§4. REGULAR RINGS

We let A be a noetherian local ring, the its maximal ideal, $k=A / M L$. We denote by $S_{k}\left(m / m^{2}\right)$ the symmetric algebra of the k -vector space m / m^{2}. If rank $_{k}\left(m / m^{2}\right)=r$ one trivially has $S_{k}\left(\pi / M^{2}\right) \simeq k\left[T_{1}, \ldots, T_{r}\right]=$ where T_{1}, \ldots, T_{r} are indeterminates over k.

We proceed to define a homomorphism

$$
\theta: S_{k}\left(m / m^{2}\right) \rightarrow g r_{m}(A)=\underset{i=0}{\infty} m^{i} / m^{i+l}
$$

as follows:
Let $\bar{x}_{1}, \ldots, \bar{x}_{r}$ be a k-basis of M / M^{2}, and let $x_{1}, \ldots, x_{r} \in \mathbb{T}$ be their representatives. By Nakayama's Lemma (see the remark on page 35) $\mathrm{x}_{1}, \ldots, \mathrm{x}_{r}$ forms a set of generators of \boldsymbol{M}. Hence $\boldsymbol{m}^{\mathrm{i}}$ is generated by elements of the form $x_{1} \alpha_{1} \ldots x_{r}^{\alpha_{r}}{ }_{\text {with }}$ $\alpha_{1}+\ldots+\alpha_{r}=i . \theta$ is defined by $\theta\left(\bar{x}_{1}{ }^{\alpha_{l}} \ldots \bar{x}_{r}{ }^{\alpha_{r}}\right)=$ the class of $x_{1}{ }^{\alpha_{1}} \ldots x_{r}{ }^{\alpha_{r}} \bmod \mu^{i+1}$. Trivially θ is a homogeneous homomorphism of degree 0 , and an epimorphism.

Theorem 4.1. Let A be a noetherian local ring of dimension n , \mathbb{T} its maximal ideal $\mathrm{k}=\mathrm{A} / \mathcal{T}$. The following four conditions are equivalent.
a) $\theta: S_{k}\left(m / m^{2}\right) \rightarrow g r_{m}(A)$ is bijective
b) $\quad \operatorname{rank}_{k}(m / m 2)=n$
c) \mathbb{T} is generated by n elements
d) There exists an A-regular system which generates \mathbb{M}.

Proof: b) \Longrightarrow c) follows from the remark above that every k -basis of $\mathbb{M} / \mathcal{M}^{2}$ lifts back (in \mathbb{M}) to a set of generators of TH (by Nakayama's Lemma). Conversely, any set of generators of \mathbb{m} gives rise (mod m^{2}) to a set of generators of m / m^{2} over k , whence rank $_{k}\left(\mathrm{~m}_{\mathrm{m}} / \mathrm{m}^{2}\right) \leqq \mathrm{n}$. But, by proposition 2.5, $\operatorname{rank}_{k}\left(m / m^{2}\right) \geqq n$, whence $\left.c\right) \Longrightarrow b$). We have proved b) \Longleftrightarrow c).
a) \Longrightarrow d). Let $\bar{z}_{1}, \ldots, \bar{z}_{r} \in m / m^{2}$ be a basis of m / m^{2} over k. We use the symbol \bar{z}^{α} for $\bar{z}_{1}{ }^{\alpha} \ldots \bar{z}_{r}{ }^{\alpha}{ }_{r}$, and $|\alpha|=\alpha_{1}+\ldots+\alpha_{r}$. Let $z_{1}, \ldots, z_{r} \in \mathbb{H}$ be representatives of $\bar{z}_{1}, \ldots, \bar{z}_{r}$. We already know that z_{1}, \ldots, z_{r} generate \boldsymbol{m} (Nakayama's Lemma), and shall show that they form an A-regular sequence. We begin by asserting that, obviously,

$$
\theta\left(\sum_{|\alpha|=j}^{\Sigma} \bar{c}_{\alpha} \bar{z}^{\alpha}\right)=\sum_{|\alpha|=j}^{\Sigma} c_{\alpha} z^{\alpha}\left(\bmod m^{j+1}\right)
$$

where $\bar{c}_{\alpha} \in k=A / \not M, c_{\alpha} \in A$, their representatives. Hence, since θ is injective, the relation $\sum_{|\alpha|=j} c_{\alpha} z^{\alpha} \in m^{j+1}, c_{\alpha} \in A$ implies $\theta\left(\sum_{|\alpha|=j} \bar{c}_{\alpha} \bar{z}^{\alpha}\right)=0$, whence $c_{\alpha} \in \mathcal{H}$.

Assume now that z_{1}, \ldots, z_{r} do not form an A-regular sequence. Then, for some $j, l \leqq j \leqq r$, there exists an $x \in A$, $x \notin A z_{1}+\ldots+A z_{j-1}$ and $x z_{j} \in A z_{1}+\ldots+A z_{j-1}$. That, is we have an equation of the form

$$
x z_{j}=y_{1} z_{1}+\ldots+y_{j-1} z_{j-1} .
$$

Since θ is surjective, we have, for some t,

$$
x z_{j}=\sum_{|\alpha|=t} c_{\alpha} z_{j} z^{\alpha} \quad\left(\bmod \cdot m^{t+2}\right)
$$

where at least one c_{α} for an α with $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{j-1}=0$ is such that $c_{\alpha} \not \equiv \mathcal{Z}$. However, in the expression of $y_{1} z_{1}+\ldots+y_{j-1} z_{j-1}$ as $\sum_{|\alpha| \leqq_{t+1}} d_{\alpha} z^{\alpha}\left(\bmod \cdot 7^{t+2}\right)$, all the coefficients d_{α} such that $d_{\alpha} \vDash m$ correspond to multiindices α for which $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j-1}$ are not all 0 . We thus reach a contradiction.
d) $\Longrightarrow c$). Let z_{1}, \ldots, z_{r} be an A-regular sequence which forms a set of generators of M. Then, by proposition 2.5,

$$
\mathrm{r} \geqq \operatorname{rank}_{\mathrm{k}}(m / m 2) \geqq \mathrm{n}
$$

and by the definition of depth (A) and theorem 3.1

$$
\mathrm{n} \geqq \operatorname{depth}(\mathrm{~A}) \geqq \mathrm{r} .
$$

Hence $r=\operatorname{rank}_{k}\left(\mathbb{T} / T^{2}\right)=n$, and c) follows:
c) \Longrightarrow a). We proceed by contradition, i.e. we assume ker $\theta \neq 0$. For brevity's sake we write $S=S_{k}\left(\pi / m^{2}\right)$; $G=g r_{m}^{(A)}$. We have the exact sequence

