, \ldots, m^{(N)}\}$ for each $N \in \mathbb{N}$. Then what we have to show is that

$$\liminf_{N \to \infty} \delta(\mu^{(N)}) \ge \delta(\nu). \tag{2.1}$$

Because the sequence of the barycenters $\{\overline{\mu^{(N)}}\}\$ converges to $\overline{\nu}$ in Y, for any $\eta > 0$, we can find a positive real number N_{η} such that $N \ge N_{\eta}$ implies

$$d^{W}(\mu^{(N)},\nu) < \eta^{2}, \quad d(\overline{\mu^{(N)}},\overline{\nu}) < \eta.$$

$$(2.2)$$

Then, to prove (2.1), it is sufficient to show that for any sufficiently small $\eta > 0$, any $N \geq N_{\eta}$ and any $\phi \in \Phi(\mu^{(N)})$, there exists $\tilde{\phi}_{\eta} \in \Phi(\nu)$ such that

$$D^{(\mu^{(N)})}(\phi) \ge D^{\nu}(\tilde{\phi}_{\eta}) - F(\eta), \qquad (2.3)$$

where F is some function converging to 0 when $\eta \to 0$.

In the proceeding argument, assume that $\eta > 0$ is an arbitrary positive real number such that

$$\eta < \min\left\{\frac{1}{2}d(q_j, q_{j'}) \mid j, j' \in J, \ j \neq j'\right\},$$

$$\eta^2 < \min\left\{s_j \mid j \in J\right\}.$$

And suppose N be an arbitrary integer such that $N \ge N_{\eta}$.

Let

$$I_j^{(N)} = \{ i \in I^{(N)} \mid d(p_i^{(N)}, q_j) \le \eta \}$$

for any $j \in J$, and

$$I_0^{(N)} = \{ i \in I^{(N)} \mid \forall j \in J; \ d(p_i^{(N)}, q_j) > \eta \}.$$

Then $I_0^{(N)}, I_1^{(N)}, \ldots, I_n^{(N)}$ satisfy the following three conditions.

- $I^{(N)} = I_0^{(N)} \cup I_1^{(N)} \cup \dots \cup I_n^{(N)};$ If $j \neq j'$ then $I_j^{(N)} \cap I_{j'}^{(N)} = \phi;$ For every $j \in J, I_j^{(N)} \neq \phi.$

The first two are obvious. The last one is shown as follows: If $I_j^{(N)}$ were empty, then for any coupling $\pi = \sum_{i,j'} T_{ij'} \operatorname{Dirac}_{(p_i^{(N)}, q_{j'})}$ of $\mu^{(N)}$ and ν , we would have

$$\int_{Y \times Y} d(x, y)^2 d\pi(x, y) \ge \sum_{i \in I^{(N)}} T_{ij} d(p_i^{(N)}, q_j)^2 \\\ge s_j \eta^2 > \eta^4.$$

But this contradicts the fact that $d^W(\mu^{(N)}, \nu) < \eta^2$.

Now, we will construct $\tilde{\phi}_{\eta} \in \Phi(\nu)$ in (2.3) in three steps. As the first step, we construct a vector $A_j \in \mathcal{H}$ for each $j \in J$. For each $j \in J$, since $I_j^{(N)}$ is nonempty, we can choose some $i_0 \in I_j^{(N)}$. If $p_{i_0} \neq \overline{\mu^{(N)}}$, let

$$A_j = \frac{d(\overline{\nu}, q_j)}{d(\overline{\mu^{(N)}}, p_{i_0}^{(N)})} \phi(p_{i_0}^{(N)}) \in \mathcal{H},$$

and if $p_{i_0} = \overline{\mu^{(N)}}$, let A_j be an arbitrary vector of length $d(\overline{\nu}, q_j)$. Then, by the second inequality of (2.2) and the assumption on η , we have

