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The aim of this chapter is to introduce the reader to the theory of stable

groups not to give a rigorous exposition of the general theory. Thus we tend to

proceed from the concrete to the abstract, with several examples and analyses of

special cases along the way. On the other hand, getting to grips with stable

groups presupposes some understanding of the point of view of model theory

in general and stability theory in particular, and the first few sections are

devoted to the latter.

1. MODEL THEORY
By a relational structure M we understand a set M (called the universe

or underlying set of M) equipped with relations Rj of arity ni < co say, for
ni

le i . Namely, for i e I, R± is a subset of the Cartesian product M .

Here I and <ni : i G I> depend on M and are called the signature of M. We

also insist that I always contains a distinguished element i= such that Ri- is

the diagonal {(a,a) : ae M} c, M2. Often the distinction between M and M

is blurred. The model theorist is interested in certain subsets of M and of Mn

(the definable sets) which are obtained in a simple fashion from the RI. So
J9(M) is a collection of subsets of Mn, n< co, which can be characterized as

follows:

(i) Every RIE J9(M).
(ii) If n < co, Xe J9(M) is a subset of Mn and n is a permutation of

{l,...,n} then 7c(X) = {(a^i) .....a^n)) : (ai,...,an) e X} e £)(M).
(iii) J9(M) is closed under Boolean combinations, i.e. if n < co and
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X,Y e JB(M) are subsets of M" then XU Y,Xf l Y,M n-X areallin
JB(M).

(iv) If Xe JD(M) andYe J9(M) then Xx Ye J9(M).
(v) If X e J0(M) is a subset of Mn+m, then the projection of X on

Mn is in J9(M).
(vi) If Xe J9(M) is a subset of Mn+m and âe Mn then Xa =

{be Mm: (a,b) e X} is in J9(M).
(vii) Nothing else is in J9(M).

We call J9(M) the class of definable sets of M.

These definable sets can be defined (and usually are) syntactically.

Associated to the relational structure M (in fact to its signature) is a language
L(M) consisting of symbols: Pi for each ie I, "variables" Xj for each j<co,

and logical symbols A (and), v (or), -i (not), V (for all) and 3 (there exists).

L(M) -formulas are constructed from these symbols as follows: if xj are
variables then PiXi...xn. is an (atomic) formula. If 9,\|/ are formulas and x

is a variable then (pA\|/, cpvy, -i 9, (3x)cp, (Vx)(p are all formulas. A variable

x is said to be free in the formula 9 if some occurrence of x in 9 is not in

the scope of any quantifier. We write 9(xi,...,xn) to mean that xi,...,xn are

the free variables in the formula 9. We then define "9(xi,...,xn) is true of

(ai,...,an) in M" (where ai,...,ane M) as follows:

If 9 is atomic, say Pyi... yn, and for some permutation n of

{l,...,n}, xi = y^i) then 9(xi,...,xn) is true of (ai,...,an) in M if

(ao(l)>-,ao(n)) e p where a =7C"1-
If \\f is (3xn+i) 9 and xn+i is a free variable of 9, then \|/(xi,...,xn)

is true of (ai,...,an) in M if there is an+i e M such that 9(xi,...,xn,xn+i)
is true of (ai,...,an+i) in M. Similarly for y = (Vxn+i) 9.

The clauses for A,v, -i are obvious. We abbreviate "9(xi,...,xn) is
true of (ai,...,an) in M" by the notation M 1= 9(ai,...,an). (Note this
notation depends on our having listed the free variables in 9 in a certain order).

By abuse of everything, we can and will think of M N= 9(ai,...,an) as
saying that 9 is true when we substitute ai for xj.
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It is now routine to check that

Fact 1.1. If X c Mn, then X e J9(M) if and only if there are an L(M)

formula <p(xi,...,xn,yi,...,ym) and bi,...,bm e M such that

X ={âe Mn: M (=cp(â,b)}.

The syntactic approach to defining definable sets appears at first to be

preferable as one can make the following definition.

