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§4. REGULAR RINGS

We let A be a noetherian local ring, ftt- its maximal ideal,

k = A/nt. We denote by sjt(
1ft/-., 2) the symmetric algebra of the

k- vector space 1ft /̂ . 2. If rank̂ flt/' 2) = r one trivially has

S, (4tty/ 2) ~ k[T.,, ...,T ] = where T.., . ..,T are indeterminates

over k.

We proceed to define a homomorphism

as follows :

Let XT 3 . . . ,x be a k-basis of ftt-A.. 2, and let x., * . . . *x e ttt be± r vii, J- r
their representatives. By Nakayama's Lemma (see the remark on

page 35) xi*---*x
r *"°™s &

 se"t of generators of Ift.. Hence -ffc,1

is generated by elements of the form x^* . . . xr
rwith

— ̂ 1 — otral +"-+ a
r ^

 i>e is Defined by 0(x.. . . . x ) «= the class of
al ar i+1xl * * " xr moc^ ̂ ^ " Trivially 0 is a homogeneous

homomorphism of degree 0, and an epimorphism.

Theorem 4.1. Let A be a noetherian local ring of

dimension n, -fft, its maximal ideal k = A/ffU The following four

conditions are equivalent.

a) 0:Sk(4ft/f1t2) -^gr^A) is bijective

b) rankfc(fftX̂ 2) = n

c) fltr is generated by n elements

d) There exists an A- regular system which generates #l>.
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Proof; b) ==> c) follows from the remark above that every

k-basis of UtA-, 2 lifts back ( in fft) to a set of generators of
MU

fjf, (by Nakayama's Lemma). Conversely, any set of generators of
P

fit gives rise (mod 1ft ) to a set of generators of -ftt/̂ 2 over

k, whence rankk(fft/̂ 2) = n. But, by proposition 2.5,

n, whence c) => b). We have proved

a) => d). Let z,,...,? e iH/f̂ S be a basis of
-a — al — arover k. We use the symbol z for z-, . . . z , and

|a| = a-^ +...+ ar- Let z1, ...,z e fft- be representatives of

ẑ , ...,'z"r. We already know that z.̂  ...,z generate tit

(Nakayama's Lemma), and shall show that they form an A- regular

sequence. We begin by asserting that, obviously,

6( Z ca z
0) = Z ca z

a (mod mj+1)

|a|=j |a|=j

where c"a e k = A/ftt, ca e A, their representatives. Hence,

since 6 is injective, the relation 2 c za e m,^ , c € A

|a|=J

implies 0( 2 c"a 1°) = 0, whence CQ efW,.

|a|=j

Assume now that zi*«-«* z
r ^°

 no-t form an A- regular sequence.

Then, for some j, 1 = j = r, there exists an x e A,

x fc A Z-L +...+ A z and xz . e A z-̂ ^ +...+ A z.̂ . That, is we

have an equation of the form

Since 0 is surjective, we have, for some t,
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xz.= 2 C
n
z4za (mod. mt+2)

J i i ^* d

a -t

where at least one c for an a with a, = a0 =...= a. .. = 0 is
C t I t J — X

such that c t"77Z- However, in the expression ofa

as za (mod. 77L*2)> a11 tne

coefficients dQ such that da t 771 correspond to multiindices a

for which a^, a2*'-'*ai_i are not a11 °* We tnus reacn a

contradiction.

d) =^ c). Let z1, ...,z be an A- regular sequence which

forms a set of generators of m. Then, by proposition 2.5*

r =

and by the definition of depth (A) and theorem 3.1

n = depth (A) - r.

Hence r = rankk(
- /̂L-2) = n, and c) follows:

c) =s^a). We proceed by contradition, i.e. we assume

ker 9 =(= 0. For brevity fs sake we write S =

G = gr (A). We have the exact sequence

» S ̂  G -» 0



60

with £( 4= 0. Since Q is homogeneous, 3 is a homogeneous ideal

in S, and 0Q = $ ̂  = 0, since SQ = GQ = k,
 si = Gi = ̂ /fft2'

Let h be the smallest positive integer such that t/h 4
s 0. Let

u € <J,, u 4= 0. Then clearly, S being an integral domain,

~* u^s-h* s ̂  n (a "* ua) an(^ u^ _u C <JQ. Hence, (since

) = n, by c) => b)),

lengthk(0s) = lengthk(Sg_h)

The exact sequence

shows lengthk(Gg) = lengthk(Sg) - lengthk(^7g) =

n ^ ^ (B

and (s +n̂ 1""
 1) - C3"̂ !11"1) is a polynomial in s of degree at

most (n - 2) .