$$\begin{split} \|\phi(p_i^{(N)}) - A_j\| &\leq \|\phi(p_i^{(N)}) - \phi(p_{i_0}^{(N)})\| + \|\phi(p_{i_0}^{(N)}) - A_j\| \\ &\leq d(p_i^{(N)}, p_{i_0}^{(N)}) + \left| \|\phi(p_{i_0}^{(N)})\| - \|A_j\| \right| \\ &\leq d(p_i^{(N)}, p_{i_0}^{(N)}) + \left| d(p_{i_0}^{(N)}, \overline{\mu^{(N)}}) - d(q_j, \overline{\nu}) \right| \\ &\leq d(p_i^{(N)}, p_{i_0}^{(N)}) + \left| d(p_{i_0}^{(N)}, \overline{\mu^{(N)}}) - d(\overline{\mu^{(N)}}, q_j) \right| + \left| d(\overline{\mu^{(N)}}, q_j) - d(\overline{\nu}, q_j) \right| \\ &\leq d(p_i^{(N)}, q_j) + d(q_j, p_{i_0}^{(N)}) + d(p_{i_0}^{(N)}, q_j) + d(\overline{\mu^{(N)}}, \overline{\nu}) \\ &\leq 4\eta \end{split}$$

for any $i \in I_j$. For any $j, j' \in J$, we have

$$\begin{aligned} \|A_j - A_{j'}\| &\leq \|A_j - \phi(p_i^{(N)})\| + \|\phi(p_i^{(N)}) - \phi(p_{i'}^{(N)})\| + \|\phi(p_{i'}^{(N)}) - A_{j'}\| \\ &\leq 8\eta + d(p_i^{(N)}, q_j) + d(q_j, q_{j'}) + d(q_{j'}, p_{i'}^{(N)}) \\ &\leq 10\eta + d(q_j, q_{j'}). \end{aligned}$$

In the preceding inequality, i and i' are arbitrary elements of I_j and $I_{j'}$ respectively.

Before moving to the next step, we set up some notations related to ν . We first divide J into "branches". We define a set $\tilde{J} \subset J$, "representatives of branches", by declaring $j \in \tilde{J}$ if and only if $q_j \neq \overline{\nu}$ and there is no $j' \in J$ other than j itself such that $q_{j'}$ is on the geodesic segment $[\overline{\nu}, q_j]$ joining $\overline{\nu}$ to q_j . Let k be the cardinality of \tilde{J} , and we denote elements of \tilde{J} as j_1, \ldots, j_k . We define subsets J_0, \ldots, J_k of J as follows:

$$J_l = \{ j \in J \mid q_{j_l} \in [\overline{\nu}, q_j] \}, \quad 1 \le l \le k,$$

$$J_0 = \{ j \in J \mid q_j = \overline{\nu} \}.$$

It follows immediately that $J = \bigcup_{l=0}^{k} J_l$, and that $l \neq l'$ implies $J_l \cap J_{l'} = \phi$. And we claim that $j, j' \in J \setminus J_0$ must be contained in the same J_l for some $l \in \{1, \ldots, k\}$ whenever $q_j \in [\overline{\nu}, q_{j'}]$ or $q_{j'} \in [\overline{\nu}, q_j]$. We define $K_{\nu} > 0$ and $k_{\nu} > 0$ as

$$K_{\nu} = \max\{d(\overline{\nu}, q_j) \mid j \in J\}, \quad k_{\nu} = \min\{d(\overline{\nu}, q_j) \mid j \in J \setminus J_0\}.$$

As the second step, we define

$$B_j = \frac{d(q_j, \overline{\nu})}{d(q_{j_l}, \overline{\nu})} A_{j_l},$$

for any $j \in J_l$ (l = 1, ..., k), and $B_j = 0$ for $j \in J_0$. Using the cosine formula for the triangle spanned by A_{j_l} and A_j , we have

$$\cos \angle (A_j, B_j) \ge \frac{d(\overline{\nu}, q_j)^2 + d(\overline{\nu}, q_{j_l})^2 - (10\eta + d(\overline{\nu}, q_j) - d(\overline{\nu}, q_{j_l}))^2}{2d(\overline{\nu}, q_j)d(\overline{\nu}, q_{j_l})} \\ = 1 - \frac{100\eta^2 - 20\eta(d(\overline{\nu}, q_{j_l}) - d(\overline{\nu}, q_j))}{2d(\overline{\nu}, q_j)d(\overline{\nu}, q_{j_l})}.$$

