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INTRODUCTION

Stable associative rings have been investigated by Cherlin-Reineke [Ch-Re],

by Baldwin-Rose [B-Ro] and by Feigner [Fe] too early in the history of stable

algebraic structures to get the attention they deserve. Rose started to investigate stable

non-associative rings [Ro] in the late 1970's but again his work did not get the
attention of model theorists. Macintyre's classification of coi_categorical fields

[Mac2] and its generalization to superstable fields [Ch-S] and to co-stable division

rings [Ch2] became important because, we think, of their importance in the study of

stable groups. We believe in the near future stable rings (associative or not) and their

stable modules will become an important research area in applied model theory. They

arise naturally in the study of stable groups. Here we list 4 instances:
a) Zil'ber classified coi - categorical associative rings of characteristic 0 as

indecomposable algebras over an algebraically closed field of characteristic 0 [Zi2].
He announces in [Zi3] that the same methods classify also coi - categorical nilpotent

Lie algebras over Q and that using Campbell-Baker-Hausdorff formula (see e.g.
[Jac 1]), one can deduce that o>i - categorical torsion-free nilpotent groups are

algebraic groups over an algebraically closed field of characteristic 0.

b) Let R be an arbitrary ring (not necessarily associative, does not necessarily

have a unit). Then on the set G = R x R we can define a group multiplication by

(x,y) (xi,y!) = (x + xi, y + yi + xxi).

This group can also be viewed as

r/1 x y \
=U° 1 x):x,

lvo o i '
with the obvious multiplication. It is easily checked that G is nilpotent of class < 2

and is Abelian iff R is commutative. Since G is interprétable in R, it inherits
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stability properties of R. Thus to classify nilpotent groups, say of small Morley Rank,

we should at least classify rings of small Morley Rank.

c) We can generalize the above example. Let R be any ring (not necessarily

associative, does not necessarily have a unit) of finite Morley rank. Let M be a left

R-module of finite Morley rank. Define

with the obvious multiplication. Then G is a nilpotent of class 2 group of finite

Morley rank.

If R is associative with an identity and M is an associative, unitary right

R-module then G = M * R* Le. the group

G= { (Q r ) : r e R * , x e M J

has also finite Morley rank. (Here R* denotes the multiplicative group of invertible

elements of R).

d) Associative, commutative rings with identity come naturally into scene

when one studies solvable of class 2, centerless, connected groups of finite Morley

rank (see [Ne 1]). Such rings of finite Morley rank have been classified by Cherlin and

Reineke in [Ch-R]. But it happens that we are also interested in their modules simply

because the above groups can be interpretably imbedded into a finite product of groups

of the form M » R* where M is an R-module of finite Morley rank and R is a ring

with the above properties.

The methods of this article are not original. The basic ideas are mainly

Zil'ber's. We found analogues of the known results about groups for rings.

In §1 we set the basics to study the non-associative rings. The lemmas are so

simple that the mere knowledge of the basic concepts like Morley rank and degree is

enough to understand their proofs.

In §2 we discuss Jacobson density theorem for associative rings.
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In §3 we show how one can use the density theorem in the study of non-

associative rings. The ideas aie due to Ziï"ber [Zi2]. He applied them to associative

rings. We generalize his methods to general rings. In the end of this section we apply

the previous results to connected Lie rings of Morley rank 1. Ivo Herzog can prove

parts i) and ii) of Lemma 13 by some other methods.

In §4 we study Lie rings of finite Morley rank. We prove the analogue of

Zil'ber's theorem for solvable groups. Namely we show that in a connected, solvable,

non-nilpotent Lie ring of finite Morley rank one can interpret an algebraically closed

field. The method is almost exactly like ZiTber's original proof. But the result is

amazingly different: in the construction of the field K we find K+ where Zil'ber

finds K*. In other words we find the logarithm of Zil'ber's construction! This may

not be so shocking for logicians who know the exp-log correspondance between Lie

groups and Lie algebras. We also notice that the construction of this field by means of

Zil'ber's methods is also given by Jacobson's density theorem. Finally we notice

(without proof) that the proof of [Ne2] can be mimicked to show that if L is solvable
and connected then L' isnilpotent.