Definition 1.2. Xe J9(M), a subset of Mn, is said to be A-definable or

defined over A (forACiM) if in Fact 1.1 we can choose (p with b c: A.

Example 1.3. Let K be an algebraically closed field. We can consider K

as a relational structure in the above sense by choosing {0}, {1}, and the

graphs of addition and multiplication as the "distinguished" relations. Note that

if PI,... J?r are polynomials in n-variables over K, then the subset V of Kn

consisting of the simultaneous zero set of these polynomials is a definable set.

These are called the affine algebraic sets. Finite Boolean combinations of such

sets are called constructible sets of K, and either Tarski's "quantifier

elimination theorem" (quantifier elimination in a language with function

symbols for addition and multiplication) or Chevalley's theorem states

Fact: The constructible sets of K are precisely the definable sets of K.

For an affine algebraic set X c: Kn there is an algebraic-geometrical

notion of X being defined over k (k a subfield of K) which may have some

discrepancy with the model theoretic notion (Definition 2.2). Namely: let I(X)

CL K[xi,...,Xn] be the ideal of polynomials which vanish on X. According to

the algebraic geometer X is defined over k d K if I(X) can be generated as

an ideal by polynomials in k[xi,...,xn].

We do have (for X£.Kn affine algebraic and k subfield of K)

Fact: X is defined over k in the model theoretic sense iff X is defined

over k in the sense of algebraic geometry (where p = char K).

So if k is perfect, or char k = 0, the notions agree.
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1.4. The usual procedure in model theory is to start with a language L and to

consider various subclasses of L-structures. So L will essentially be a

signature as above, Le. will consist of a set of relation symbols of specified

arity and an L-structure will be a relational structure equipped with corres-

ponding relations of the right arity. This enables us to compare L-structures in

various respects. For instance, by an L-sentence we mean an L-formula

which has no free variables. An L-structure M is said to be a model of a set
F of L-sentences if for every a e F, M h a, i.e. every a e F is true in M.

A set of L-sentences F is said to be consistent if it has a model. A consistent

set of sentences F is said to be a complete theory if for every L-sentence a

either ae F or -icie F, equivalenûy for some M, F= {G: M l=a}; in the

latter case F being called the theory of M. Two L-structures M and N are

called elementarily equivalent if they have the same theory, equivalently they

satisfy the same L-sentences. As an example, any two algebraically closed

fields of the same characteristic, say p, are elementarily equivalent; in other
words the set TACF_ of sentences (in the language in Example 1.3 for

example) true in all algebraically closed fields of characteristic p is a complete

theory.

A crucial tool in model theory is the compactness theorem: a set of
sentences F is consistent iff every finite subset of F is consistent. This gives

substance to the following important notion: Let M, N be L-structures with

M a substructure of N (M ÇL N, with the obvious meaning). M is said to be
an elementary substructure of N, M < N, if for every formula cp(x) of L

and à" G M, we have M 1= cp(â) iff N 1= q>(a).

Let us remark that if M < N then any definable set X jc Mn in M

has a canonical extension to a definable set X' Cj, Nn in N. Namely, let
cp(x,y), âÇ^M be such that cp(x,a) defines X in M. Then let X/ =

{x e Nn : N 1= cp(x,a)}. Note that X c= X' and X' does not depend on the

particular choice of (p and a.

The compactness theorem yields for any infinite M, elementary

extensions N of M of arbitrarily large cardinality. Another consequence of
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Tarski's quantifier elimination is that if KI c: K2 are algebraically closed

fields then KI < K2, noting the following characterisation : let MI c:

then MI < M2 iff for any non-empty Mi-definable subset X ofM2,

1.5. Saturated models.
Let K be an infinite cardinal. The structure N is said to be Kr

saturated if for any A C N with I AI < K and any collection Xi, i e I of

A-definable subsets of N with the finite intersection property ( . fl X. ?* 0 for

all finite J ̂  I), we have .0 X. ̂  0. Again the compactness theorem gives for

any M and K some K-saturated N > M.

