
In the case that M = A the following statements are true:

1) Ass (A) = the prime ideals (isolated and imbedded)

corresponding to (0).

2) I _ J |3 = the set of zero divisors.
pe Ass (A)

3) {the minimal primes of Supp(A)} = {the isolated primes of

(0)} = {the minimal primes of A} .

p € Ass (A)

We give some examples of the above notions, again without

any attempts at proofs.

^e l°cal rings most commonly met in Algebraic Geometry are

of the form Ap where b is a prime ideal of A. It is immediate

to check that the complement of pA^ in Ap consists of units,

whence PA^ is the unique maximal ideal of Ap .

An example of a Jacob son ring is given by A/p , where A is

a finitely generated algebra over an algebraically closed field

k, and p is a prime ideal of A.

Finally, we leave as an exercise to the reader to prove

that, if M is a finitely generated A-module with annihilator it, ,

then Ass(M) = {the prime ideals corresponding to an irredundant

primary decomposition of

GEOMETRIC NOTIONS

Let A be a ring. We recall that Spec (A) is defined, as

a set, to consist of all the prime ideals ]p of A. Such set is

made into a topological space by defining a subbasis of open sets



(which actually turns out to be a basis) as follows:

we define, for t e A, D(t) = { p e Spec(A) | t i jp },

and consider the collection (̂ ("̂ JĴ eA as *^e sukbasis *-n

question. (That it is a basis is easily seen from D(st) =

D(s)HD(t), s, t e A.) The resulting topology on Spec(A) is

usually called the Zariski topology.

Equivalently, we can define the Zariski topology by

determining what the closed subsets are. Here we take any

ideal €fc C A and define

V(ffc) = { ]p € Spec(A) | 4L C p}.

The collection of sets (V(0t)) is easily seen to satisfy the

axioms of closed sets in a topology, and one then shows that

Spec(A) - D(t) = V(tA)

Spec(A) -

whence the two topologies are actually the same.

Since A is noetherian, Spec (A) is a noetherian topological

space, i.e. the open subsets of Spec (A) satisfy the maximal

condition, or, equivalently, the closed subsets of Spec (A)

satisfy the minimal condition. Hence Spec (A) is the finite

union of its irreducible components.

We caution that Spec (A) is however highly non-Hausdorff .

In fact one easily sees that 4t cJ> ^> V(dt) D V(>S ), hence a

point b e Spec (A) has in general a closure distinct from p , in

fact equal to V( p ) . Jo is hence a closed point if, and only if,
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the ideal p is maximal. However, given two distinct points p,

Of of Spec (A), we can find an element t e A which belongs to one

but not the other of the two ideals (we canft tell which though),

whence an open subset D(t) which contains one point but not the

other. In other words Spec (A) is a TQ (Kolmogoroff ) topological

space. We also remark that the only closed, irreducible compo-

nents of Spec (A) are precisely the closures of the minimal prime

ideals of A, and that the only closed irreducible subsets of

Spec (A) are precisely the subsets of the form Vf-flk), where -0£ is

any ideal in A with a prime radical. In fact V(dZ.) = V(ViST),

for OtC A.

With every ring A we have made correspond a certain topo-

logical space, Spec(A). We ask the question: given the topolo-

gical space Spec (A), can we recover A? Unfortunately not, since,

e.g., all fields have homeomorphic Spectra. The notion which is

missing, in order to obtain an adequate dictionary between the

algebraic and the geometric languages is the notion, due to

Serre, of the sheaf £f local rings of Spec (A).

This is a sheaf A which can be defined in one of two

equivalent ways

1) As a presheaf A(D(t)) = At t e A

2) As an espace e'tale', the stalk A« of A over the

point p € Spec (A) is given by A^ = A*, .

One can easily prove that Afa = lim A, , where the homomorphisms

A -> A , are given by a/sn *«*— > atn/(st)n. Hence the two
S So

definitions are indeed equivalent.