Then it follows that

$$||A_j - B_j|| \le \sqrt{\frac{K_\nu}{k_\nu}(100\eta^2 + 20\eta K_\nu)}.$$

This is still true in the case of $j \in J_0$. Hence, we have

$$||B_j - B_{j'}||^2 \le (||B_j - A_j|| + ||A_j - A_{j'}|| + ||A_{j'} - B_{j'}||)^2 \le d(q_j, q_{j'})^2 + f(\eta),$$

for any $j, j' \in J$, where

$$f(\eta) = 100\eta^2 + 4\frac{K_{\nu}}{k_{\nu}}(100\eta^2 + 20\eta K_{\nu}) + 40\eta \sqrt{\frac{K_{\nu}}{k_{\nu}}(100\eta^2 + 20\eta K_{\nu})} + \max_{j,j'\in J} d(q_j, q_{j'}) \left(20\eta + 4\sqrt{\frac{K_{\nu}}{k_{\nu}}(100\eta^2 + 20\eta K_{\nu})}\right)$$

Now we come to the final step. Let $E \in \mathcal{H}$ be a unit vector orthogonal to the subspace spanned by B_1, \ldots, B_n . For $0 < \theta < \frac{\pi}{2}$, we define

$$B_j^{\theta} = \sin \theta \cdot \|B_j\| E + \cos \theta \cdot B_j$$

for any $j \in J$. Then for any $0 < \theta < \frac{\pi}{2}$ and $j \in J$,

$$||B_j^{\theta}|| = ||B_j||,$$

and for any $j, j' \in J$,

$$||B_j - B_{j'}||^2 - ||B_j^{\theta} - B_{j'}^{\theta}||^2 = \sin^2 \theta \cdot \{||B_j - B_{j'}||^2 - (||B_j|| - ||B_{j'}||)^2\}.$$
 (2.4)

Assuming that $\eta > 0$ is taken to be small enough if necessary, we define

$$\theta_{\eta} = \sin^{-1} \sqrt{\frac{f(\eta)}{L_{\nu}}}.$$

We define a map $\tilde{\phi}_{\eta} : \operatorname{supp} \nu \to \mathcal{H}$ by

$$\tilde{\phi}_{\eta}(q_j) = B_j^{\theta_{\eta}}, \quad j \in J.$$

We have to confirm $\tilde{\phi}_{\eta} \in \Phi(\nu)$. The condition (1.1) is obvious, so we examine the condition (1.2) by considering three cases separately.

-90 -

CASE I: $(q_j, q_{j'}) \notin S_{\nu}$. In this case, B_j and $B_{j'}$ are parallel vectors by definition, so we have

$$||B_{j}^{\theta_{\eta}} - B_{j'}^{\theta_{\eta}}|| = ||B_{j} - B_{j'}|| = |||B_{j}|| - ||B_{j'}|||$$

= $|d(q_{j}, \overline{\nu}) - d(q_{j'}, \overline{\nu})| \le d(q_{j}, q_{j'}).$

CASE II: $(q_j, q_{j'}) \in S_{\nu}$ and $||B_j - B_{j'}||^2 - (||B_j|| - ||B_{j'}||)^2 < L_{\nu}$. In this case, we have

$$||B_{j}^{\theta_{\eta}} - B_{j'}^{\theta_{\eta}}||^{2} \leq ||B_{j} - B_{j'}||^{2}$$

$$< L_{\nu} + (d(q_{j}, \overline{\nu}) - d(q_{j'}, \overline{\nu}))^{2} \leq d(q_{j}, q_{j'})^{2}.$$

CASE III: $(q_j, q_{j'}) \in S_{\nu}$ and $||B_j - B_{j'}||^2 - (||B_j|| - ||B_{j'}||)^2 \ge L_{\nu}$. In this case, by (2.4) and the definition of θ_{η} , we have

$$||B_{j}^{\theta_{\eta}} - B_{j'}^{\theta_{\eta}}||^{2} \le d(q_{j}, q_{j'})^{2}$$

Hence $\tilde{\phi}_{\eta} \in \Phi(\nu)$.