This article was written while the author was visiting Notre Dame University.

He would like to thank the Mathematics department of Notre Dame and especially Julia

Knight and Anand Kllay for their hospitality. Thanks are also due to John Baldwin for

his mathematical comments and for correcting my English.

§1. BASICS

Before starting to set the basics we would like to recall Zil'ber's indecom-

posability Theorem [Zi 1] (not in its full generality):

Zil'bcr's indecomposability Theorem : Let G be a group of finite Morley
rank. Let (XOiei be a set of connected subgroups of G. Then the group generated

by (Xi )iei is definable and connected. In fact if H is this group then there are a

finite number of ii,..., in el such that

H = X.,..-X..

If G is Abelian and written additively then we write
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H = X. +...+ X..
T u

Pillay's article "Model Theory, Stability Theory and Stable Groups" in this

volume has a proof of the above Theorem. The reader can also find a proof in [Ne 3]
orin[Th].

Unless otherwise stated R will always denote an arbitrary ring of finite

Morley rank (not necessarily associative, does not necessarily have an identity). In
particular R is a group under addition. Thus it has a connected component R° which

is an additive subgroup of R. If I is a definable ideal of R we may also speak about
1°, the connected component (as an additive subgroup) of I.

Lemma 1. If I is a left (or right or bi) ideal of R then so is 1°.

Proof: For x G R, xl° is a subgroup of R. Since I is a left ideal xl° ci I. By

Zil'ber's indecomposability theorem the group generated by xl° and 1° is connected,

thus it is 1°, so xl°çi°. D

It follows from Lemma 1 that R° is an ideal of R. We may therefore speak

about a "connected" ring. From now on, unless otherwise stated, all rings will be

connected. Notice that if (R,+) is torsion-free or divisible then R is necessarily

connected.

Lemma 2. If I is a finite left (resp. right) ideal then RI = 0 (resp. IR = 0).

Proof: Let ie I. R being connected, Ri is a connected additive subgroup of R. But

Ri c. I, so Ri is finite. A connected finite group is 0. Thus Ri = 0. D
For n e N, define

Rn ={xe R l n x = 0}.

Rn is a definable bi-ideal of R. If n and m are prime to each other, then

Rn H Rm = {0}, so also RnRm = 0. If n divides m then RnC= Rm - For p, a
prime number, define
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R «, is a bi-ideal. But it is not necessarily definable. Corollary 4 will show that

it is almost always definable.

We define annRR = {r e R: Rr = 0}, annRR = {r e R: rR = 0}. If R is not

associative these are not necessarily ideals of R. But they are definable additive

subgroups.

Lemma 3. There is an n e N such that

pnRir ci.annRR nannRR.

Proof: Consider the additive group I generated by Rx, x e R^ . By Zil'ber's

indecomposability theorem

I = Rxi + ...

for some x1?..., xfce Rp». Let n be such that x19...,xkE R^. Then I^R^.

In particular for any XG R^, Rx£.R^, i.e. pnRx = 0 or Rpnx = 0,

i.e. pnx e ann RR. Similarly pn x e annRR. D

Corollary 4. If ann RR = 0 (or annRR = 0) then Rp» is definable. In

fact Rpo- = Rpn for some n e N.

Proof: By Lemma 3, if xe Rp- then pnx = 0, so xe Rpn. D

The next corollary states that the torsion part and the torsion-free part of a ring

without annihilator direct sum definably.

Corollary 5. Let R be a connected ring with ann RR = 0 then there are finitely

many distinct primes pi,..., pk, there is a definable torsion-free (as an additive group)

ideal D such that
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R — D /TN /T\ Tl /T\ T"\
— 1V.J» W ... W •̂ f.oa W Ay«

1 k

Proof: Notice that by Corollary 4 each R is definable and has bounded order.pi

By Macintyre [Mac 1] R = D 0 H as an additive group where D is divisible and H is

of bounded order. If n is such that nH = 0 then D = nR. So D is definable. This

also shows that D is a bi-ideal.
Let r G R have finite additive order. Ifr = d + h for d e D, h e H then

d = r -h e D and has finite order if d * 0. So if d * 0, D would have an element d'

of prime order p. But then R^^R^ for any n (because D is divisible). This

contradicts Corollary 4. Thus d = 0, so re H. We showed that any element of finite

order is in H. Thus R^. ci H for all p.