$$
0 \rightarrow J \rightarrow S \xrightarrow{\theta} G \rightarrow 0
$$

with $\mathcal{J} \neq 0$. Since θ is homogeneous, \mathcal{J} is a homogeneous ideal in S, and $J_{0}=J_{1}=0$, since $S_{0}=G_{0}=k, S_{1}=G_{1}=m / m 2$. Let h be the smallest positive integer such that $\mathcal{J}_{h} \neq 0$. Let $u \in \mathcal{J}_{h}, u \neq 0$. Then clearly, s being an integral domain, $\mathrm{s}_{\mathrm{s}-\mathrm{h}} \stackrel{\sim}{\rightarrow} \mathrm{us}_{\mathrm{s}-\mathrm{h}}, \mathrm{s} \geqq \mathrm{h}\left(\mathrm{a} \rightarrow \mathrm{ua}\right.$) and $\mathrm{us}_{\mathrm{s}-\mathrm{h}} \subset \mathcal{J}_{\mathrm{s}}$. Hence, (since $\operatorname{rank}_{k}\left(m / m{ }^{2}\right)=n$, by $\left.\left.c\right) \Longrightarrow b\right)$),

$$
\operatorname{length}_{k}\left(\mathcal{J}_{s}\right) \geqq \operatorname{length}_{k}\left(S_{s-h}\right)=\binom{s-h+n-l}{n-1}
$$

The exact sequence

$$
0 \rightarrow J_{s} \rightarrow S_{s} \rightarrow G_{s} \rightarrow 0
$$

shows length ${ }_{k}\left(G_{S}\right)=\operatorname{length}_{k}\left(S_{S}\right)-\operatorname{length}_{k}\left(\mathcal{J}_{S}\right)=$

$$
=\binom{s+n-1}{n-1}-\operatorname{length}_{k}\left(\mathcal{J}_{s}\right) \leqq\left({ }_{n-1}+n^{n}\right)-\binom{s-h+n-1}{n-1}
$$

and $\binom{\mathrm{s}+\mathrm{n}-\mathrm{l}}{\mathrm{n}-1}-\left(\mathrm{s}-\mathrm{h}+\mathrm{n}-1_{\mathrm{n}-1}\right)$ is a polynomial in s of degree at most ($n-2$).

From the exact sequence

$$
0 \rightarrow G_{s} \rightarrow A / m^{s+l} \rightarrow A / m^{s} \rightarrow 0
$$

we have, with the notations of section 2 ,

$$
\text { length }\left(G_{s}\right)=P_{m}(A, s+l)-P_{m}(A, s)
$$

By theorem 2.3 and a well-known result of polynomial theory we have

$$
P_{m}(A, s)=c_{n}\binom{s+n}{n}+c_{n+1}\binom{s+n-1}{n-1}+\ldots c_{0}
$$

with $c_{i} \in Q$ (actually, since $P_{\mathbb{M}}(A, s) \in \mathbb{Z}$ one easily sees that
$\left.c_{i} \in Z\right)$, and $c_{n} \neq 0$. Hence $P_{M_{1}}(A, s+1)-P_{M_{1}}(A, s)=c_{n}\binom{s+n}{n-1}+$ terms of lower degree. Hence length $\left(G_{S}\right)$ is a polynomial of degree $\mathrm{n}-\mathrm{l}$ for $\mathrm{s} \gg 0$. We have reached a contradiction and a) is proved. If $\operatorname{dim}(A)=0, m=(0)$ and the theorem is trivial. The theorem is proved.

Definition 4.1. A local ring A is said to be regular if it satisfies either a), b), c), or d) of theorem 4.1.

Corollary 4.1. Let A be a regular local ring. Then
i) A is an integral domain
ii) A is $C-M$
iii) A is integrally closed.

Proof: i) $S_{k}\left(m / m^{2}\right)$ is trivially an integral domain; by a) of theorem 4.1 so is $g r_{m}(A)$. Hence A cannot have zero divisors. (B.C.A., III, 2,3).
ii) In the proof of $d) \Longrightarrow$ c) in theorem 4.1 we showed

$$
r \leqq \operatorname{depth}(A) \leqq \operatorname{dim}(A) \leqq \operatorname{rank}_{k}\left(m / m m^{2}\right) \leqq r
$$

where r is the number of elements in an A-regular sequence which generates $\mathbb{1}$. Hence $\operatorname{depth}(A)=\operatorname{dim}(A)$ and A is $C-M$.
iii) $S_{k}\left(\mathbb{T} / \mathbb{m}^{2}\right)$ is trivially integrally closed B.C.A., V., §l Corollary 3. Hence so is $\mathrm{gr}_{\boldsymbol{m}}(\mathrm{A})$, and by proposition 15 of B.C.A., V, §l, A is integrally closed.

We give some examples of regular local rings. It is clear from c) of theorem 4.1 that if $\operatorname{dim}(A)=0$, then the regularity of A implies that A is a field, and conversely.

If A is a regular local ring and $\operatorname{dim}(A)=1$, then A is a discrete valuation ring. In fact, by theorem 4.1, 17 is
principal, and we can apply proposition 9 of B.C.A., VI, §3.
Finally, any ring A of power series in n variables
$\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}$ over a field is a regular local ring. This follows from the fact that T_{1}, \ldots, T_{n} generate $T \mathbb{T}$ and form an A-regular sequence.

We globalize the notion of regular rings as follows:
Definition 4.2. A ring A is said to be regular if, for every maximal ideal $\mathbb{T H}^{\prime}$ of A, the local ring A_{M} is regular.

We shall show later on that the polynomial ring in n variables over a field k is a regular ring.

Definition 4.3. Let A be a regular local ring. A set of generators of \mathbb{M} which forms an A-regular sequence is said to be a regular system of parameters of A.

Remark. Theorem 4.1 guarantees the existence of regular systems of parameters in any regular local ring A.

We also observe that, due to linguistical shortcomings, not every system of parameters of A which forms an A-regular sequence is necessarily a regular system of parameters, (see Definition 2.5) while every regular system of parameters is a system of parameters and an A-regular sequence.

We investigate the properties of regularity under quotient operations. We have

Proposition 4.1. Let A be a noetherian local ring, $x_{i} \in \mathbb{H}, i=1, \ldots, r, J=x_{1} A+\ldots+x_{r} A$. The following three conditions are equivalent:
a) A is regular and $\left\{x_{1}, \ldots, x_{r}\right\}$ is contained in a regular system of parameters.
b) A is regular and the equivalence classes of x_{1}, \ldots, x_{r}
in M / m^{2} are linearly independent
c) $\left\{x_{1}, \ldots, x_{r}\right\}$ is contained in a system of parameters, and A / J is regular.