From the exact sequence

0 -> G -» A/1t̂ s+l -> AA^ s -> 0

we have, with the notations of section 2,

length(Gg) - P̂ (A, s+1) - P̂ (A, s).

By theorem 2.3 and a well-known result of polynomial theory we

have

with c^ e Q (actually, since P_ (A, s) e 2t one easily sees that
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c± e Z), and cn 4= 0. Hence ?m(A, s+1) - P̂ A, s)

terms of lower degree. Hence length(Gg) is a polynomial of

degree n - 1 for s » 0. We have reached a contradiction and

a) is proved. If dim(A) = 0, 4H = (0) and the theorem is

trivial. The theorem is proved.

Definition 4.1. A local ring A is said to be regular if it

satisfies either a), b), c), or d) of theorem 4.1.

Corollary 4.1. Let A be a regular local ring. Then

i) A is an integral domain

ii) A is C-M

iii) A is integrally closed.

Proof; i) SfcÔ /wt2) is trivially an integral domain; by

a) of theorem 4.1 so is Sr,ff-(A). Hence A cannot have zero

divisors. (B.C.A., Ill, 2,3).

ii) In the proof of d) => c) in theorem 4.1 we showed

r = depth(A) = dim(A)

where r is the number of elements in an A-regular sequence which

generates -tit,. Hence depth(A) = dim(A) and A is C-M.

iii) Sk(ltt>/ 2) is trivially integrally closed B.C.A., V.,§1

Corollary 3. Hence so is ĝ . (A), and by proposition 15 of

B.C.A., V, §1, A is integrally closed.

We give some examples of regular local rings. It is clear

from c) of theorem 4.1 that if dim(A) = 0, then the regularity

of A implies that A is a field, and conversely.

If A is a regular local ring and dim(A) = 1, then A is a

discrete valuation ring. In fact, by theorem 4.1, fft, is
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principal, and we can apply proposition 9 of B.C.A., VI, §3.

Finally, any ring A of power series in n variables

T.., ...,T over a field is a regular local ring. This follows

from the fact that T-̂ , ...,Tn generate fft and form an A-regular

sequence.

We globalize the notion of-regular rings as follows:

Definition 4.2. A ring A is said to be regular if, for

every maximal ideal fit of A, the local ring A^ is regular.

We shall show later on that the polynomial ring in n

variables over a field k is a regular ring.

Definition 4.3* Let A be a regular local ring. A set of

generators of ntl which forms an A-regular sequence is said to be

a regular system of parameters of A.

Remark. Theorem 4.1 guarantees the existence of regular

systems of parameters in any regular local ring A.

We also observe that, due to linguistical shortcomings,

not every system of parameters of A which forms an A-regular

sequence is necessarily a regular system of parameters, (see

Definition 2.5) while every regular system of parameters is a

system of parameters and an A-regular sequence.

We investigate the properties of regularity under quotient

operations. We have

Proposition 4.1. Let A be a noetherian local ring,

x. € tft, i = 1, ...,r, 0 = x-^ A +. ..+ xr A. The following

three conditions are equivalent:

a) A is regular and {x.̂  ...,xr> is contained in a regular

system of parameters.

b) A is regular and the equivalence classes of x-^, ...,xr
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in 4!tA|| 2 are linearly independent

c) {x.., ...,x } is contained in a system of parameters,

and A/0 is regular.

Furthermore the above three conditions imply that 3 is

prime.

Proof: a) <==> b). By Nakayama's lemma and the proof of

theorem 4.1, any regular system of parameters gives rise to a

k-basis of Hfl/ft, 2 and conversely.

a) ==> c). Let ft = fit-A/£f, the maximal ideal of A/0.

Consider the exact sequence

o -» 0m,2 + 3 )/tft2 -» ̂ /ffc2 -* *%& 2 -» °

(since we have the exact sequence 0 -» 1ft, +cJ -» fit-» ̂ /j- 2 -» 0,

we have W^ +g } - 2̂).