Clearly any element of finite order can be written as the sum of its primary

parts. Thus

H = 0 R^.
p prime

Since R is connected, no R^ is finite. Since R has finite Morley rank

we can have only finitely many R^ involved in H. This proves the Corollary. D

Corollary 5 shows that the study of connected rings with aim RR = 0 can be

reduced to the study of their primary parts. Let us underline the essence of Corollary 5:

Proposition 6. Let R be a connected ring with amiRR=0. Then R = D 0 H

where D, H are definable ideals, D is torsion-free divisible, H has bounded order.

D

Lemma 7. Let X be a set of connected definable additive subgroups Si of R.

Then the subring and the left (or right, or bi) ideal generated by £ are definable and

connected.

Proof: Define inductively



AliNesin 123

RI = Additive group generated by Si's,

Rn+i= Additive group generated by Rn and xRn, Rnx for x e Rn .

By induction, using ZiTber's indecomposability theorem, we see that Rn's are

definable and connected. By definition R
tl

 c= R
iri.r Thus U RR = Rn for some n.

n>i

Rn is clearly the subring generated by £. (Rn may not have all the constants of R,

e.g. Rn may be without identity even if R has an identity).

To prove the lemma for left ideals, in the definition of Rn+i we omit Rnx's

and let x range over R. D

It follows from Lemma 7 that if a connected ring R has an identity then every

ideal is definable and connected. This is simply because an ideal I is generated by the

connected subgroups Rx for x e R. In particular such a ring is Noetherian and

Artinian. Rose [Ro] proved that if R is an arbitrary stable ring then J(R), the

Jacobson radical of R, is definable and R/J(R) is Artinian and Noetherian.

Corollary 8. Rn, R(n) are definable and connected.

Proof: By definition Rn+1 is the ideal generated by {xy: for xe R, ye Rn},i.e.

the ideal generated by (xRn) XGR.

Since for x fixed xRn is a definable homomorphic image of Rn, by

induction xRn is a connected subgroup. Now apply Lemma 7.

For R(n+1) we consider the ideal generated by (xR(n))xeR(n). The proof is the

same. D

Corollary 9. If I is a minimal left ideal of R and if I <£. arm RR then I is

definable and connected (also infinite by Lemma 2).

Proof: Let ae I \ aim RR. Then 0 * Ra ci I. Thus the left ideal generated by Ra

is I which is definable and connected by Lemma 7. D

Remark: If œ = Z rn (rn_i (. . .feri) . . .) a formal sum of formal monomials

(ri e R), let us denote by coa (for a e R) the element of R defined by
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Then Corollary 9 and the proof of Lemma 7 tell us that the minimal left ideal I is the
set of coa's (a fixed in I - {0}) for œ ranging over words whose "sum length" and

"product length" are bounded by some natural number n. This will be made more

precise in §3, Lemma 12.

Corollary 10. The ideal generated by {xy-yx: x,yeR} is definable and

connected.

Proof: Let [x,R] = {xy-yxlye R}. [x,R] is a definable homomorphic image of R

(as an additive group). Thus it is definable and connected. Now the ideal in question

is generated by [x,R] for x ranging over R. Use Lemma 7. D

Remark: If C is the ideal generated {xy - yx: x,y e R} then R/C is a

commutative ring of finite Morley Rank.

Corollary 11. If annRR = 0 then R has minimal left ideals which are definable.

Furthermore these minimal ideals I are generated by the set Ra for any fixed

ae I - {0}, i.e. they are principal ideals.

Proof: By Lemma 7 the left ideal generated by Ra is definable and connected.