It is worth noting that the definition above of K-saturation would be

equivalent if we allowed the Xi to be A-definable subsets of Nn for any

n > 1 This apparently stronger fact follows by use of the existential quantifier.

One can think of the property of K-saturation of N as meaning that for

any M < N with IMI < K, any situation that can happen in some elementary

extension of M already happens in N. (In this sense N is like a universal

domain. In fact, what Weil calls a universal domain - an algebraically closed

field of infinite transendence degree K over the prime field- is K-saturated).

Moreover if M = N and IMI < K then there is an elementary embedding

(obvious meaning) of M into N. It will be convenient to assume that any

complete theory has models which are K-saturated and of cardinality K. for

arbitrarily large K. Such a model, N say, will have homogeneity properties

in addition to saturation properties, which are pointed out subsequently. (For

stable theories the existence of such models is guaranteed. Otherwise, it

depends on set theory).

Let us now fix such a model N (K-saturated of cardinality K for some

large K). A, A', B etc. will denote subsets of N of cardinality <K, and M,

M', MI,... elementary substructures of N of cardinality < K (often called

models). We now introduce the important notion of a type.
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Let A CN. By a complete n-tvpe over A we mean a maximal

consistent collection of A-definable subsets of Nn (where consistent means

having the finite intersection property). Alternatively, with some abuse of

earlier notation, a complete n-type over A is a maximal set F of formulas of

the form cp(xi,...,xn,a) where if d A and for (pi,—,<pme F, N 1=

Let bi,...,bne N. By the type of b over A (in N if you wish),

tp(b /A) is meant the collection of A-definable subsets of Nn containing b.

tp(b /A) is clearly a complete n-type over A. Conversely, saturation of N

implies that every complete n-type F over A is the form tp(b/A), for some b

e Nn. b is said to realize F. The set of complete n-typesover A is denoted

Sn(A), and types themselves are usually denoted by p, q etc.

The fact that N is saturated in its own cardinality gives us a nice

characterization: if t>i e Nn, t>2e Nn then tp(bi/A) = tp(t)2/A) iff there is

an automorphism f of N such that f(bi) = b2 and f fixes A pointwise.

(Similarly for types of infinite tuples of cardinality < K).

Saturation of N also enables us to give the notion "definable over N" a

"Galois theoretic" interpretation. Firstly, the compactness theorem yields: Let

X ci Nn be definable, let A <^ N and suppose that whether or not some b e

Nn is in X depends only on tp(b/A). Then X is A-definable. In conjunction

with the previous observation this shows that for definable X ci Nn, X is A-

definable iff for every automorphism f of N which fixes A pointwise, f(X)

= X.

1.6. Ne<l

It will be sometimes convenient (especially when dealing with groups)

to work in a structure which is "closed under definable quotients". We can

construct from N such a universe, Neci, which is "essentially" the same as N.

Informally, N^i is the disjoint union of a collection of universes, one of which

is N, and each being picked out by a new predicate. Each new universe is

identified, by means of a new function symbol, with the set of classes of a
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0-definable equivalence relation on Nm for some m<co. Moreover, all

0-definable equivalence relations on Nm, m<co are accounted for by these

new universes. More formally, if L is the original language then Leq will be

L augmented by a unary predicate symbol PE and a function symbol fg for
every 0-definable equivalence relation E. N6*! will be the L^ structure

whose underlying set is the disjoint union of the interpretations of the various

PE'S (which we can call NE). N- is precisely N with its original L-

structure. If E is an equivalence relation on Nm, then the interpretation of fE
is a surjective map Nm -» NE whose fibres are the E-classes. This whole

construction is of course a function of Th(N), so for any M s N, we can

obtain in the same way M6 .̂ We however make the additional stipulation that

in the models of T6^ (= ThCN^)), every element should satisfy one of the

predicates PE (So T^ is a "many sorted" theory). This can be formally

accomplished by requiring that every L^ formula we consider must state for

each of its variables the predicate PE in which the variable lies. We think of the

PE'S as picking out certain sorts.

has the following properties:

1.7. (i) A subset X of Nm definable in N^ is definable in N.