Let n = dim(A). Now, by a) and proposition 2.7 we have

dim(A/3 ) = n - r, and by b) (which has been shown to follow

from a)) rank, ((W, +0 )/̂ 2) = r (since the equivalence
p «•*

classes of x^, ...,xr in (4ft, + j )/ *̂i»2 clearly generate it).

Hence rankk(ft/̂ , 2) = n - r = dim(A/0 ), and A/0 is regular.

Hence c) is proved, since it is already assumed in a) that

{x-̂  ...,xr} is contained in a system of parameters.

c) ==> a). Since A/0 is regular, by proposition 2.7

and theorem 4.1 applied to A/3 we have

n - r dim(A/0 ) = rank(n/f t2)

Since xi'""x
r generate((Ht +3)/fj t2) we have

rank((fit2 + Cf J/f.,2) < r. Hence rank(1ttA 2) < n. But
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rank(Ht/|||2) ,> n always, whence rank (fit/' 2) = n and A is

regular.

Trivially, if A/(J is regular, $ is a prime ideal, since

A/3 is an integral domain. The proposition is proved.

Corollary 4.2. Let A be a noetherian local ring, t e *ft.

Then the following conditions are. equivalent:

a) A is regular, t t 1H

b) A/tA is regular and t does not belong to any minimal

prime of A.

Proof ; Apply propositions 4.1 and 3.1.

By proposition 4.1, we have that, if A is regular, and 0

is generated by a subset of a regular system of parameters, then

A/3 is regular. We sharpen this result in the following

Proposition 4.2. Let A be a noetherian regular local ring,

£J an ideal of A. Then A/3 is regular if, and only if, £J is

generated by a subset of a regular system of parameters.

Proof ; The "if" part has been proved in proposition 4.1.

Assume now that A/0 is regular, and let n = dim(A), n - r =

dim(A/3 )• Again we consider the exact sequence

0 -* «L2 +3 /2 -» W/2 -» ^/2 -» 0

where fL is as in the proof of proposition 4.1. We know that

rank(fft>̂ 2) = n, and rank(ftA-2) = n - r. Hence

rank((-fft + u )/4*j2) = r. Let x-̂ , ...,xr be elements of 3
o

which are linearly independent mod ftL and whose equivalence

classes mod m,2 form a k-basis of ((Ht2 +U )/f«2)- B^

extending the set of such equivalence classes to a k-basis of
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flt/^ 2, and using theorem 4.1 we see that {x1,...,xvi} isTIL -1- r

contained in a regular system of parameters. Let

£j ' = x1 A +...+ x A. Clearly 0
1 C 0 . By proposition 4.1

01 is a prime ideal and dim(A/£J f) = n - r. But 0 is also a

prime ideal (since A/3 is regular) and we have

dim(A/3 ) = dJLm(A/0f). The exact sequence

0 _> 3/ 3 • -» A/0 ' -» A/3 -» 0

shows that 3 = £J! (otherwise 0 -A/0 f is a non zero prime

ideal of A/0' and dim(A/0») > dim(A/0)).

We now wish to show that, in the classical case, the

notion of regularity we have given is equivalent to the classical

one given in terms of the rank of a certain Jacobian.

We let B = (ID̂ , ...,Yn], ̂ t C B an ideal, itlD^L a

maximal ideal, A = B/0£ . Then itt is generated by n linear

polynomials of the form X^ - a^, i = 1, ...,n. Let 4U be

generated by the polynomials

\ ' ~ !,•••, t.

Let dim A^-./ = n - r. We assert:

Proposition 4.3. Atft/ is regular if, and only if, the
psp

rank of the matrix (̂ Mai* • • ->an))
 is r'

Proof ; We have A^ s Bflt/<aB%' By Pr°P°sition 4.2

it follows that A^/ is regular, if, and only if, dfcB^ is



66

generated by r elements, which can be imbedded in a R^- regular

system of parameters (since IL., can be seen to be regular,

ÊjfL being generated by {X-̂  - ai*---*x
n -

 a
n} ) • Furthermore

we may assume that such r elements are actually in B, say

Q-̂ .-'.jQ.p. Since both sets {Q1, . ..,Qr} and {P̂ } A = 1, ...,t gen-

erate ̂B-_ one easily sees that the ranks of the two matrices
77Z»