Choose a minimal such. By Corollary 9 and its proof it is a minimal ideal. D

§2. DENSITY THEOREM FOR ABELIAN GROUPS

In this section we will forget about the multiplicative structure of our ring. We

will not assume any stability conditions either. Let R be an Abelian group written

additively. An additive group M is said to be an R-module if there is a

homomorphism p of Abelian groups:

p: R -> Endz (M).

M is said to be a faithful module if p is injective. We can define a

multiplication rx e M for r e R, x e M via p:

rx = p(r) (x).



AliNeàn 125

Then all the module-theoretical concepts can be defined.

Schur's Lemma: If M is an irreducible R-module then A = {q>: M -» M:

<p linear and q>(rx) = rc(x) for all r e R, x e M} = EndRM is a division ring.

Under the conditions of Schur's Lemma, M becomes a vector space over A
and p(r) is a A- linear map for r E R. If M is also faithful then R imbeds naturally

into EndAM.
A subset S of EndAM is said to be dense if for any n, any xi,...,xn E M

linearly independent over A and any yi,...,yn e M there is an s E S such that

s(xO = yi (i = 1,.. ,n).

Notice that if dimA M < «> then a dense subset of EndA M is necessarily

EndAM.

Density theorem for primitive abelian groups: Let M be an irreducible

faithful module for the Abelian group R. Define A = EndRM. Then R^ EndA M as

an additive group and the ring S generated by R in EndA M is dense in EndA M.

Proof: This is a rephrasing of Jacobson's density theorem (see [Jac 2] p. 28) that

states the above conclusion in case R = S is an associative ring.

Let S be the (associative) ring generated by R in EndAM. Since SÇ.

EndA M, M is a faithful S-module. Since R c_ S, M is also S-irreducible. So if

A1 = Ends M, S is dense in EndA1 M by the original Jacobson density theorem. But

since R c, S we also have EndsM ci EndRM. Since S is generated by R,

EndRM£. EndsM. Thus EndRM = EndsM, i.e. A = A1. So S is dense in EndA'M =

EndAM. D

If R is a ring then for M to be an R-module we may need to add some more

conditions on the R-action. For instance if R has an identity 1 then we want p(l) =

MM- Or if R is an associative ring we want p to be a ring homomorphism. If R is

a Lie ring so that it satisfies the Jacobi identity ((rs)t + (st)r + (tr) s = 0) then we
impose to p the condition to be a lie-homomorphism, i.e. p(rs) = p(r) p(s) - p(s)

P(r).
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§3. APPLICATIONS OF THE DENSITY THEOREM

Suppose R is an Abelian group of finite Morley rank. Suppose we can

interpret in R a faithful irreducible R-module M(M could be an R-module where

R is a group interpreted in R). Suppose also that the division ring A = EndRM is

interprétable in R. Then A and M have finite Morley rank. It follows that if A is

infinite then it is an algebraically closed field [Ch 2] and M is a finite dimensional

vector space over A Therefore by the density theorem the ring S generated by R in

EndAM is End^M! In fact, as John Baldwin noticed, if the ring S generated by R

in EndAM is interprétable in R (e.g. if R is already an associative ring) then we do

not even need the non-finiteness of A to claim that S = EndAM. Because in this case

M will have finite dimension over A anyway: if xi,...,xn,... is a A-base of M, let
Sk= {se S lsxi = ...= sxk = 0}.

Clearly Sk ̂  Sk+i. But also by the density theorem Sk * Sk+i. This contradicts the

descending chain condition. (For this argument we only need stability, because the

subgroups Sk are intersections of uniformly definable subgroups).

Therefore to use the density theorem we need the following steps:

1) Find an interprétable faithful irreducible R-module M (or may be R -

module).

2) Interpret A = EndRM in R.

3) Then we know that R < EndAM (as an additive subgroup) and the ring

S generated by R in EndAM is dense in EndAM. To show that

S = EndAM, prove that either A is infinite or S is interprétable in R.