We now have associated with every ring A two objects,



namely the topological space Spec(A) and the sheaf of local

rings A over Spec(A). Given the pair (Spec(A), A), it is now

easy to recover A, namely A = A^ = A(D(1)) = A(Spec(A)), which

is the totality of sections of A over Spec(A).

The pairs (Spec(A), A) are the objects in the category of

affine schemes, whose morphisms we now discuss.

To describe the morphisms in the category of affine schemes,

let (Spec(A), A), (Spec(B), B) be two objects in the category.

Let cp:A -» B be a ring homomorphism. Over Spec (A) we define the

sheaf of rings cp*(B), given by cp*(B) (D(t)) = B ̂  = B(D(cp(t)))>

t € A. Then the function cpa:Spec(B) -» Spec(A) given by

q>a(b) = cp~" (p) is continuous, as is seen from the formula

(cpa)-1(D(t)) -D(«p(t)).

Furthermore define cp:A -> cp*(B) by defining

<J>(D(t)):At -»B /tv as follows: a/tn<v*—> cp(a)/q>(tn).

To the ring homomorphism cp we have associated a pair of

functions (cpa, cp). Such pairs are precisely the morphisms in

the category of affine schemes.

Our dictionary is now adequate, since in fact one can

prove that the category of affine schemes is the dual (in the

categorical sense) of the category of rings.

APPENDIX

Let (U be the field of complex numbers, R = (EfX-,, ...,X ],

an ideal of R such that #. = -Sot . Define V(0t) as follows

= {(xr ..-,xn) e 0
n I f(Xl,...,xn) = 0 for all f 6̂ }.



This is the classical notion of an affine variety (in fact, to

be strictly classical one should take it to be a prime ideal),

and it is well known that the points of V(̂ K) are in a 1-1, onto

correspondence with the maximal ideals of the ring A = R/dfc..

So the classical notion of an affine variety corresponds simply

to the set of closed points of Spec(A). In defining Spec(A) as

we have, we have in fact added to the classical notion of point

a lot of other "undrawable" points, namely the prime ideals of

A which are not maximal. We can ask:

a) What are the advantages of such addition?

b) If such addition is indeed advantageous, how could

classical geometers get along without it?

The answer to b) is simple: R/O. is a Jacobson ring, and

the knowledge of its maximal ideals determine its prime

ideals.

To answer a), at the moment, we make the following four

observations:

1) We are not limited to rings of the form R/dt. , and,

were it so, fa can be arbitrary, whence R/££ may have

zero divisors (Serre's point of view) and, more

strikingly, nilpotent elements.

2) Prime ideals have a "good" functorial behavior (e.g.,the

inverse image of a prime ideal under a ring homomorphism

is again prime), while maximal ideals do not.

3) The notion of a "ringed space", i.e. a topological

space X and a sheaf of rings over X, is the natural

tool to give an intrinsic geometric definition of

projective varieties (which are definitively not affine).



4) The possibility that Rfa, have nilpotent elements has

brought the solutions of long standing conjectures,

unsolved until now^

There is one notion that seems to be lost in the transi-

tion from the classical case to Spec (A). In the classical case

an element of A identifies a regular function over V(-0C), with

a well defined value f(x) e $, at each x e V(̂ £). Can an

element f e A be considered as a function over Spec(A)? Most

definitely, but the value field may change with the point

p e Spec (A). More precisely, Ap /p^ is a field, which we

denote by k( p ), and we define the value of_ j[ at_ p as the image

of f/1 under the canonical morphism Ap -»Ap/fc>Ap . It is

trivial to see that, when A = R/0t , and p is a maximal ideal

of A, then k( p ) = €, which throws a better light on the

classical situation. We point out that, if f e A is nilpotent,

we have the highly non-classical situation of getting f (p ) = 0

for all p e Spec (A), but f ̂  0.