((|fi(cv->an)))' ((||M<V •"%))) are equal.
J J

Now, if EsEL- -» B^ is any derivation, then clearly
o

D(-fft ) Cut- Hence if <p denotes the composition

B1lt ^ Bm "" Bm/mBifc = *

o
we have q>(lH, ) - 0, and hence cp defines a U- linear form

cp : ̂ /^ 2 -> <C

If q>. = - , Q(X1,...,X ) e tft , then one immediately sees3 dX, -1 n

that $.(Q) = — (a.,..., a ). Also it is clearj 1 n that

.?} j - 1, ...,n is a set of n linearly independent forms over

2. Since the equivalence classes of Q-,,...,CL in tf̂ Â  2T. -wj_ -«r /jjg,

are linearly independent, it follows that rank ((cp-(CL))) = r,

whence rank ((̂ (̂ai> • •-^an))) ~
 r-

j

Conversely, if rank ((—̂ (a.̂ ,.. .,an))) = r, then r of theax..
P, fs are linearly independent mod fit, , and by theorem 4.1

(since B^ is regular of dimension n), they are a subset of a
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2

flt + ?fl /f«*2. Hence, by Nakayama's lemma, they generate <fc IL
•*&• 771.

and we are done.

Classically, a point (o^, ...,an) e (En, belonging to the

algebraic set defined by the ideal €& is called simple if the

matrix (( — A(a, , . . . ,a n ) ) ) has rank equal to n-dim(A f | f t / ).
-1 n m/.

J

Thus we have that a point is simple if, and only if, its local

ring is regular.

We recall briefly the definition of a parametric

representation of a variety, again in the classical case.

Let -01 C 00̂ , ...,Xn] be an ideal, and let V be the subset

of (Cn consisting of the common zeros of 4t . We say that V

admits the parametric representation by polynomials

(*)

if the homomorphism cp̂ [X.,, . . . ,Xn] -» (CfT.̂  . . .,T ] defined by

cp(X±) = PiC^---^)
 has kernel <3t . Using the Hilbert

Nullstellensatz one easily sees that this means that exactly all

points of V are obtained by substituting some appropriate

values for T^ ...,T in (*). Let now Ht C [̂X-ĵ , . . .,Xn] be a

maximal ideal with -fit D^t, and let dimfA^/ ) = n - r, where

A = (EfX-L, ...,Xn]/0t - Let (ĉ , . . . ,an) be the point of V

corresponding to-ft^, and let <0t be generated by {Q} 1 = A = t.

Let (t-L,...,̂ ) e if1 such that P±(tr . . .,tm) = a±. If the

matrix ((— i(t-j_, . . ., tm)) ) has rank n - r, then the
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homomorphism

e. . .8

n n m ;vp
given by 0( Z c, dX, ) = Z c, Z °ll (t-, , . . . ,0 dT. has

1-1 1 x i=l 1 j=ldTj -1 m J

image of dimension n - r and kernel generated by

2 2S^ (a.̂  . ,.,an) dX^. Hence rank (-^ (ô , . . •^n)) - r, and
i=l dX. SX.

{a,,..., a } is a regular point of V. The example

where n = 3, r = 2, easily show (take X = Y=Z = T=0) that

the converse of the above statement is false. (In fact here V

is the line X = Y = Z, and proposition 4.1 shows that the

origin is a simple point on such line, while rank ((0,0,0))= 0).

Remark. The concept of regularity enables us to solve the

problem of distinguishing the local ring of the three examples

given in the introduction. In fact, while the third local ring

is regular, the first two are not (apply Proposition 4.3).

We introduce one last numerical notion to be attached to a

local ring.

Definition 4.4. Let A be a ring, M an A-module. A

projective resolution of M of length n is an exact sequence

0 -» L -» L , ->. . .-» 1^ -> LQ -» M -» 0
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where 1^ is a projective A-module, i = 0,...,n.

Definition 4.5. Let M be an A-module. Then the projective

dimension of M, dim. proj. (M) is defined as the infimum of the

lengths of all projective resolutions of M. The cohomological

dimension of A, coh. dim(A), is defined as the supremum of the

projective dimensions of all A-modules.