For the first step: an obvious candidate for M, in case R is a ring, is a

minimal left ideal. Then this ideal will be definable if annRR = 0 (Corollary 9). The

minimality of M will ensure that it is an irreducible module. But we do not

necessarily have the faithfulness. Then divide R by the annihilator of M:

annRM={reRlrM = 0}.

Now R/annRM is an additive group and M is an irreducible and faithful R/aiuiR M-

module. Notice that amiR M is not necessarily an ideal. But it is so if R is an

associative or a Lie ring (see end of the section for the definition of Lie ring).
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Now about the second step; it is astonishing that A is almost always

interprétable in R.

Lemma 12. Let M be a minimal left ideal (necessarily definable) in a connected ling

of finite Morley rank with annRR = 0. Then A = EndRM is an interprétable division

ring (hence a field). If Char R = 0 or more generally if A is infinite then A is an

algebraically closed field.

Proof: (The idea of the proof is from [Zi2]). We know by Corollary 9 that M is

definable. We need to recall explicitly its definition. Let co be a formal word in R

of the form

(0 = 0)1 +

Here, k depends on j. Such words will be called special. For a e R and co a

special word, define an element (o(a) of R by

(Oj(a)=rji

Notice that co(a) e R and is not a formal word. Let us also define the length Kco) of

a special word co by

J>(o>j) = k + 1 (see the definition of eoj).

Now we are ready to give the explicit definition of M. Let aoe M-{0}. Then for

some integer n,

M = {co(ao) : co is a special word of length < n }.

This is the content of the proof of Lemma 7. Fix such an integer n.

We need one more definition before interpreting A. Let

J = {a e M: V to, coi, C02 special words of length ^ n,

(co(ao) = coi(ao) -» co(a) = coi(a))

& (V r e R r(a>i(ao)) = œ(ao)) -> r(coi(a)) = co(a))

& (coi(ao) +C02(ao) = co(ao) -> coi(a) + coa(a) = œ(a))}.

J is a definable subset of R and aoe J. Clearly J is an additive subgroup of R.

Thus J will be infinite if charR = 0.
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Now for a e J define ya: M -> M by

Ya(<o(ao)) = <o(a).
The definition of J implies that Ya is well defined and is in EndR M. Conversely if a

e EndRM then clearly a(ao)e J and O=J0(^. Thus

A = EndRM = {ya: a e J}

is interprétable in R. D

Now we can carry out our third step:

Corollary 13. Let R be a connected ring of finite Morley rank with aim RR= 0. Let

M be a minimal left ideal of R (Corollary 11). Then

i) M is necessarily definable (Corollary 9).

ii) M is a faithful irreducible R/annRM-module. LetR =R/annRM.

iii) A = Endg(M) = EndRM is interprétable in R and is a field

(algebraically closed if infinite).

iv) R < EndAM as an additive group and the ring S generated by R in

EndAM is dense in EndAM.

v) If either charR = 0 or S is interprétable in R or S is commutative then

A is infinite and so M is a finite dimensional vector space over A. Hence

S = EndAM. Also if S is commutative then dimAM = 1.

Proof: Everything is already proved except some parts of v). If S is interprétable

we noticed in the beginning of this section that M must have finite dimension over A.

So if A is finite then M is also finite. But then by Lemma 2 M jC AnnRR= 0, a

contradiction.

If S is commutative then (since it is dense in EndAM) it can easily be checked

that dimAM=l. Again A is infinite. D

Conjecture: dimAM <<*» always (notation as above).

Let us give an illustration of this Corollary.

Recall that a Lie ring is an additive group L with a bilinear product (called

bracket) [x,y] such that for all x,y,zeL
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[x,x] = 0,

[[x,y], z] + [[y,z], x] + [[z,x], y] = 0 (Jacobi identity).
Sometimes we will omit the brackets and write xy for [x,y].

Let L be a connected Lie ring of Morley rank 1. We would like to prove that

L is Abelian, Le.
[x,y]=0

for all x,ye L. But being unable to prove it, let us see what the Corollary gives us.

Define Z(L) = {xe L : [x,y] = 0} = center of L,

Z2(L) = {xeL:[x,y] e Z(L)}.