Furthermore the above three conditions imply that \mathcal{J} is prime.

Proof: a) \Longleftrightarrow b). By Nakayama's lemma and the proof of theorem 4.1, any regular system of parameters gives rise to a k -basis of $\mathrm{m} / \mathrm{m}^{2}$ and conversely.
a) \Longrightarrow c). Let $\pi=m \cdot A / \mathcal{J}$, the maximal ideal of A / \mathcal{J}. Consider the exact sequence

$$
0 \rightarrow\left(m^{2}+J\right) / m^{2} \rightarrow m / m^{2} \rightarrow n / n^{2} \rightarrow 0
$$

(since we have the exact sequence $0 \rightarrow m^{2}+J \rightarrow m \rightarrow n / n^{2} \rightarrow 0$, we have $\left.m /\left(m^{2}+J\right) \simeq n / n^{2}\right)$.

Let $n=\operatorname{dim}(A)$. Now, by a) and proposition 2.7 we have $\operatorname{dim}(A / J)=n-r$, and by b) (which has been shown to follow from a)) $\operatorname{rank}_{k}\left(\left(m^{2}+J\right) / m^{2}\right)=r$ (since the equivalence classes of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}$ in $\left(\mu^{2}+J\right) / \mu^{2}{ }^{2}$ clearly generate it). Hence $\operatorname{rank}_{\mathrm{k}}(\varkappa / \not / 2)=n-r=\operatorname{dim}(A / \mathcal{I})$, and A / J is regular. Hence c) is proved, since it is already assumed in a) that $\left\{x_{1}, \ldots, x_{r}\right\}$ is contained in a system of parameters.
c) \Longrightarrow a). Since A / J is regular, by proposition 2.7 and theorem 4.1 applied to A / J we have

$$
n-r=\operatorname{dim}(A / J)=\operatorname{rank}\left(\pi / \pi{ }^{2}\right)
$$

Since x_{1}, \ldots, x_{r} generate $\left(\left(m^{2}+J\right) / m^{2}\right)$ we have $\operatorname{rank}\left(\left(m^{2}+J\right) / m^{2}\right) \leq r$. Hence $\operatorname{rank}\left(m / m^{2}\right) \leq n$. But
$\operatorname{rank}\left(m / m^{2}\right) \geq n$ always, whence $\operatorname{rank}\left(m / m^{2}\right)=n$ and A is regular.

Trivially, if A / J is regular, \mathcal{J} is a prime ideal, since A/J is an integral domain. The proposition is proved.

Corollary 4.2. Let A be a noetherian local ring, $t \in \mathbb{m}$. Then the following conditions are equivalent:
a) A is regular, $t \equiv m^{2}$
b) $A / t A$ is regular and t does not belong to any minimal prime of A.

Proof: Apply propositions 4.1 and 3.1.
By proposition 4.1, we have that, if A is regular, and \mathcal{J} is generated by a subset of a regular system of parameters, then A/J is regular. We sharpen this result in the following

Proposition 4.2. Let A be a noetherian regular local ring, \mathcal{J} an ideal of A. Then A / \mathcal{J} is regular if, and only if, \mathcal{J} is generated by a subset of a regular system of parameters.

Proof: The "if" part has been proved in proposition 4.1. Assume now that A / J is regular, and let $n=\operatorname{dim}(A), n-r=$ $\operatorname{dim}(A / J)$. Again we consider the exact sequence

$$
0 \rightarrow\left(\left(m^{2}+J\right) / m^{2}\right) \rightarrow m / m^{2} \rightarrow \pi / n^{2} \rightarrow 0
$$

where \mathbb{M} is as in the proof of proposition 4.1. We know that $\operatorname{rank}\left(\boldsymbol{\mu} / \boldsymbol{m}^{2}\right)=n$, and $\operatorname{rank}\left(\boldsymbol{\pi} / \boldsymbol{n}^{2}\right)=n-r$. Hence $\operatorname{rank}\left(\left(m^{2}+\mathcal{J}\right) / m^{2}\right)=r$. Let x_{1}, \ldots, x_{r} be elements of J which are linearly independent $\bmod m^{2}$ and whose equivalence classes mod m^{2} form a k-basis of $\left(\left(m^{2}+J\right) / m^{2}\right)$. By extending the set of such equivalence classes to a k-basis of
m / m^{2}, and using theorem 4.1 we see that $\left\{x_{1}, \ldots, x_{r}\right\}$ is contained in a regular system of parameters. Let $\mathfrak{J}^{\prime}=\mathrm{x}_{1} \mathrm{~A}+\ldots+\mathrm{x}_{\mathrm{r}}$ A. Clearly $\boldsymbol{J}^{\prime} \subset \mathfrak{J}$. By proposition 4.1 \mathcal{J}^{\prime} is a prime ideal and $\operatorname{dim}\left(\mathrm{A} / \boldsymbol{J}^{\prime}\right)=\mathrm{n}-\mathrm{r} . \quad$ But \mathcal{J} is also a prime ideal (since A / J is regular) and we have $\operatorname{dim}(A / J)=\operatorname{dim}\left(A / \mathcal{I}^{\prime}\right)$. The exact sequence

$$
0 \rightarrow \text { I/ } / \text { I' }^{\prime} \rightarrow \mathrm{A} / \boldsymbol{J} \quad \text { ' } \rightarrow \mathrm{A} / \boldsymbol{J} \rightarrow 0
$$

shows that $\mathcal{J}=\boldsymbol{J} \prime$ (otherwise $\mathfrak{J} \cdot \mathrm{A} / \mathfrak{J}{ }^{\prime}$ is a non zero prime ideal of A / \mathcal{J}^{\prime} and $\left.\operatorname{dim}\left(A / \mathcal{J}^{\prime}\right)>\operatorname{dim}(A / \mathcal{I})\right)$.

We now wish to show that, in the classical case, the notion of regularity we have given is equivalent to the classical one given in terms of the rank of a certain Jacobian.
 maximal ideal, $A=B / o L$. Then $T H$ is generated by n linear polynomials of the form $X_{i}-\alpha_{i}, i=1, \ldots, n$. Let \mathbb{E} be generated by the polynomials

$$
P_{\lambda}, \lambda=1, \ldots, t
$$

Let $\operatorname{dim} A$ M/O $=n-r$. We assert:
Proposition 4.3. A $A_{m / O}$ is regular if, and only if, the rank of the matrix $\left(\frac{\partial P}{\partial X_{i}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ is r.