Let

$$F(\eta) = D^{\nu}(\tilde{\phi}_{\eta}) - D^{(\mu^{(N)})}(\phi)$$

$$= \frac{\left\| \sum_{j \in J} s_{j} B_{j}^{\theta_{\eta}} \right\|^{2}}{\sum_{j \in J} s_{j} \left\| B_{j}^{\theta_{\eta}} \right\|^{2}} - \frac{\left\| \sum_{j=0}^{n} \sum_{i \in I_{j}^{(N)}} t_{i}^{(N)} \phi(p_{i}^{(N)}) \right\|^{2}}{\sum_{j=0}^{n} \sum_{i \in I_{j}^{(N)}} t_{i}^{(N)} \| \phi(p_{i}^{(N)}) \|^{2}}.$$
(2.5)

To complete our proof, it is sufficient to show that $F(\eta)$ tends to 0 when $\eta \to 0$. And, since the limit

$$\lim_{\eta \to 0} \sum_{j \in J} s_j \left\| B_j^{\theta_\eta} \right\|^2 = \sum_{j \in J} s_j d\left(\overline{\nu}, q_j\right)^2$$

exists, it is sufficient to prove the following:

(i): $\lim_{\eta \to 0} \sum_{i \in I_0^{(N)}} t_i^{(N)} \phi(p_i^{(N)}) = 0;$ (ii): $\lim_{\eta \to 0} \sum_{i \in I_0^{(N)}} t_i^{(N)} \left\| \phi(p_i^{(N)}) \right\|^2 = 0;$ (iii): For every $j \in J$, $\lim_{\eta \to 0} \left\| \sum_{i \in I_i^{(N)}} t_i^{(N)} \phi(p_i^{(N)}) - s_j B_j^{\theta_\eta} \right\| = 0;$ (iv): For every $j \in J$, $\lim_{\eta \to 0} \left(\sum_{i \in I_i^{(N)}} t_i^{(N)} \| \phi(p_i^{(N)}) \|^2 - s_j \| B_j^{\theta_\eta} \|^2 \right) = 0.$

Let $l_i = \min\{d(p_i^{(N)}, q_j) \mid j \in J\}$ for $i \in I_0^{(N)}$. To prove the above assertions, we first show the following:

- (a): $\lim_{\eta \to 0} \sum_{i \in I_0^{(N)}} t_i^{(N)} = 0;$ (b): For each $i \in I_0^{(N)}$, $\lim_{\eta \to 0} \sum_{i \in I_0^{(N)}} t_i^{(N)} l_i^2 = 0;$
- (c): For every $j \in J$, $\lim_{\eta \to 0} \sum_{i \in I_i^{(N)}} t_i^{(N)} = s_j$.
- (d): For any $j \in J$ and $i \in I_j^{(N)}$, $\lim_{\eta \to 0} \|\phi(p_i^{(N)}) B_j^{\theta_\eta}\| = 0$.

Because $d(p_i^{(N)}, q_j) > \eta$ for any $i \in I_0^{(N)}$ and $j \in J$, we have

$$\sum_{i \in I_0^{(N)}} t_i^{(N)} = \frac{1}{\eta^2} \sum_{i \in I_0^{(N)}} t_i^{(N)} \eta^2 \le \frac{1}{\eta^2} d^W(\mu^{(N)}, \nu)^2 \le \eta^2.$$

This implies (a). And (b) follows from the following:

$$\sum_{i \in I_0^{(N)}} t_i^{(N)} l_i^2 \le d^W(\mu^{(N)}, \nu)^2 \le \eta^4.$$

Next we prove (c). Fix an arbitrary $j \in J$ and let

$$\pi = \sum_{i,j'} T_{ij'} \mathrm{Dirac}_{(p_i^{(N)},q_{j'})}$$

be any coupling of $\mu^{(N)}$ and ν . Then we have

$$\sum_{i \in I_j^{(N)}, j' \in J \setminus \{j\}} T_{ij'} d(p_i^{(N)}, q_{j'})^2 + \sum_{i \in I^{(N)} \setminus I_j^{(N)}} T_{ij} d(p_i^{(N)}, q_j)^2 \ge |\sum_{i \in I_j^{(N)}} t_i^{(N)} - s_j | \eta^2.$$

Therefore,

$$\eta^4 > d^W(\mu^{(N)}, \nu)^2 \ge |\sum_{i \in I_j^{(N)}} t_i^{(N)} - s_j | \eta^2.$$

This implies (c). Finally, (d) is obvious from our construction of $B_j^{\theta_{\eta}}$.