By the Jacobi identity Z(L), Z2(L) are ideals. If Z(L) is infinite then Z(L) = L and

so L is abelian. Suppose therefore that Z(L) is finite. Let L = IVZ(L). Then Z(L) =
Z2(L)/Z(L). Suppose TrfL) is infinite. Then Z2(L)=L. Thus L2ciZ(L). But by

Corollary 8, L2 is connected. Thus L2 = 0,Z(L)=L, a contradiction. Thus Z2(L)

is finite. Then by Lemma 2, Z2(L)C,Z(L). Thus Z2(L) = Z(L) and L is centerless.

We showed the following:

Lemma 14: If L is a connected non Abelian Lie ring of Morley rank 1 then L =

L/Z(L) is a connected centerless Lie ring of Morley rank 1. D

Now we can apply the Corollary to L. Assume L = L for the sake of

notational simplicity, ann LL= 0 (because Z(L) = 0), M = L (because L has Morley

rank 1, so is a minimal (definable) ideal). So we have parts i) and ii) of the
following Lemma.

Lemma 15. If L is a centerless connected Lie ring of Morley rank 1 then

i) LCiEndAL where A= EndLL.

ii) The associative ring generated by L in EndAL is dense in

iii) L has no non-trivial ideals (i.e. L is simple),

iv) A is a finite field,

v) L has characteristic p for some prime
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Proof: We have already proved i) and ii). If I were a proper ideal of L then the
ideal J generated by {[L,x]:xe 1} would be definable by Lemma 7. Since this

definable ideal J is in IÇ L, J would be finite and hence central by Lemma 2. Thus
J = 0. Then Lx = 0 all x e I, i.e. IÇL Z(L) = 0. This proves iii).

Let aeL\{0}. Let CL(a)= {xeLI [x,a] =0}. Since A = EndLL,A acts

on the finite (but non-zero) set Q/a). If A were infinite it would be an algebraically

closed field and so it would be connected, then A a ciQXa) would also be
connected. But Q^Ca) is finite, so Aa = 0. Since Ide A, this is a contradiction.

This proves iv).
Ifv) were not true then nxe CL(X) for all neN, so CL(X) = L, x = 0. D

Let us make a weaker conjecture then the previous one:

Conjecture: Connected Lie rings of Morley rank 1 are Abelian.

Reineke proved (see [Re] or [Ch 1]) that connected groups of Morley rank 1 are

Abelian. The proof is very easy but one cannot give the same proof for Lie rings.
Cherlin and the author proved that if L is non-Abelian then dim^O/a) > 1 for a

generic element a of L.
Added to the last version: In view of Hrushovski's discovery of new strongly

minimal sets the author of the above conjecture does not believe in it anymore, thus:

Conjecture: There is a non-Abelian connected Lie ring of Morley rank 1.

§ 4. SOLVABLE, NON-NILPOTENT LIE RINGS
Let us first recall the definitions of solvable and nilpotent rings. We defined the

ideals Rn and R(n> in Corollary 8. A ring R is said to be solvable if R(n) = 0 for
some n. It is said to be nilpotent if Rn = 0 some n. Nilpotent implies solvable.

Let us also define the centers: 2 ,̂(R) = 0,
Zi+i(R) = {xeR: xRCZi(R)}.

If R = L is a Lie ring then by the Jacobi identity Z|(L) is an ideal of L. Clearly

Zi(L) c: Zj+1 (L). It is relatively easy to check that L is nilpotent iff Zm(L) = L for

some m. We have Zi(L) = Z(L) = anniJL Notice also that Z(L/Zj(L)) =
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We should also remind the reader that in a Lie ring we have [x,x] = 0. This

implies [x,y] = - [y,x]. So that all left (or right) ideals are bi-ideals.
If X, YCIL are any subsets, then the centralizer of X in Y is

Cy(X) = {ye Y I [x,y] = 0 for aU x eX}.

Theorem 16. Let L be a connected, solvable, non-mlpotent Lie ring of finite
Morleyrank. Then an algebraically closed field can be interpreted in L.

