
PREREQUISITES

The essential prerequisites for these notes are contained

in Bourbaki, "Commutative Algebra", Chapters I through IV.

Results from Chapters V through VII will sometimes (but not

often) be referred to. We shall denote them throughout by

B.C.A., so that when we write, say, Proposition 4, B.C.A., Ill,

3, 2 we mean proposition 4 to be found in Bourbaki!s

"Commutative Algebra", Chapter III, §3* no 2.

We begin by recalling some of the elementary fundamental

notions of Commutative Algebra and modern Algebraic Geometry.

No attempt at proofs will be made here, most proofs being

available either from the above mentioned chapters of Bourbaki,

or from Grothendieckfs EGA.

We consider only commutative rings A with unit element,

and only ring homomorphisms such that 1/vw—> 1.

Unless otherwise specified, the rings considered will be

noetherian. This means that the set of ideals of A satisfies

the ascending chain condition, or equivalently, that every

ideal of A admits a finite basis.

We call A semi-local if it has a finite number of maximal

ideals. If A has a unique maximal ideal (when no danger of ambi-

guity exists, ideal will always mean proper ideal), A is said to

be a local ring.

We call A a Jacobson ring if every prime ideal to C A is

the intersection of the maximal ideals containing it, p

The radical of A, rad(A), is defined as the intersection of

he maximal ideals of A, rad(A) = Cl W, .
ntc A

Tne flilradica.! of A, ft (A), is the intersection of all



prime ideals of A, ft(A) - ^ F • tlx (A) is easily seen to
p prime

consist precisely of the nilpotent elements of A. When

= (0) i.e. when A has no nilpotent elements, A is said
to be reduced. If A is a Jacobson ring rad(A) = ft (A), but

already when A is a nontrivial local ring (i.e. not a field)

rad(A) = tH 5^ 1t(A) in general, where Ht denotes the unique

maximal ideal of A.

One result which will be used often is the following

Nakayamajs Lemma . Let A be a ring, M, N two finitely

generated A^modules. Let u:M -» N be an A-morphism, and let flfc

be an ideal of A with *& C rad(A). If u <8> id«^ :M <8> (A/at) -»

N ® (A/0£,) is surjective, so is u.

Let A be a ring, S a multiplicatively closed subset of A.

On the set-theoretical product Ax.S define the following

equivalence relation

(a, s) ~ (a1, sf) <=> there exists

s" e S with s'̂ as1 - a!s) = 0.

One easily checks that the following operations

(a, s) + (a1, s1) = (as1 + a's, ss1)

(a, s) • (af, s1) «= (aa1, ssf)

define a ring structure on the set of equivalence classes of

AxS. We denote such ring by Ag, and call it the localization

of A at S. We denote the equivalence class of (a, s) by a/s.

The homomorphism T:A -> Ag defined by T(a) = as/s (for any s e S)

turns Ag into an A-module. We caution that T need not be

injective.



Let M be an A-module. We define ML = Ag <g> ̂ M. It is easy

to check that M« can be obtained also by repeating verbatim the

above procedure for the construction of Ag, simply substituting

M for A.

In the category of rings and ring hbmomorphisms, Ag can be

more simply defined as follows:

the localization of A at S consists of a ring C,

and a homomorphism p e Horn (A, C) such that for

all rings B the function Hom(C, B) -> Hom(A, B) !

is bijeetive, where Hom(A, B)' consists of all

those morphisms u e Hom(A, B) such that all

elements of u(S) are units in B.

In most applications to Algebraic Geometry the set S is

of one of two types. In the first, S consists of the non

negative powers of an element t e A, and we write A, instead of

Ag. In the second type, S is the complement of a prime ideal Jp

of A. In this case we use the notation Att instead of A. to .r R~r
Let M be a finitely generated A-module. We define

Ass(M) = { p a prime ideal of A | p is the annihi-
lator of some
x e M, x 5* 0}

Supp(M) = { p a prime ideal of A | A^ <g> .M ^ 0} .

Ass(M) is a finite set when A is noetherian, and is re-

lated to Supp(M) by the following property: the minimal primes

of Ass(M) coincide with the minimal primes of Supp(M). We call

Ass(M) the set £f associated ideals £f M, and Supp(M) the

support of M.



In the case that M = A the following statements are true:

1) Ass (A) = the prime ideals (isolated and imbedded)

corresponding to (0).

2) I _ J |3 = the set of zero divisors.
pe Ass (A)

3) {the minimal primes of Supp(A)} = {the isolated primes of

(0)} = {the minimal primes of A} .

p € Ass (A)

We give some examples of the above notions, again without

any attempts at proofs.

^e l°cal rings most commonly met in Algebraic Geometry are

of the form Ap where b is a prime ideal of A. It is immediate

to check that the complement of pA^ in Ap consists of units,

whence PA^ is the unique maximal ideal of Ap .

An example of a Jacob son ring is given by A/p , where A is

a finitely generated algebra over an algebraically closed field

k, and p is a prime ideal of A.

Finally, we leave as an exercise to the reader to prove

that, if M is a finitely generated A-module with annihilator it, ,

then Ass(M) = {the prime ideals corresponding to an irredundant

primary decomposition of

GEOMETRIC NOTIONS

Let A be a ring. We recall that Spec (A) is defined, as

a set, to consist of all the prime ideals ]p of A. Such set is

made into a topological space by defining a subbasis of open sets