Proof: We have $A_{m / \Omega} \cong B_{m} / \boldsymbol{m} B_{m}$. By proposition 4.2 it follows that $A_{m / O L}$ is regular, if, and only if, $\mathscr{O L} B_{m}$ is
generated by r elements, which can be imbedded in a $\mathrm{B}_{\boldsymbol{m}}$-regular system of parameters (since B_{μ} can be seen to be regular, $m B_{m}$ being generated by $\left\{\mathrm{X}_{1}-\alpha_{1}, \ldots, \mathrm{X}_{n}-\alpha_{n}\right\}$). Furthermore we may assume that such r elements are actually in B, say Q_{1}, \ldots, Q_{r}. Since both sets $\left\{Q_{1}, \ldots, Q_{r}\right\}$ and $\left\{P_{\lambda}\right\} \lambda=1, \ldots, t$ generate ${ }^{\circ} \mathrm{B}_{\pi}$ one easily sees that the ranks of the two matrices $\left(\left(\frac{\partial Q_{i}}{\partial X_{j}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right),\left(\left(\frac{\partial P}{\partial X_{j}} \lambda_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right)$ are equal. Now, if $D: B_{T m} \rightarrow B_{m}$ is any derivation, then clearly $D\left(m^{2}\right) \subset m$. Hence if φ denotes the composition

$$
\mathrm{B}_{m} \rightarrow \mathrm{~B}_{m} \rightarrow \mathrm{~B}_{m} / m \mathrm{~B}_{m}=\boldsymbol{c}
$$

we have $\varphi\left(m^{2}\right)=0$, and hence φ defines a \mathbb{c}-linear form

$$
\tilde{\varphi}: m / m{ }^{2} \rightarrow \mathbb{C}
$$

If $\varphi_{j}=\frac{\partial}{\partial X_{j}}, Q\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{T}$, then one immediately sees
that $\tilde{\varphi}_{j}(Q)=\frac{\partial Q}{\partial x_{j}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Also it is clear that
$\left\{\tilde{\varphi}_{j}\right\} j=1, \ldots, n$ is a set of n linearly independent forms over $\mathrm{m} / \mathrm{m}^{2}$. Since the equivalence classes of $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{r}$ in $\mathrm{m} / \mathrm{m}^{2}$ are linearly independent, it follows that $\operatorname{rank}\left(\left(\tilde{\varphi}_{j}\left(Q_{i}\right)\right)\right)=r$, whence $\operatorname{rank}\left(\left(\frac{\partial P}{\partial X_{j}} \lambda_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right)=r$. Conversely, if $\operatorname{rank}\left(\left(\frac{\partial P}{\partial x_{j}} \lambda\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right)=r$, then r of the P_{λ} 's are linearly independent mod m^{2}, and by theorem 4.1 (since B_{m} is regular of dimension n), they are a subset of a
regular system of generators of $1 \mathbb{1}$. Furthermore they generate $\boldsymbol{q}+\boldsymbol{m}^{2} / m^{2}$. Hence, by Nakayama's lemma, they generate $\& B_{m}$ and we are done.

Classically, a point $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}$, belonging to the algebraic set defined by the ideal or is called simple if the $\operatorname{matrix}\left(\left(\frac{\partial P}{\partial \mathrm{X}} \lambda_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)\right.$) has rank equal to $n-\operatorname{dim}\left(A_{m / \ell l}\right)$.

Thus we have that a point is simple if, and only if, its local ring is regular.

We recall briefly the definition of a parametric representation of a variety, again in the classical case.
 of \mathbb{C}^{n} consisting of the common zeros of \mathscr{H}. We say that V admits the parametric representation by polynomials

$$
\text { (*) }\left\{\begin{array}{l}
x_{1}=P_{1}\left(T_{1}, \ldots, T_{m}\right) \\
\ldots \ldots . \ldots . T_{n}=P_{n}\left(T_{1}, \ldots, T_{m}\right)
\end{array}\right.
$$

if the homomorphism $\varphi: \mathbb{C}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right] \rightarrow \mathbb{C}\left[\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{m}}\right]$ defined by $\varphi\left(X_{i}\right)=P_{i}\left(T_{1}, \ldots, T_{m}\right)$ has kernel $O \mathbb{O}$. Using the Hilbert Nullstellensatz one easily sees that this means that exactly all points of V are obtained by substituting some appropriate values for T_{1}, \ldots, T_{m} in (*). Let now $\mathbb{T} \subset \mathbb{C}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]$ be a maximal ideal with $T H \mathcal{L}$, and let $\operatorname{dim}\left(A_{m} / \pi\right)=n-r$, where $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \boldsymbol{q}$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the point of V corresponding to \mathbb{M}, and let \mathscr{C} be generated by $\left\{Q_{\lambda}\right\} l \leqq \lambda \leqq t$. Let $\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{C}^{m}$ such that $P_{i}\left(t_{1}, \ldots, t_{m}\right)=\alpha_{i}$. If the $\operatorname{matrix}\left(\left(\frac{\partial P}{\partial T}_{\partial j}\left(t_{1}, \ldots, t_{m}\right)\right)\right)$ has rank $n-r$, then the
homomorphism

$$
\theta: \mathbb{C} \mathrm{dx}_{1} \oplus \ldots \oplus \mathbb{C d X}_{\mathrm{n}} \rightarrow \mathbb{C d T}_{1} \oplus \ldots \oplus \mathbb{C d T}_{\mathrm{m}}
$$

given by $\theta\left(\sum_{i=1}^{n} c_{i} d X_{i}\right)=\sum_{i=1}^{n} c_{i} \sum_{j=1}^{m} \partial P_{i}\left(T_{j}, \ldots, t_{m}\right) d T_{j}$ has image of dimension $n-r$ and kernel generated by $\sum_{i=1}^{n} \frac{\partial Q}{\partial X_{i}} \lambda\left(\alpha_{1}, \ldots, \alpha_{n}\right) d X_{i}$. Hence rank $\left(\frac{\partial Q}{\partial X_{i}} \lambda\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=r$, and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a regular point of V. The example

$$
\left\{\begin{array}{l}
X=T^{2} \\
Y=T^{2} \\
Z=T^{2}
\end{array}\right.
$$

where $\mathrm{n}=3, \mathrm{r}=2$, easily show (take $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{T}=0$) that the converse of the above statement is false. (In fact here V is the line $X=Y=Z$, and proposition 4.1 shows that the origin is a simple point on such line, while rank $((0,0,0))=0)$.

Remark. The concept of regularity enables us to solve the problem of distinguishing the local ring of the three examples given in the introduction. In fact, while the third local ring is regular, the first two are not (apply Proposition 4.3).

We introduce one last numerical notion to be attached to a local ring.