(ii) Any automorphism of N has a unique extension to an automor-

phism of N^.
(iii) For any definable subset X of (N^)n there is an element axe N^

such that an automorphism f of N6^ fixes X setwise iff it fixes ax-

An element b is said to be algebraic over A (A, b d N or even N6*!)

ifb lies in some finite A-definable set. b is definable over A if {b} is A-

definable.

acl(A) = {b: bis algebraic over A},

del (A) = {b: b definable over A}.

A definable set X is said to be almost over A (X, A in N or N^) if

X has finitely many images under A-automorphisms of N.

Fact 1.8. X is almost over A iff X is acl(A)-definable in
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2. CO-STABILITY

Stability is an hypothesis on the "complexity" of the family of

definable sets in a model. Generally we talk of stability, superstability,

co-stability (or total transcendence) of a complete theory T. which translates

into certain rank or dimension functions on the definable sets of a saturated

model N of T being everywhere defined. Probably the easiest such rank to

define and understand is Morley rank, RM.

Definition 2.1. Let n < co, X <= Nn a definable set. RMn(X) is defined

as follows:

(i) RMn(X) > 0 if X * 0.

RMn(X) > 0 if RMn(X) > a for all oc< 8 (0 limit).

RMn(X) > a + 1 if there are pairwise disjoint definable subsets

Xi c Nn for i < co such that RMn(X fl Xi) > a for all i <

co. If RMn(X) = a some a, we say RMn(X) is defined.

Otherwise (i.e. if RMn(X) > a, for all a) we put

RMn(X) = oo.

(ii) If p e Sn(A), A c N, we put RMn(p) = min (RMn(X):

Xe p}.

Remarks and Definitions 2.2.
(i) Let M be an arbitrary structure. Let N be a K-saturated

elementary extension of M of cardinality K, where K > IMI +

cardinality of L(M). Let X c: Mn be definable in M. Let

Xf c: Nn be the canonical extension of X to a set definable in

N (as in 1.4). Then we define RMn(X) = RMn(X
f).

(ii) Let T be a complete theory and let N be a model of T (N

saturated in its own cardinality K, for large K). We say T is

totally transcendental if for every definable XCiNn, RMn(X)

is defined (actually it is enough to demand this for X ci N).
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(iii) If the language of T is countable and T is totally
transcendental, we say that T is co-stable. (This notation will

be explained later: basically here it means that for countable

models M of T, Si(M) is countable). We may, by abuse of
language, still use the expression co-stable to mean totally

transcendental, even if T is not countable.

(iv) We usually drop the subscript n from RMn when the arity of

X is either clear from the context or unimportant.

Fact 2.3.
(i) If RM(X) = a and X is A-definable then there is a

complete type pe S(A), with RM(p) = a and X e p.

(ii) If RM(X) = a then there is a greatest k < co for which there

are pairwise disjoint Xi for i = 0,l,...,k-l such that
RM(X A XO = a Vi < k. k is called the Morley degree of X.

Similarly one can define the Morley degree of a complete type
pe S(A).

Let us remark that if we work in N6^ then for any sort S (S is one of

the PE), we can define RMS(X) for X a definable set of elements of sort S.

It will then be the case that if RM(X) is defined for all X ^ N then also
RMS(X) is defined for every sort S in N^ (i.e. T totally transcendental =>

W is totally transcendental).

Example 2.4. Strongly minimal sets

Let X ci Nn be a definable set in (saturated) N. X is said to be strongly

minimal if for every definable Y C. Nn either X H Y or X - Y is finite.

Similarly, working in N6*! we can speak of a definable set X in sort S

being strongly minimal. The complete theory T is said to be strongly minimal

if the universe of a saturated model N of T is strongly minimal (Note: it

does not make sense to speak of T6*! being strongly minimal). As a case study

we will show what Morley rank means in the case of strongly minimal theories

(and also strongly minimal sets).
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We first make a trivial remark:

Remark: Let b, ai,...,ake N, A c N with be acl(ai,...,ak,A). Then
there is an A-defmable set XCi Nk + 1 such that (ai,...,ak, b) e X and
such that whenever (ai',...,ak',b') E X then b' e acl (ai',...,ak',A).