Now (i) follows from (a) and (b) since

$$\begin{aligned} \|\sum_{i \in I_0^{(N)}} t_i^{(N)} \phi(p_i^{(N)})\| &\leq \sum_{i \in I_0^{(N)}} t_i^{(N)} d(p_i^{(N)}, \overline{\mu^{(N)}}) \\ &\leq \sum_{i \in I_0^{(N)}} t_i^{(N)} (d(p_i^{(N)}, \overline{\nu}) + \eta) \\ &\leq \sum_{i \in I_0^{(N)}} t_i^{(N)} (K_{\nu} + l_i + \eta) \\ &\leq (K_{\nu} + \eta) \sum_{i \in I_0^{(N)}} t_i^{(N)} + \left(\sum_{i \in I_0^{(N)}} t_i^{(N)}\right)^{\frac{1}{2}} \left(\sum_{i \in I_0^{(N)}} t_i^{(N)} l_i^2\right)^{\frac{1}{2}} \end{aligned}$$

(ii) also follows from (a) and (b) since

$$\sum_{i \in I_0^{(N)}} t_i^{(N)} \|\phi(p_i^{(N)})\|^2 \le \sum_{i \in I_0^{(N)}} t_i^{(N)} (K_\nu + l_i + \eta)^2.$$

(iii) follows from (c) and (d) because

$$\begin{aligned} \|\sum_{i\in I_{j}^{(N)}} t_{i}^{(N)}\phi(p_{i}^{(N)}) - s_{j}B_{j}^{\theta_{\eta}}\| \leq \\ \sum_{i\in I_{j}^{(N)}} t_{i}^{(N)}\|\phi(p_{i}^{(N)}) - B_{j}^{\theta_{\eta}}\| + \left|\sum_{i\in I_{j}^{(N)}} t_{i}^{(N)} - s_{j}\right| \|B_{j}^{\theta_{\eta}}\|. \end{aligned}$$

Finally (iv) follows from (c) and (d) because

$$\begin{split} |\sum_{i \in I_j^{(N)}} t_i^{(N)} \| \phi(p_i^{(N)}) \|^2 - s_j \| B_j^{\theta_\eta} \|^2 | \leq \\ \sum_{i \in I_j^{(N)}} t_i^{(N)} \| \| \phi(p_i^{(N)}) \|^2 - \| B_j^{\theta_\eta} \|^2 | + \left| \sum_{i \in I_j^{(N)}} t_i^{(N)} - s_j \right| \| B_j^{\theta_\eta} \|^2. \end{split}$$
Fow, the proof is completed.

Now, the proof is completed.

Remark 2.2. One simple application of Theorem 1.2 is the possibility to restrict the set of measures over which we take supremum when we define the Izeki-Nayatani invariant $\delta(Y)$: Let Y be a complete CAT(0) space and $U \subset \mathcal{P}(Y)$ be a dense subset in $(\mathcal{P}(Y), d^W)$. Then our theorems guarantees that

$$\delta(Y) = \sup_{\mu \in U} \delta(\mu).$$

For example, Let $\mathcal{P}_0(Y) \subset \mathcal{P}(Y)$ be a subset of all $\mu \in \mathcal{P}(Y)$ of the form $\mu =$ $\sum_{i=1}^{m} \frac{1}{m} \operatorname{Dirac}_{p_i}$. Then, it is obvious that $\mathcal{P}_0(Y)$ is dense in $\mathcal{P}(Y)$ with respect to d^W . So we have

$$\delta(Y) = \sup_{\mu \in \mathcal{P}_0(Y)} \delta(\mu).$$

Continuity with respect to d_{HW} 3.

To establish the continuity of δ on $\mathcal{P}(Y)$ we define another distance d_{HW} on $\mathcal{P}(Y)$ by declaring

$$d_{HW}(\mu,\nu) = \max\left\{d^{W}(\mu,\nu), \ d_{H}(\operatorname{supp}\mu,\operatorname{supp}\nu)\right\}$$

for any $\mu, \nu \in \mathcal{P}(Y)$. Here, d_H denotes the Hausdorff distance. Recall that the Hausdorff distance between closed subsets A and B of Y is defined by

$$d_H(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(b,A)\right\}.$$

The distance d_{HW} makes $\mathcal{P}(Y)$ a metric space, and induces a topology which is stronger than the one induced by d^W . Then with respect to this topology, we can

also prove the upper-semicontinuity of δ by the argument similar to that in the proof of Theorem 1.2.