We state, without proof, two of the fundamental theorems

concerning the notion of coh. dim(A). The proofs involve tools

whose introduction would take us far afield, and of which we

shall have no need in the remaining part of this work.

Theorem 4.2. (Hilbert-Serre) Let A be a noetherian local

ring. Then one (and only one) of the following two alternatives

hold

1) coh. dim(A) = «°

2) A is regular and coh. dim(A) = dim(A)

Corollary 4.3. If A is a noetherian regular local ring,

and to e Spec (A), then A^ is regular.

Proof; The homomorphism A -> A^ shows that every A ̂ -module

is an A-module. Now, for noetherian local rings the notions of

projective and flat modules are equivalent. Since Ap is A-flat,

if L is Ap-flat and

0 _>M -» N

is an exact sequence of A-modules, we have

O-»A£ (gi^M-^Ajjig^Nis exact

and
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0 -» L ® A (Ah ® AM) -> L ® A (Aw (8) AN) is exact
Ap ff A Ap /•* A

or

0 -» L ® AM -> L ® AN is exact,

and L is A-flat. Hence every protective resolution of an

A £ -module M Is a project ive resolution of the A-module M, and we

obtain the following inequality

coh dim(Ajj ) < coh dim(A)

from which the corollary follows immediately via Theorem 4.2.

Theorem 4.3. (Auslander-Buchsbaum) Every noetherian

regular local ring is a unique factorization domain.

For the proofs of Theorems 4.2 and 4.3 we refer the reader

to A. Grothendieck's "Elements de Geometrie Algebrique",

Chapter 0™ (The portion of Chapter 0 preceding Chapter IV),

section 17-3, and Chapter IV, section 21.11.

The problem of classifying all regular local rings is at

the moment unsolved, and probably unsolvable as stated. In

fact, if X, Y, are two irreducible schemes and cp:X -> Y a

morphism such that, for some x € X, °xx~°m(x) Y
 and both are

regular, then, under certain appropriate finiteness conditions,

<p is birational. Hence to classify regular local rings requires

first a classification of birationally equivalent schemes, a

very tall order at the moment.

We complete this section with some results concerning the

two notions of depth and regularity.

We call a noetherian ring A normal if A is the direct

sum of integrally closed integral domains, and reduced if its
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Definition 4.6. Let A be a noetherian ring, k a non-

negative integer.

1) We say that A satisfies condition (Sfc) if, for every

p € Spec(A)

depth(A ) = minfk, dim(Ap )]

2) We say that A satisfies condition (R, ) if, for every

p e Spec(A)

dim Ap » k implies Ap is regular.

Corollary 4.4. a) SQ always holds:

b) A satisfies (Sfc) if, and only if, for every D € Spec(A),

depth Ap = k and, if dim(Ap ) - k, then A» is C-M.

Proof; a) is obvious. To prove b) we recall that

depth (A j^) < dim(Ajp). Therefore, if k < dim(Ap),

depth(Ap) = k is equivalent to the requirement of (Sfe), and

if k = dim(Ap), then depth(A^ ) = dim(Afa ) (i.e. Ap is C-M) is

again equivalent to the requirement of (S. ).

Proposition 4.4. (Si.) ̂ s equivalent to the following

condition: For every t € A and every A,-regular sequence

{x^, ...,xr}, r < k, the A^-module A^/x^A^. +...+ xrAt has no

immersed primes.

Proof; k = 1, whence r = 0. We will show that S-ĵ  is

equivalent to saying that A has no immersed primes. Let p be a

prime of A which is not minimal. Then dim(A p ) = 1, whence by

(S^) depth(Ap ) = 1.

Hence p k Ass(A) (if p is the annihilator of a € A,
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then -j t ° in A <p and pA p is the armihilator of it).

Conversely, if A has no immersed primes, let p € Spec(A).

If p e Ass (A), then p is minimal, hence

minfl, dim Ap ] = 0 and depth(A v, ) - 0. If p £ Ass A, then p

is not minimal and min[l, dim A^ ] = 1. If depth(Ap) = 0, then

by theorem 3-1* p A p e Ass(Ap) whence p e Ass (A), a contradic-

tion. Hence A satisfies (S^).