Definition 4.4. Let A be a ring, M an A-module. A projective resolution of M of length n is an exact sequence

$$
0 \rightarrow I_{n} \rightarrow I_{n-1} \rightarrow \ldots \rightarrow L_{1} \rightarrow L_{0} \rightarrow M \rightarrow 0
$$

where L_{i} is a projective A-module, $i=0, \ldots, n$.
Definition 4.5. Let M be an A-module. Then the projective dimension of M, dim. proj. (M) is defined as the infimum of the lengths of all projective resolutions of M. The cohomological dimension of A, coh. $\operatorname{dim}(A)$, is defined as the supremum of the projective dimensions of all A-modules.

We state, without proof, two of the fundamental theorems concerning the notion of coh. dim(A). The proofs involve tools whose introduction would take us far afield, and of which we shall have no need in the remaining part of this work.

Theorem 4.2. (Hilbert-Serre) Let A be a noetherian local ring. Then one (and only one) of the following two alternatives hold

1) $\operatorname{coh} \cdot \operatorname{dim}(A)=\infty$
2) A is regular and coh. $\operatorname{dim}(A)=\operatorname{dim}(A)$

Corollary 4.3. If A is a noetherian regular local ring, and $p \in \operatorname{Spec}(A)$, then A_{p} is regular.

Proof: The homomorphism $A \rightarrow A_{p}$ shows that every A_{p}-module is an A-module. Now, for noetherian local rings the notions of projective and flat modules are equivalent. Since Ap is A-flat, if L is A_{p}-flat and

$$
\mathrm{O} \rightarrow \mathrm{M} \rightarrow \mathrm{~N}
$$

is an exact sequence of A -modules, we have

$$
0 \rightarrow A p \otimes A^{M} \rightarrow A p \otimes A^{N} \text { is exact }
$$

and

70
or

$$
0 \rightarrow L \otimes{ }_{A_{P}}\left(A_{P} \otimes{ }_{A} M\right) \rightarrow L \otimes{ }_{A_{P}}\left({ }^{M} P \otimes_{A^{N}}\right) \quad \text { is exact }
$$

$$
0 \rightarrow L \otimes A_{A}^{M} \rightarrow L \otimes{ }_{A}{ }^{N} \quad \text { is exact, }
$$

and L is A-flat. Hence every projective resolution of an ${ }^{A} p^{-m o d u l e} M$ is a projective resolution of the A-module M, and we obtain the following inequality

$$
\operatorname{coh} \operatorname{dim}\left(A_{p}\right) \leq \operatorname{coh} \operatorname{dim}(A)
$$

from which the corollary follows immediately via Theorem 4.2.
Theorem 4.3. (Auslander-Buchsbaum) Every noetherian regular local ring is a unique factorization domain.

For the proofs of Theorems 4.2 and 4.3 we refer the reader to A. Grothendieck's "Elements de Geometrie Algebrique", Chapter $\mathrm{O}_{\text {IV }}$ (The portion of Chapter 0 preceding Chapter IV), section 17.3, and Chapter IV, section 21.11.

The problem of classifying all regular local rings is at the moment unsolved, and probably unsolvable as stated. In fact, if X, Y, are two irreducible schemes and $\varphi: X \rightarrow Y$ a morphism such that, for some $x \in X, O_{X, X} \simeq O_{\varphi(x)}, Y$ and both are regular, then, under certain appropriate finiteness conditions, φ is birational. Hence to classify regular local rings requires first a classification of birationally equivalent schemes, a very tall order at the moment.

We complete this section with some results concerning the two notions of depth and regularity.

We call a noetherian ring A normal if A is the direct sum of integrally closed integral domains, and reduced if its
nilradical is 0.
Definition 4.6. Let A be a noetherian ring, k a nonnegative integer.

1) We say that A satisfies condition $\left(S_{k}\right)$ if, for every $p \in \operatorname{Spec}(A)$

$$
\operatorname{depth}\left(A_{p}\right) \geqq \min \left[k, \operatorname{dim}\left(A_{p}\right)\right]
$$

2) We say that A satisfies condition $\left(R_{k}\right)$ if, for every $p \in \operatorname{Spec}(A)$

$$
\operatorname{dim} A_{p} \leqq k \text { implies } A_{p} \text { is regular. }
$$

Corollary 4.4. a) S_{o} always holds:
b) A satisfies $\left(S_{k}\right)$ if, and only if, for every $p \in \operatorname{Spec}(A)$, $\operatorname{depth} A p \geqq k$ and, if $\operatorname{dim}\left(A_{p}\right) \geqq k$, then $A p$ is $C-M$.

Proof: a) is obvious. To prove b) we recall that $\operatorname{depth}\left(A_{p}\right) \leq \operatorname{dim}\left(A_{p}\right)$. Therefore, if $k<\operatorname{dim}\left(A_{p}\right)$, $\operatorname{depth}\left(A_{p}\right) \geqq k$ is equivalent to the requirement of $\left(S_{k}\right)$, and if $k \geqq \operatorname{dim}\left(A_{p}\right)$, then $\operatorname{depth}\left(A_{p}\right)=\operatorname{dim}(A \rho)$ (i.e. Ap is $C-M$) is again equivalent to the requirement of $\left(S_{k}\right)$.

Proposition 4.4. $\left(S_{k}\right)$ is equivalent to the following condition: For every $t \in A$ and every $A_{t}-r e g u l a r$ sequence $\left\{x_{1}, \ldots, x_{r}\right\}, r<k$, the A_{t}-module $A_{t} / x_{1} A_{t}+\ldots+x_{r} A_{t}$ has no immersed primes.

Proof: $k=1$, whence $r=0$. We will show that S_{1} is equivalent to saying that A has no immersed primes. Let P be a prime of A which is not minimal. Then $\operatorname{dim}\left(A_{p}\right) \geqq 1$, whence by $\left(S_{1}\right) \operatorname{depth}\left(A_{p}\right) \geqq 1$.

Hence $P \notin \operatorname{Ass}(A)$ (if P is the anninilator of a $\in A$,
then $\frac{a}{I} \neq 0$ in $A p$ and $P A p$ is the annihilator of it). Conversely, if A has no immersed primes, let $P \in \operatorname{Spec}(A)$. If $P \in \operatorname{Ass}(A)$, then P is minimal, hence $\min \left[1, \operatorname{dim} A_{p}\right]=0$ and $\operatorname{depth}(A p) \geqq 0$. If $P \notin$ Ass A, then p is not minimal and $\min \left[1, \operatorname{dim} A_{p}\right]=1$. If $\operatorname{depth}\left(A_{p}\right)=0$, then by theorem 3.1, $p A p \in \operatorname{Ass}(A p)$ whence $\mathcal{P} \in \operatorname{Ass}(A)$, a contradiction. Hence A satisfies (S_{1}).