Theorem 3.1. Let (Y, d) be a complete CAT(0) space. Then $\delta : \mathcal{P}(Y) \to [0, 1]$ is a continuous function on $(\mathcal{P}(Y), d_{HW})$.

Proof. The lower-semicontinuity follows from Theorem 1.2. We prove the uppersemicontinuity. We proceed as in the previous section. Let $\nu = \sum_{j=1}^{n} s_j \text{Dirac}_{q_j}$ be an arbitrary measure in $\mathcal{P}(Y)$, and let

$$\mu^{(N)} = \sum_{i=1}^{m^{(N)}} t_i^{(N)} \text{Dirac}_{p_i^{(N)}}, \quad N = 1, 2, 3, \dots$$

be an arbitrary sequence of measures in $\mathcal{P}(Y)$ which converges to ν in $(\mathcal{P}(Y), d_{HW})$. Then, for any $\eta > 0$, we can find a positive real number N'_{η} such that $N \geq N'_{\eta}$ implies

$$d_{HW}(\mu^{(N)},\nu) < \eta^2, \quad d(\overline{\mu^{(N)}},\overline{\nu}) < \eta.$$
 (3.1)

Now, what we have to show is that for any sufficiently small $\eta > 0$, any natural number $N \geq N'_{\eta}$ and any $\varphi \in \Phi(\nu)$ there exists $\tilde{\varphi}_{\eta} \in \Phi(\mu^{(N)})$ such that

$$D^{\mu^{(N)}}(\tilde{\varphi}_{\eta}) \le D^{\nu}(\varphi) + G(\eta), \qquad (3.2)$$

where G is some function converging to 0 when $\eta \to 0$.

As in the previous section, assume that η is an arbitrary positive real number such that

$$\eta < \min\left\{\frac{1}{2}d(q_j, q_{j'}) \mid j, j' \in J, \ j \neq j'\right\},$$

$$\eta^2 < \min\left\{s_j \mid j \in J\right\}.$$

And let N be an arbitrary integer such that $N \geq N_{\eta}$ and let $\varphi \in \Phi(\nu)$. Let $I_0^{(N)}, \ldots, I_n^{(N)}$ be as in the previous section. Then the following four assertions hold:

- $I^{(N)} = I_0^{(N)} \cup I_1^{(N)} \cup \dots \cup I_n^{(N)};$ If $j \neq j'$ then $I_j^{(N)} \cap I_{j'}^{(N)} = \phi;$
- For every $j \in J$, $I_j^{(N)} \neq \phi$;
- $I_0^{(N)} = \phi$.

The first three are shown by the same argument as in the previous section, and the last one follows immediately from the fact that $d_H(\operatorname{supp}\mu^{(N)}, \operatorname{supp}\nu) < \eta$.

Now, we will construct $\tilde{\varphi}_{\eta} \in \Phi(\mu^{(N)})$ in (3.2) in two steps. As the first step, we construct a vector $C_i \in \mathcal{H}$ for each $i \in I^{(N)}$ as follows: For $i \in I_j^{(N)}$, let

$$C_i = \frac{d(\overline{\mu^{(N)}}, p_i^{(N)})}{d(\overline{\nu}, q_j)} \varphi(q_j)$$

-94 -

if $q_j \neq \overline{\nu}$, and let C_i be an arbitrary vector of length $d(\overline{\mu^{(N)}}, p_i^{(N)})$ if $q_j = \overline{\nu}$. Then the second inequality of (3.1) and the assumption on η imply

$$\begin{aligned} \|\varphi(q_j) - C_i\| &= |d(\overline{\mu^{(N)}}, p_i^{(N)}) - d(\overline{\nu}, q_j)| \\ &\leq d(\overline{\mu^{(N)}}, \overline{\nu}) + d(p_i^{(N)}, q_j) < 2\eta. \end{aligned}$$