We proceed by induction on k. Let k > 1.

Let A satisfy (Sfc), and let {x-ĵ , .. .,xr>, r < k be an A,-

regular sequence. Let B = Â /x̂ Â .. Prom proposition 3.1 and

theorem 3.1 we see that B satisfies (Sk_-,) (since, for every

p £ Spec(At) with x-L e b , x-ĵ  is A^-regular) hence

B/x0 B +...+ x^ B = A./XTA. +...+ x^A, has no imbedded primes.£ r \j JL. u r u
Conversely, assume that for t e A, the A^-module Â ./XIÂ .+ . . ,+x̂ .̂

has no immersed primes, for every A,-regular sequence {x1,...,xv,}w J- r
with r < k.

By the induction assumption, A satisfies (Ŝ _̂ ). Let

p € Spec(A). We proceed in steps.

Case 1. dim(A vj) = r < k. Since A satisfies (S,_^) we have

depth(Ap) = min(k-l, r) = r

whence depth(A«) = min(k, dim(Ap)).

Case 2. dim(Afa) = r = k. Again, since A satisfies (Ŝ _-̂ )

we have depth(Ap) = min(k-l, r) = k - 1. Hence there exists a

sequence xi'--"xfc_i € P^p which is An-regular, and we may

assume x^ € to • Then xi'• • •'x^_i ^s an A^.-regular sequence for

some t t Jp • Therefore, by assumption

B£ = A./X..A. +...+ x,_.. A, has no immersed primes. Since
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dim(B B) = din^Ap/x-L A^ + ...+ Xj^ Ap) = dim(Aw,) - (k-l)^

and B, has no immersed primes, it follows that J} £ Ass(B. ).

Hence depth (B^ ) = 1. We then obtain

+ ...+ Ap) = depth(A^) - (k-1)

whence depth(Ap ) = k, and (Sk) is proved.

We are now in the position of obtaining two criterions for

A to be normal, and reduced respectively.

Proposition 4.5. A is reduced if, and only if, A satisfies

both (S^) and (RQ).

Proof ; We observe that clearly (RQ) is equivalent to say-

ing that, for all minimal primes p of A, (whence dim(A p ) = 0)

A p is a field.

Now assume that A is reduced. Then, if jp is a minimal

prime of A, PA = (0) (since 0 = O"0/, and Av? = 0 for

41 minimal

W k J3 and minimal), whence A p is a field and (RQ) follows.

To prove that A satisifes (S-, ) we proceed by contradiction. If

A does not satisfy (S-,) then, by proposition 4.4, there exists a

prime -^ e Ass(A) which is not minimal. Let jp.,, Po*"" V \

be the minimal primes of A. Then ̂  (H U # . , (since 41 is not

' 1=v '
minimal) whence there exists x e ̂ , x t U P-. Since

1 i=l L

x e &1 e Ass (A), x is a zero divisor in A. Let x. be the image

q>t
of x under A -> A ̂ j . i= 1, ...,k. We have xt = 0

for some non zero t. Then x^cp^(t) = 0. Since
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Then (by the definition of A p ) t e p ̂ , i = 1, . ,.,k. Since A

k
is reduced, Pi p = 0, whence t = 0 a contradiction.

i=l i

Assume, conversely, that A satisfies both (S,) and (R ).

Let p., , . . . , to be again the minimal prime ideals of A . We

k
wish to show that A is reduced, i.e. that H &. = 0. Assume

i=l x

k
that there exists a non zero z e O p. . By (R ), A ._ is a/ I oi=1

._p±

field, whence p^A ̂  = 0, i = 1, ...,k, whence cp.(z) = 0,

i = 1, ...,k. Therefore, for every i, there exists s^ t P^

such that s|«z = 0, i.e. ann(z) (E ̂ i, i = l,...,k, whence

k
ann(z) (t Up.. By (S.,), since A has no imbedded primes,

k
U p. = Up = the set of zero divisors of A. We have
i=l x peAss(A)

that, for a z += 0, there exists a non zero divisor of A which

annihilates z, clearly a contradiction, Q.E.D.

Proposition 4.6. (Serre) Let A be noetherian. Then A is

normal if, and only if, A satisfies both (Sp) and (R-,).