We proceed by induction on k. Let $k>1$.
Let A satisfy $\left(S_{k}\right)$, and let $\left\{x_{1}, \ldots, x_{r}\right\}, r<k$ be an $A_{t}{ }^{-}$ regular sequence. Let $B=A_{t} / x_{1} A_{t}$. From proposition 3.1 and theorem 3.1 we see that B satisfies $\left(S_{k-1}\right)$ (since, for every $P \in \operatorname{Spec}\left(A_{t}\right)$ with $x_{1} \in \mathcal{P}, x_{1}$ is $\left.A_{p}-r e g u l a r\right)$ hence $B / x_{2} B+\ldots+x_{r} B=A_{t} / x_{1} A_{t}+\ldots+x_{r} A_{t}$ has no imbedded primes. Conversely, assume that for $t \in A$, the A_{t} module $A_{t} / x_{1} A_{t}+\ldots+x_{r} A_{t}$ has no immersed primes, for every A_{t}-regular sequence $\left\{x_{1}, \ldots, x_{r}\right\}$ with $r<k$.

By the induction assumption, A satisfies ($\mathrm{S}_{\mathrm{k}-1}$). Let $P \in \operatorname{Spec}(A)$. We proceed in steps.

Case 1. $\operatorname{dim}(A p)=r<k$. Since A satisfies $\left(S_{k-1}\right)$ we have

$$
\operatorname{depth}(A p) \geqq \min (k-1, r)=r
$$

whence $\operatorname{depth}(A p) \geqq \min (k, \operatorname{dim}(A p))$.
Case 2. $\operatorname{dim}(A p)=r \geqq k$. Again, since A satisfies $\left(S_{k-1}\right)$ we have $\operatorname{depth}(A p) \geqq \min (k-1, r)=k-1$. Hence there exists a sequence $x_{1}, \ldots, x_{k-1} \in \rho A p$ which is Ap-regular, and we may assume $x_{i} \in p$. Then x_{1}, \ldots, x_{k-1} is an A_{t}-regular sequence for some $t \notin \mathcal{P}$. Therefore, by assumption $B_{t}=A_{t} / x_{1} A_{t}+\ldots+x_{k-1} A_{t}$ has no immersed primes. Since
$\operatorname{dim}\left(B_{p B}\right)=\operatorname{dim}\left(A_{p} / x_{1} A_{p}+\ldots+x_{k-1} A_{p}\right)=\operatorname{dim}\left(A_{p}\right)-(k-1) \geqq 1$,
and B_{t} has no immersed primes, it follows that $p \notin \operatorname{Ass}\left(B_{t}\right)$. Hence depth($\left.B_{p}\right) \geqq$. We then obtain

$$
1 \leqq \operatorname{depth}\left(A_{p} / x_{1} A_{p}+\ldots+x_{k-1} A_{p}\right)=\operatorname{depth}\left(A_{p}\right)-(k-1)
$$

whence $\operatorname{depth}\left(A_{p}\right) \geqq k$, and $\left(S_{k}\right)$ is proved.
We are now in the position of obtaining two criterion for A to be normal, and reduced respectively.

Proposition 4.5. A is reduced if, and only if, A satisfies both $\left(S_{1}\right)$ and (R_{0}).

Proof: We observe that clearly (R_{0}) is equivalent to saying that, for all minimal primes p of $A,($ whence $\operatorname{dim}(A \rho)=0)$ A p is a field.

Now assume that A is reduced. Then, if P is a minimal
 0 minimal
of $\neq p$ and minimal), whence $A p$ is a field and (R_{0}) follows. To prove that A satisifes $\left(S_{1}\right)$ we proceed by contradiction. If A does not satisfy (S_{1}) then, by proposition 4.4, there exists a prime of \in Ass (A) which is not minimal. Let $P_{1}, P_{2}, \ldots, Y_{k}$ be the minimal primes of A. Then $O \subset \mathbb{U} \cup_{i=1} P_{i}$, (since of is not minimal) whence there exists $x \in 0, x \notin \underset{i=1}{1 j} p_{i}$. Since $x \in$ of $\in \operatorname{Ass}(A), x$ is a zero divisor in A. Let x_{i} be the image of x under $A \xrightarrow{\varphi_{i}} A p_{i} i=1, \ldots, k$. We have $x t=0$ for some non zero t. Then $x_{i} \varphi_{i}(t)=0$. Since
$x \notin p_{i}, x_{i}$ is a unit in A p_{i}, whence $\varphi_{i}(t)=0, i=1, \ldots, k$.
Then (by the definition of $A p_{i}$) $t \in P_{i}$, $i=1, \ldots, k$. Since A is reduced, $\bigcap_{i=1}^{k} p_{i}=0$, whence $t=0$ a contradiction.

Assume, conversely, that A satisfies both (S_{1}) and (R_{0}). Let P_{1}, \ldots, P_{k} be again the minimal prime ideals of A. We wish to show that A is reduced, i.e. that $\bigcap_{i=1}^{k} P_{i}=0$. Assume that there exists a non zero $z \in \bigcap_{i=1}^{k} p_{i}$. By $\left(R_{o}\right), A p_{i}$ is a field, whence $p_{i} A p_{i}=0, i=1, \ldots, k$, whence $\varphi_{i}(z)=0$, $i=1, \ldots, k$. Therefore, for every i, there exists $s_{i} \notin P_{i}$ such that $s_{i} \cdot z=0$, i.e. $\operatorname{ann}(z) \mathbb{C} P_{i}, i=1, \ldots, k$, whence $\operatorname{ann}(z) \Phi \bigcup_{i=1}^{k} P_{i} . B y\left(S_{1}\right)$, since A has no imbedded primes, $\bigcup_{i=1}^{k} p_{i}=\underset{p \in \operatorname{Ass}(A)}{\cup p}=$ the set of zero divisors of A. We have that, for $a z \neq 0$, there exists a non zero divisor of A which annihilates $z, ~ c l e a r l y ~ a ~ c o n t r a d i c t i o n, ~$ Q.E.D.

Proposition 4.6. (Serre) Let A be noetherian. Then A is normal if, and only if, A satisfies both (S_{2}) and (R_{1}).

Proof: We remark first of all that A satisfies both (S_{2}) and (R_{1}) if, and only if, the following holds:
(*) Let $p \in \operatorname{Spec}(A)$. If $\operatorname{dim}\left(A_{p}\right) \leqq 1$, then A_{p} is regular. If $\operatorname{dim} A_{p} \geqq 2$, then $\operatorname{depth}\left(A_{p}\right) \geqq 2$.