Hence for any $i \in I_j^{(N)}$ and $i' \in I_{j'}^{(N)}$, if $j \neq j'$, we have

$$\begin{aligned} \|C_i - C_{i'}\| &\leq \|C_i - \varphi(q_j)\| + \|\varphi(q_j) - \varphi(q_{j'})\| + \|\varphi(q_{j'}) - C_{i'}\| \\ &\leq 4\eta + d(q_j, p_i^{(N)}) + d(p_i^{(N)}, p_{i'}^{(N)}) + d(p_{i'}^{(N)}, q_{j'}) \\ &\leq 6\eta + d(p_i^{(N)}, p_{i'}^{(N)}). \end{aligned}$$

Thus, with the fact that $d_H(\operatorname{supp}\mu^{(N)}, \operatorname{supp}\nu) < \eta$ we have

$$||C_i - C_{i'}||^2 \le d(p_i^{(N)}, p_{i'}^{(N)})^2 + g(\eta),$$
(3.3)

where $g(\eta)$ is some function converging to 0 when $\eta \to 0$. And in the case j = j', we have

$$||C_i - C_{i'}|| = |d(\overline{\mu^{(N)}}, p_i^{(N)}) - d(\overline{\mu^{(N)}}, p_{i'}^{(N)})|$$

$$\leq d(p_i^{(N)}, p_{i'}^{(N)}).$$

Let us proceed to the second step. First, we set up one notation. We define a subset $T^{(N)} \subset \operatorname{supp} \mu^{(N)} \times \operatorname{supp} \mu^{(N)}$ by declaring $(p_i^{(N)}, p_{i'}^{(N)}) \in T^{(N)}$ if and only if $i \in I_j^{(N)}$ and $i' \in I_{j'}^{(N)}$ for some j, j' such that $(q_j, q_{j'}) \in S_{\nu}$. And let

$$L'_{(N)} = \min \left\{ d(p_i^{(N)}, p_{i'}^{(N)})^2 - \left(d(p_i^{(N)}, \overline{\mu^{(N)}}) - d(p_{i'}^{(N)}, \overline{\mu^{(N)}}) \right)^2 \right|$$
$$(p_i^{(N)}, p_{i'}^{(N)}) \in T^{(N)} \right\}.$$

Then observe that for all sufficiently small $\eta > 0$ we have

$$L'_{(N)} \ge \frac{L_{\nu}}{2}.$$
 (3.4)

This follows from the fact that for any $(p_i^{(N)}, p_{i'}^{(N)}) \in T^{(N)}$, there is $(q_j, q_{j'}) \in S_{\nu}$ such that

$$d(p_i^{(N)}, q_j) < \eta, \quad d(p_{i'}^{(N)}, q_{j'}) < \eta, \quad d(\overline{\mu^{(N)}}, \overline{\nu}) < \eta.$$

Now we assume that $\eta > 0$ is sufficiently small so that (3.4) holds.

Let $E \in \mathcal{H}$ be a unit vector orthogonal to the subspace spanned by $C_1, \ldots, C_{m^{(N)}}$. For $0 < \theta < \frac{\pi}{2}$, we define

$$C_i^{\theta} = \sin \theta \cdot \|C_i\| E + \cos \theta \cdot C_i$$

for any $i \in I^{(N)}$. Then for any $0 < \theta < \frac{\pi}{2}$ and $i \in I^{(N)}$,

$$||C_i^{\theta}|| = ||C_i|| = d(\overline{\mu^{(N)}}, p_i^{(N)}),$$

-95 -

and for any $i, i' \in I^{(N)}$,

$$\|C_i - C_{i'}\|^2 - \|C_i^{\theta} - C_{i'}^{\theta}\|^2 = \sin^2 \theta \{\|C_i - C_{i'}\|^2 - (\|C_i\| - \|C_{i'}\|)^2\}.$$
 (3.5)

Assuming that $\eta > 0$ is taken to be small enough if necessary, we set

$$\vartheta_{\eta} = \sin^{-1} \sqrt{\frac{2g(\eta)}{L_{\nu}}},$$

and define a map $\tilde{\varphi_{\eta}} : \mathrm{supp}\mu^{(N)} \to \mathcal{H}$ by

$$\tilde{\varphi}_{\eta}(p_i^{(N)}) = C_i^{\vartheta_{\eta}}, \quad i \in I^{(N)}.$$

We want to confirm $\tilde{\varphi_{\eta}} \in \Phi(\mu^{(N)})$. The condition (1.1) is obvious, so we examine the condition (1.2) by considering three cases separately.