Proof ; We remark first of all that A satisfies both (Sp)

and (R-j) if, and only if, the following holds:

(*) Let p € Spec(A). If dim(Ap ) = 1, then Ap is

regular. If dim Ay, = 2, then depth(Ap ) - 2.

We leave the verification of our remark to the reader.

Now, if A is normal, so is A^ . Hence, if dim(Aj-) * 1,

then Ap is either a field (which is regular) or, by the
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discussion on page 38, a valuation ring, hence by proposition 9

in B.C.A., VI, §3, no. 6, A is a discrete valuation ring. Hence

A p is regular, and (R-,) is satisfied.

To prove that (Ŝ ) is satisfied we have to prove, in

addition to the above, that depth(Ap) = 2 when dim(Ajp) = 2.

This was proved during the proof of remark 3) after

definition 3-3-

Assume now that (*) above is satisfied. We remark first

of all that, trivially (R,) implies (Rk_ .), j = 0,...,k, and

also that (Ŝ ) implies (Sfc_.), j = 0,...,k. Hence, since (S2)

and (R.̂ ) hold, so do (S.,) and (RQ)j and A is reduced by

proposition 4.5-

Let { p.}. ... be the minimal primes of A. Note that I is

finite and that, since A is reduced H P. = (0). Let K. be
lei ' L x

field of fractions of A/V ., and let R = | j K. . Then the
/ 1 lei x

the
lei

canonical homomorphism A -» R is an injection. Identifying A with

its image, we see that we have to prove that A is integrally

closed in R, Let h e R be integral over A. Since R is the

total ring of fractions of A, h = f/s for some f, g e A, g is

not a zero divisor of A.

From an equation of integral dependence of h over A we get,

by multiplication by an appropriate power of g

(*) fn + Z a. fn"J gj = 0 a. e A
-? J J

Let p € Spec (A) be such that dim(A p) = 1

By (R-,) A p is regular, whence, by corollary 4.1, it is



integrally closed. Let fp , gp denote the images of f, g

under A -> A^ . Note that g^ is not a zero divisor in Ap ,

hence f p /gp belongs to the field of fractions of Ap . Fro

(*) above, first localizing at p and then dividing by gp we

see that fp /gp is integral over Ap, hence f p /gp e Â and

f p Ap C gpAp > whence (fA)̂  C (gA)p . Now, since g is not

a zero divisor of A, g is A- regular and, by proposition 4.4,

A/gA has no immersed primes containing gA. If ̂ 1* • • •> tyT

denote the minimal primes of A/gA, by the Hauptidealsatz we

have dim A QJ =1, and by the previous discussion

(fA) *. C (gA) & . Let (j, . :A -> A ̂  be the canonical
Vj 7 j J 7j

homomorphisms . Let gA = Pi Of . be a primary irredundant
J /J

decomposition of gA in A. Then { Of ̂ = Ass(A/̂ '.) and the <y .

are minimal in Ass(A/gA), j = 1, ...,r. Then, by proposition 5

of B.C. A., 4, §2, no. 3, we have <0f'. = nr^fgAU, i.e.
' J d ^y

gA=H M,J""
1[(gA)̂ J]. Clearly f A C H n j~ -1 [ (f A )̂ j]> whence,

J ' J

by (fA)̂  ̂  C (gA)̂ ^ fAC gA, i.e. h = f /g e A, Q.E.D.

<-

We end this section with a few examples from classical

Algebraic Geometry. Let A = fylX^, . . . ,Xn]/4£ be reduced

(whence (R ) and (S.,) hold). In this case the geometrical

interpretation of the fact that 1^ holds for A is that the local

ring of the generic point of any irreducible subvariety of

codimension 1 of Spec (A) is regular, hence a valuation ring. If

R-L does not hold, then there exists a prime p e Spec (A) such
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that dim(Ap ) = 1 and Ap is not regular. In this case V( p )

consists entirely of singular points, i.e. points whose local

rings are not regular. To see this let ̂  e V( JD ) and assume

Ay is regular. We have -Of D J0 , whence Ap - (-^<y)toA

If A^y is regular , it follows from corollary 4.3 that A ̂  is

regular, contrary to assumption. In particular, all closed

points tit of V( b ) must be singular, and the problem of

determining whether A satisfies (R̂ ) or not is reduced, via

proposition 4.3* to the examination of the rank of the Jacobian

of a set of generators of -0£.