We leave the verification of our remark to the reader.
Now, if A is normal, so is Ap . Hence, if $\operatorname{dim}\left(A_{p}\right) \leqq 1$, then Ap is either a field (which is regular) or, by the
discussion on page 38, a valuation ring, hence by proposition 9 in B.C.A., VI, §3, no. 6, A is a discrete valuation ring. Hence A p is regular, and (R_{1}) is satisfied.

To prove that $\left(\mathrm{S}_{2}\right)$ is satisfied we have to prove, in addition to the above, that $\operatorname{depth}(A p) \geqq 2$ when $\operatorname{dim}(A p) \geqq 2$. This was proved during the proof of remark 3) after definition 3.3.

Assume now that (*) above is satisfied. We remark first of all that, trivially $\left(R_{k}\right)$ implies $\left(R_{k-j}\right), j=0, \ldots, k$, and also that $\left(S_{k}\right)$ implies $\left(S_{k-j}\right), j=0, \ldots, k$. Hence, since $\left(S_{2}\right)$ and $\left(R_{1}\right)$ hold, so do $\left(S_{1}\right)$ and (R_{0}), and A is reduced by proposition 4.5 .

Let $\left\{p_{i}\right\}_{i \in I}$ be the minimal primes of A. Note that I is finite and that, since A is reduced $\bigcap_{i \in I} P_{i}=(0)$. Let K_{i} be the field of fractions of A / P_{i}, and let $R=\prod_{i \in I} K_{i}$. Then the canonical homomorphism $A \rightarrow R$ is an injection. Identifying A with its image, we see that we have to prove that A is integrally closed in R. Let $h \in R$ be integral over A. Since R is the total ring of fractions of $A, h=f / g$ for some $f, g \in A, g$ is not a zero divisor of A.

From an equation of integral dependence of h over A we get, by multiplication by an appropriate power of g

$$
\begin{equation*}
f^{n}+\sum_{j} a_{j} f^{n-j} g^{j}=0 \quad a_{j} \in A \tag{*}
\end{equation*}
$$

Let $p \in \operatorname{Spec}(A)$ be such that $\operatorname{dim}(A p)=1$
By $\left(R_{1}\right) A p$ is regular, whence, by corollary 4.1 , it is
integrally closed. Let f_{p}, g_{p} denote the images of f, g under $A \rightarrow A_{p}$. Note that g_{p} is not a zero divisor in A_{p}, hence f_{p} / g_{p} belongs to the field of fractions of Ap. From (*) above, first localizing at p and then dividing by g_{p}^{n} we see that f_{p} / g_{p} is integral over A_{p}, hence $f_{p} / g_{p} \in A_{p}$ and $f_{p} A_{p} \subset g_{p} A_{p}$, whence $(f A)_{p} \subset(g A)_{p}$. Now, since g is not a zero divisor of A, g is A-regular and, by proposition 4.4, $A / g A$ has no immersed primes containing gA. If $\mathscr{O}_{1}, \ldots, \%_{r}$ denote the minimal primes of $A / g A$, by the Hauptidealsatz we have $\operatorname{dim} A \mathcal{O}_{j}=1$, and by the previous discussion (fA) $\boldsymbol{\not}_{j} \subset(g A) \mathscr{\not}_{j}$. Let $\mu_{j}: A \rightarrow A \boldsymbol{\mu}_{j}$ be the canonical homomorphisms. Let $g A=\bigcap_{j} \boldsymbol{\varphi}_{j}^{\prime}$ be a primary irredundant decomposition of gA in A. Then $\left\{\mathscr{\varphi}_{j}\right\}=\operatorname{Ass}\left(A / \boldsymbol{\varphi}_{j}^{\prime}\right)$ and the \mathcal{V}_{j} are minimal in Ass $(A / g A), j=1, \ldots, r$. Then, by proposition 5 of B.C.A., 4, §2, no. 3, we have $\left.\boldsymbol{\phi}_{j}^{\prime}=\mu_{j}^{-1}[(g A))_{j}\right]$, i.e. $g A=\bigcap_{j} \mu_{j}{ }^{-1}\left[(g A) q_{j}\right] . \quad$ clearly fA $\subset \bigcap_{j} \mu_{j}{ }^{-1}\left[(f A)_{\nmid j}\right]$, whence, by $(f A)_{0_{j}} \subset(g A)_{\%_{j}}, f A \subset g A$, i.e. $h=f / g \in A$, \quad Q.E.D.

We end this section with a few examples from classical Algebraic Geometry. Let $A=\notin\left[X_{1}, \ldots, X_{n}\right] / \mathcal{L}$ be reduced (whence $\left(R_{0}\right)$ and (S_{1}) hold). In this case the geometrical interpretation of the fact that R_{1} holds for A is that the local ring of the generic point of any irreducible subvariety of codimension l of $\operatorname{Spec}(A)$ is regular, hence a valuation ring. If R_{1} does not hold, then there exists a prime $P \in \operatorname{Spec}(A)$ such
that $\operatorname{dim}\left(A_{p}\right)=1$ and ${ }^{A} p$ is not regular. In this case $V(p)$ consists entirely of singular points, i.e. points whose local rings are not regular. To see this let of $\in \mathrm{V}(p)$ and assume A_{q} is regular. We have of $\supset p$, whence $\left.A_{p} \simeq\left({ }^{A}\right)_{p}\right)_{A_{q}}$. If A_{o} is regular, it follows from corollary 4.3 that $A p$ is regular, contrary to assumption. In particular, all closed points \mathcal{M} of $V(p)$ must be singular, and the problem of determining whether A satisfies (R_{1}) or not is reduced, via proposition 4.3, to the examination of the rank of the Jacobian of a set of generators of 0 .

We illustrate the above by studying the following example:
Let

$$
\left\{\begin{array}{l}
\mathrm{T}_{0}=\mathrm{x}^{4} \\
\mathrm{~T}_{1}=\mathrm{X}^{3} \mathrm{Y} \\
\mathrm{~T}_{2}=\mathrm{X}^{2} \mathrm{Y}^{2} \\
\mathrm{~T}_{3}=\mathrm{XY} \\
\mathrm{~T}_{4}=\mathrm{Y}^{4}
\end{array}\right.
$$

be the parametric representation of a cone in five dimensional affine space, i.e. we consider the inclusion

$$
\mathbb{C}\left[X^{4}, X^{3} Y, X^{2} Y^{2}, X^{3}, Y^{4}\right] \rightarrow \mathbb{C}[X, Y] .
$$

Let V denote such a cone. The ideal of V is the kernel of of the homomorphism $\varphi: \mathbb{C}\left[\mathrm{T}_{\mathrm{O}}, \mathrm{T}_{1}, \ldots, \mathrm{~T}_{4}\right] \rightarrow \mathbb{C}[\mathrm{X}, \mathrm{Y}]$ given by $\varphi\left(T_{i}\right)=X^{4-i} Y^{i}$.