Proof: We will follow ZiTber's steps (see [Zi 1] or [Ne 3] or [Th]). Since L is
connected and not nilpotent it is infinite.

We first reduce the problem to the case where L is centerless:

Claim 1: Without loss of generality L is centerless.

Divide L by its centers until there isn't any left. The point is that we need to

divide L only a finite number of times. Since L has finite Morley rank and is not

nilpotent and since to divide by an infinite definable ideal decreases the Morley rank, at

some point we can only divide by finite ideals Zi+i/Zi. Assume without loss of

generality that Z = Z(L) and Z2=Z2(L) are finite. Then by Lemma 2, Z^Z. Thus

Z2= Z. D

From now on we assume that L is centerless. By Lemma 2 this implies that L

has no, non-zero, finite ideals.

Let A be a minimal ideal of L. A exists and is definable by Corollary 11

(aim RR = Z(L) = 0). By Lemma 1, A is connected. By Corollary 8, A2 is

definable. Since L is solvable, so is A. Thus A2<5 A. But then A2 is finite, so

P&= 0. This shows that A is Abelian, i.e. [A,A] = 0.
Let C = CL(A) = {x e L: [x,A] = 0}. Since A is an ideal of L, so is C. L

being centerless, C Ç L. L being connected UC is an infinite Lie ring. Let H be a

minimal definable ideal of L such that C ç H ci L and H/C is infinite. Since

[L,A] £L A, also [H,A] £ A. Choose B cz A, a minimal (definable) infinite ideal
such that [H,B] c: B. B is again connected.

Claim 2: CA(H) = 0, CB(H) = 0.
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Since A and H are ideals, CA(H) is an ideal of L. By minimality of A, CA(H) is

either A or finite. If it is A then EOKA), a contradiction. So it is finite. Then it
is 0 because finite ideals of L are 0. Since Cfi(H) c: CA(H), the second equality

follows from the first one. D

Claim 3: H/CL(A) is connected.
Let H° be the connected component of H. H° is still an ideal by Lemma 1. We have
CL(A)C.H° + CL(A)C H. Since H/H° is finite so is H/H° + CL(A). Thus

H°+ CL(A)/CL(A) is infinite. Hence by the choice of H, H = H° + CL(A). But

now
H/CL(A)=H° + CL(A)/CL(AX « H°/H° n CL(A).

Since H° is connected, so is H°/H° n CL((A) and therefore also H/CL(A). D

Claim 4: H/CL(A) is abelian, i.e. [H,HQ c. CL(A).

By Claim 3 and Corollary 8 (H/QXA)2 is connected. But it is also finite

(because H/QXA) is solvable as L is and it has no infinite definable ideals). Thus

(H/CL(A))2 = 0,i.e. H2ecL(A). With the notation of Lie rings: [H,H] ^CL(A).

D
Claim 5: If h e H then Ce(h) = 0 or B.

Claim 4 and Jacobi identity imply that Cs(h) is an H-ideal. If Cfi(h) is not

finite, then it is B by the minimality of B. If it is finite, since the connected ring

H/CL(A) acts on it, as in Lemma 2, H/QL(A) annihilates CB(!I). So also H

annihilates Cfi(h). Thus CB(h) c. CB(H) = 0. D

Claim 6: H/Cn(B) is infinite.
CH(B) = CL(B) n H 2, CL(A) nH = CL(A). Thus H/CH(B) =

(H/CL(A))/(CH(B)/CL(A)). So H/CH(B) is connected by Claim 3. Now if H/CH(B)

were finite then we would have Cn(B) = H, or Bj£ CA(H), contradicting Claim 2.D

By Claim 6 the infinite Lie ring H/CH(B) acts on B by adjoint representation:
H/CH(B) >EndB

h > adh



AliNesin 133

where (adh) (b) = [h,b] for h€ H,be B.