We illustrate the above by studying the following example :

Let

VT^ =

be the parametric representation of a cone in five dimensional

affine space, i.e. we consider the inclusion

[, X3Y, X2Y2, XY3, Y4] -* 0[X, Y].

Let V denote such a cone. The ideal of V is the kernel <0t of

the homomorphlsm cpiUfT,!.,, . . ,,T] -» (U[X, Y] given by

It is a rewarding exercise for the reader to check that ^

is generated by (TQ T2 - T̂ ), (T]_ T3 - T2
2), (T2 T^ - T3

2), and

that V is a two-dimensional cone. The discussion after



proposition 4.3 tells us that the origin is the only possible

singular point of V. whence (R-̂  holds for

- <C[X4,X3Y,X2Y2,XY3,Y4] .

To see that (S2) also holds, we need only check that the

depth of the local ring of every closed point of V is 2. This

is clear for non singular points , since the local ring is then

regular, and it is also true at the origin, since X , Y e

(U[X4,X3Y,X2Y2,XY3,Y4] is a 0[X4,X3Y,X2Y2,XY3, Ŷ L, - regular
71V

sequence, where tru denotes the maximal ideal generated by

X* , X3Y, X2Y2 , XY3 , Y^ .

Consider now A = (JJfX̂  ,X3Y,XY3,Ŷ  ] C <E[X,Y] . Here Spec A

is a two dimensional cone in 4- dimensional space, and the

discussion after proposition 4.3 tells us that the origin is the

only possible singular point of Spec (A). Hence (R-,) holds for

A.

Now (X2Y2)2 = xV" shows that X2Y2 is integral over A.

However one easily checks X Y £ A, whence A is not integrally

closed, and (So) does not hold for A. Note that this implies

depth(A ) < 1, where %, denotes the maximal ideal of the origin

in Spec (A) .

Finally consider A = (C[X1|',X3Y,X3Y,XY3,Yij',Z] C C[X,Y,Z],

Here Spec (A) is a three dimensional variety in five dimensional

space, and, again by the discussion after proposition 4.3* (R-,)

holds for A.

If p € Spec(A) and dim(Ap ) = 2, then Spec(A/p )

s 1ft, denotes the maximal ideal of tha
Hence Ap is regular and depth (A p ) = 2.

where 1ft, denotes the maximal ideal of the point (0, 0, a),a
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If dim(Ap) = 3, and p + 77la> then Ap is again regular

and depth(Ap ) = 3. At -ffi we have dim(A^_ ) = 3, and
'a

h
depth(A^ ) > 2, since clearly Y , Z - a form an A^ -regular

sequence. Hence (S2) holds for A.

Actually depth (A^ ) = 2, which gives us an example of a
a

local integral domain which is not a C-M ring, whence A itself

is not a C-M ring.

That depth(A-^£ ) = 2 is proved as follows. One can take
a

n=0. Let A1 = C[X4 ,X3Y,XY3,Y4 ]. Then A/ZA -A 1. Let 7TZ» be the

maximal ideal of A1 corresponding to the origin of Spec(A1). We

know from above that depth(Af^f) < 1, and depth (A^ ) > 2.

Furthermore we have

and since Z is A^ -regular, 1 > depth(A'_I) = depth(A^ ) - 1,Î Q 77Z rr̂

whence depth (A_ ) < 2. We are done.
/7Z.Q

It is a rewarding exercise for the reader to check that the

kernel *** of the homomorphism 9:«[T,T,T,T] -» (C[X ,X3Y,XY3,Y ]

- defined by cp^) = X4, cp(T2) = X
3Y, cp(T3) = XY

3, cp(T̂ ) = Y4 is

generated by T^ T3 - T2
3, T2 T^

2 - T3
3, ^, T^3 - T^, and that

no two of the above three polynomials generate <&£.

§5. BEHAVIOR UNDER LOCAL HOMOMORPHISM

In this section we let A, B be local rings, unless other-

wise specified, with unique maximal ideals ffL > TL respectively.

We recall that a homomorphism cp:A -» B is called local if