It is a rewarding exercise for the reader to check that q is generated by $\left(T_{0} T_{2}-T_{1}{ }^{2}\right),\left(T_{1} T_{3}-T_{2}{ }^{2}\right),\left(T_{2} T_{4}-T_{3}{ }^{2}\right)$, and that V is a two-dimensional cone. The discussion after
proposition 4.3 tells us that the origin is the only possible singular point of V. whence (R_{1}) holds for
$\boldsymbol{a}\left[\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right] / \boldsymbol{a} \simeq \mathbb{C}\left[\mathrm{X}^{4}, \mathrm{X}^{3} \mathrm{Y}, \mathrm{X}^{2} \mathrm{Y}^{2}, \mathrm{XY}^{3}, \mathrm{Y}^{4}\right]$.
To see that $\left(S_{2}\right)$ also holds, we need only check that the depth of the local ring of every closed point of V is 2 . This is clear for non singular points, since the local ring is then regular, and it is also true at the origin, since $X^{4}, Y^{4} \epsilon$ $\mathbb{Q}\left[X^{4}, X^{3} Y, X^{2} Y^{2}, X Y^{3}, Y^{4}\right]$ is a $\mathbb{C}\left[X^{4}, X^{3} Y, X^{2} Y^{2}, X Y^{3}, Y^{4}\right]_{m}$ - regular sequence, where m denotes the maximal ideal generated by $X^{4}, X^{3} Y, X^{2} Y^{2}, X Y^{3}, Y^{4}$.

Consider now $A=\mathbb{C}\left[X^{4}, X^{3} Y, X Y^{3}, Y^{4}\right] \subset \mathbb{C}[X, Y]$. Here Spec A is a two dimensional cone in 4 -dimensional space, and the discussion after proposition 4.3 tells us that the origin is the only possible singular point of $\operatorname{Spec}(A)$. Hence (R_{1}) holds for A.

Now $\left(X^{2} Y^{2}\right)^{2}=X^{4} Y^{4}$ shows that $X^{2} Y^{2}$ is integral over A. However one easily checks $X^{2} Y^{2} \notin A$, whence A is not integrally closed, and (S_{2}) does not hold for A . Note that this implies depth $\left(A_{m}\right) \leq 1$, where m denotes the maximal ideal of the origin in $\operatorname{Spec}(\mathrm{A})$.

Finally consider $A=\mathbb{C}\left[X^{4}, X^{3} Y, X^{3} Y, X Y^{3}, Y^{4}, Z\right] \subset \mathbb{C}[X, Y, Z]$. Here $\operatorname{Spec}(\mathrm{A})$ is a three dimensional variety infive dimensional space, and, again by the discussion after proposition $4.3,\left(R_{1}\right)$ holds for A.

If $p \in \operatorname{Spec}(A)$ and $\operatorname{dim}\left(A_{p}\right)=2$, then $\operatorname{Spec}(A / P) \neq\left\{m_{a}\right\}$ where m_{a} denotes the maximal ideal of the point ($0,0, a$). Hence A_{p} is regular and $\operatorname{depth}\left(A_{p}\right)=2$.

If $\operatorname{dim}\left(A_{p}\right)=3$, and $p \neq \pi_{a}$, then $A p$ is again regular and $\operatorname{depth}\left(A_{P}\right)=3$. At T_{a} we have $\operatorname{dim}\left(A_{Z_{a}}\right)=3$, and $\operatorname{depth}\left(\mathrm{A} \mathbb{T}_{\mathrm{a}}\right) \geq 2$, since clearly $\mathrm{Y}^{4}, \mathrm{Z}-\mathrm{a}$ form an $\mathrm{A} \mathbb{T}_{\mathrm{a}}{ }^{-r e g u l a r}$ sequence. Hence $\left(S_{2}\right)$ holds for A.

Actually depth $\left(\begin{array}{l}\mathrm{A} \mathbb{R}_{\mathrm{a}} \\ \text { })=2 \text {, which gives us an example of a }\end{array}\right.$ local integral domain which is not a C-M ring, whence A itself is not a C-M ring.

That depth $\left(\mathrm{A} \mathbb{T}_{\mathrm{a}}\right)=2$ is proved as follows. One can take $n=0$. Let $A^{\prime}=\mathbb{C}\left[X^{4}, X^{3} Y, X Y^{3}, Y^{4}\right]$. Then $A / Z A \simeq A^{\prime}$. Let $\not r^{\prime}$ be the maximal ideal of A^{\prime} corresponding to the origin of Spec(A'). We know from above that $\operatorname{depth}\left(A^{\prime} / \mu_{2},\right) \leq 1$, and $\operatorname{depth}\left(A_{\mu_{0}}\right) \geq 2$. Furthermore we have
and since Z is $A_{T Z_{0}}$-regular, $1 \geq \operatorname{depth}\left(A^{\prime} / Z^{\prime}\right)=\operatorname{depth}\left(A_{T} \pi_{0}\right)-1$, whence $\operatorname{depth}\left(\mathrm{A}_{-\pi_{0}}\right) \leq 2$. We are done.

It is a rewarding exercise for the reader to check that the kernel oc of the homomorphism $\varphi: \mathbb{C}\left[\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right] \rightarrow \mathbb{C}\left[\mathrm{X}^{4}, \mathrm{X}^{3} \mathrm{Y}, \mathrm{XY} \mathrm{Y}^{3}, \mathrm{Y}^{4}\right]$ - defined by $\varphi\left(T_{1}\right)=X^{4}, \varphi\left(T_{2}\right)=X^{3} Y, \varphi\left(T_{3}\right)=X^{3}, \varphi\left(T_{4}\right)=Y^{4}$ is generated by $T_{1}{ }^{2} T_{3}-T_{2}{ }^{3}, T_{2} T_{4}{ }^{2}-T_{3}{ }^{3}, T_{1}, T_{4}{ }^{3}-T_{3}^{4}$, and that no two of the above three polynomials generate OL.

§5. BEHAVIOR UNDER LOCAL HOMOMORPHISM

In this section we let A, B be local rings, unless otherwise specified, with unique maximal ideals $\nVdash \mathbb{Z}, 7$ respectively.

We recall that a homomorphism $\varphi: A \rightarrow B$ is called local if