By Claim 5 adh is a 1-1 map if h * 0. Since B has finite Morley rank it is

also onto. Thus we have an imbedding
H/CH(B)-»AutBu{0}

Let R be the (associative) subring generated by the image of H/CH(B) in End
B. Since [H,H] C. Cn(A) c, Cn(B), R is a commutative ring. We will show that R

is an algebraically closed field. By Claim 6, R is infinité.
Let b e B - {0} bea fixed element. As in the proof of Lemma 11 there is a

natural number n for which
B = {co(b) loo is a special word with entries in H of length <,n}.

This is because B is minimal H-normal so the H-ideal generated by [H,b] must

be B.
This says that if Ri£R is the set of endomorphisms of "length ^n" then

Rl(b) = B.
Claim 7: Let re R, c 6 B -{0}. If r(c) = 0 then r = 0.

Without loss of generality b = c. Then 0 = RI (r(b)) = r(Ri(b)) = r(B). So

r = 0. D

Claim 8: R = RI, i.e. R is interprétable.
Let re R. Then 3rie RI such that r(b) = ri(b). By claim 7, r = n. D

Now we are ready to show that R is a field. By Claim 7, R has no zero-

divisors. By Claim 7 again, there is a 1-1 correspondance between the elements of B

and the elements of R:
R-»B

r-»r(b).

This is a homomorphism which is 1-1 and onto. Thus the additive group of R and
B are isomorphic. In particular R is connected. So if re R-{0}, Rr = R = rR.

Therefore there is a ueR such that ur = r. Now if seR then for some teR, s=rt.

So

us = u(rt) = (ur)t = rt = s.

Thus u is an identity of R.
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Let us show that inverses exist. If reR-{0} and b' = r(b), applying to b'

what we have said about b(bVQ) we get an seR such that s(b') = b. So

sr(b) = b = u(b). Therefore sr = u.

Thus R is an infinite field which is interprétable in L. By Macintyre [Mac 2] it

is algebraically closed. Theorem 16 is now proved. D

Let us have a closer look at our field R. We have seen that (R,+) ̂ _ (B,+) as

additive groups. This is also the case in the construction of a field in a solvable

connected group. Also in the above case ad H c. Aut (B) u {0} is an additive

subgroup of R and it generates R as a ring. On the other hand in the case of solvable

connected groups ad H (H acting by conjugation) is a multiplicative group!

There is a conjecture (which is part of another conjecture called Zil'ber's

conjecture) that states that an infinite field R of finite Morley rank cannot have a proper

infinite definable subgroup (additive or multiplicative). If this conjecture is true for

additive subgroups then adH = R and B = [H,b] for any beB\{0}! Since the

conjecture for additive subgroups is true in case CharR = 0 we have

Corollary 17. (Notation as in the proof of Theorem 16) If Char L = 0 then

H/CH(B) and B are isomorphic as additive subgroups via

h-»[h,b]

for any fixed element b e B - {0}. If we define a multiplication on H/Cn (B) by

hi * h2= h <=> [hi [h2,b]] = [h,b]

then (H/Cn(B), +, * ) is an algebraically closed field of characteristic 0. D

We know that if G is a connected solvable group of finite Morley rank then

G' = [G,G] is nilpotent ([714], [Ne 2]). We presume that one can mimic the proof in

[Ne 2] to show the following:

Theorem 18. If L is a connected solvable Lie ring of finite Morley rank then

L2 = [LJL] is nilpotent.

Now we will use the density theorem once more.

Theorem 19. Let L be a connected solvable centerless Lie Ring of finite Morley

rank. Let ACIZ(L2) be a minimal ideal (then A is infinite and is definable). Let
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A = EndiXA). Then dimAA = 1 and the ring generated by L/C[,(A) in EndA(A) is

isomorphicto A.

Proof: We know by Corollary 13 that the ring generated by L/CL(A) in EndAA is

dense in EndAA. But since AC=Z(L2) we have , L2 c= CL(A). So L/QXA), hence

S, are commutative. But a commutative ring can be dense in EndAA iff dimA A = 1.

Thus S = EndAA ~ A. D

The field S we get in this way is the field we got in Theorem 16. To convince

yourself of this fact, trace back the definition of A = Endi/A) and notice that it is just

the ring R of Theorem 16.
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