CASE I: $(p_i^{(N)}, p_{i'}^{(N)}) \notin T^{(N)}$. In this case, C_i and $C_{i'}$ must be parallel vectors, so we have

$$\begin{aligned} \|C_i^{\vartheta_{\eta}} - C_{i'}^{\vartheta_{\eta}}\| &= \|C_i - C_{i'}\| = |\|C_i\| - \|C_{i'}\|| \\ &= \left| d(p_i^{(N)}, \overline{\mu^{(N)}}) - d(p_{i'}^{(N)}, \overline{\mu^{(N)}}) \right| \le d(p_i^{(N)}, p_{i'}^{(N)}). \end{aligned}$$

CASE II: $(p_i^{(N)}, p_{i'}^{(N)}) \in T^{(N)}$ and $||C_i - C_{i'}||^2 - (||C_i|| - ||C_{i'}||)^2 < L'_{(N)}$. In this case, we have

$$\begin{aligned} \|C_i^{\vartheta_\eta} - C_{i'}^{\vartheta_\eta}\|^2 &\leq \|C_i - C_{i'}\|^2 \\ &< L'_{(N)} + (d(p_i^{(N)}, \overline{\mu^{(N)}}) - d(p_{i'}^{(N)}, \overline{\mu^{(N)}}))^2 \leq d(p_i^{(N)}, p_{i'}^{(N)})^2. \end{aligned}$$

CASE III: $(p_i^{(N)}, p_{i'}^{(N)}) \in T^{(N)}$ and $||C_i - C_{i'}||^2 - (||C_i|| - ||C_{i'}||)^2 \ge L'_{(N)}$. In this case, by (3.3), (3.4), (3.5) and the definition of ϑ_{η} , we have

$$\|C_i^{\vartheta_{\eta}} - C_{i'}^{\vartheta_{\eta}}\|^2 \le d(p_i^{(N)}, p_{i'}^{(N)})^2.$$

Hence $\tilde{\varphi}_{\eta} \in \Phi(\mu^{(N)})$.

Let

$$G(\eta) = D^{(\mu^{(N)})}(\varphi) - D^{\nu}(\tilde{\varphi}_{\eta})$$

= $\frac{\|\sum_{j=0}^{n} \sum_{i \in I_{j}^{(N)}} t_{i}^{(N)} \varphi(p_{i}^{(N)})\|^{2}}{\sum_{j=0}^{n} \sum_{i \in I_{j}^{(N)}} t_{i}^{(N)} \|\varphi(p_{i}^{(N)})\|^{2}} - \frac{\|\sum_{j \in J} s_{j} C_{j}^{\vartheta_{\eta}}\|^{2}}{\sum_{j \in J} s_{j} \|C_{j}^{\vartheta_{\eta}}\|^{2}}.$

It is sufficient to show that $G(\eta)$ tends to 0 when $\eta \to 0$. It is quite obvious that this follows from the same argument by which we show that $F(\eta)$ tends to 0 in the previous section, so our proof is completed.

Acknowledgements. I would like to thank Professor S. Nayatani and Dr. T. Kondo for many helpful discussions.

References

- H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geom. Dedicata, 114 (2005), 147–188.
- [2] P. Pansu, Superrigidité geometrique et applications harmoniques, Séminaires et congrès, 18, 375–422, Soc. Math. France, Paris (2008).
- [3] H. Izeki, T. Kondo, S. Nayatani, Fixed-Point Property of Random Groups, Ann. Global Anal. Geom., 35 (2009), 363–379.
- [4] T. Kondo, Fixed-point property for CAT(0) spaces, preprint.
- [5] M. R. Bridson and A Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, Heidelberg, 1999.
- [6] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357–390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.
- [7] T. Toyoda, CAT(0) spaces on which a certain type of singularity is bounded, to appear in Kodai Math. J.
- [8] C. Villani, *Optimal transport, old and new*, Grundlehren der mathematischen Wissenshaften 338, Springer, 2009.

(Tetsu Toyoda) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464– 8602, Japan *E-mail address*: tetsu.toyoda@math.nagoya-u.ac.jp

Received January 12, 2009 Revised June 3, 2009