We will say that the set {ai,...,ak} is algebraically independent over A if for
all i, aie acl(ai,...,ai_i,ai+i,...,ak,A).

(i) of the next fact is easy, but (ii) is less so.

Fact 2.5. Let N be strongly minimal, A d N.
(i) Let ai,a2e N, ai,a2 £ acl (A). Then tp(ai/A) = tp(a2/A).
(ii) Let ai,...,ake N. Then all maximal algebraically independent

over A subsets of {ai,...,ak} have the same size m. We

call this number dim(ai,...,ak/ A). This being clearly a

function of tp(a/A) (where a = (ai,...,ak)) we write also
m = dim (tp(a/A)).

On the other hand, let X^.Nk be defined over A. We define dimX
to be max {dim (a/A) : a e X}. This does not depend on A. Namely suppose

dim X as defined above is equal to r. Let B ~^> A. Let dim (a/A) = r where
a = (ai,...,ar,...,ak) e X and without loss of generality {ai,...,ar} is

algebraically independent over A. Let {bi,...,br} be algebraically
independent over B. By Fact 2.5 (i) applied repeatedly, tp(ai,...,ar/A) =

tp(bi,...,br/A). Thus by saturation of N we can extend (bi,...,br) to a

sequence b e Nk such that tp(b/A) = tp(a/A). In particular b e X and

clearly dim(b/B) = r = max {dim (F /B): F G X}

We aim to show that for strongly minimal N, Morley rank equals
dimension for types or definable sets of k-tuples, k < co.

Lemma 2.6. (N strongly minimal). Let X <^ Nk be definable. Then dim
X > r + 1 iff there are pairwise disjoint definable X{<^X for i e o> such that

dimXi>r for all r.
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Proof: Note first that every nonempty definable set has dimension > 0.
Suppose now dim X > r + l . Suppose X to be A-definable and let
(ai,...,ar+i,...,ak) = âe X with dim(a/A)>r+ 1. Without loss of

generality {ar...,ar + 1} is algebraically independent over A. Let {b1
1:i<œ}

be algebraically independent over A (by saturation of N). By Fact 2.5.

tpCbj/A) = tp(ax/A) V i < œ, thus by "homogenity" of N there are b l =

(bl
lf...,b£) for i<co such that tp(bVA) = tp(a/A). For i<co let

X. = {x : x E X and xl = b^}. Then X. d X, the sets X{ are pairwise disjoint
* . .

and dim X. > r (for the latter, note X. is A U [bj -definable, b1 E X. and

{b^-.^b^j} is algebraically independent over A U {b^}). So this shows left

to right.
Conversely, suppose that Xi^.X for ie co, with the Xi pairwise

disjoint and dim X|>r. Suppose X and all the X[ to be B-definable. For
each i let b1 = (bj,...,^) be in X. with dim(bVB)>r. As there are

infinitely many i, we can assume that for each i, {bj,...,^} is algebraically

independent over B. By repeated application of Fact 25 (i), tp(bp...,br / B) =

tp^,...^^) for i,j<co. So by section 1.4 for each i, j <œ there is a

B-automorphism taking (bp...,^) to (b^...,^). As every B-automorphism

leaves each Xi as well as X setwise invariant, we can assume that there are

blf...,br such that for all i<co and j<.r, b! = b. (namely the b1 have same

first r coordinates).

Claim: Y = { c e Nk~r: (bi,...,br, c")e X} is infinite. For otherwise, as
XiCiX for i<co, there would be c with (bi,...,br, c) e X t f l X j for

some i * j, contradicting pairwise disjointness.
By the claim and saturation of N we can find c" e Y and some

coordinate of c, say ci such that ci£ acl(bi,...,br,B). But then
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dim X > r + 1. This completes the proof of Lemma 2.6. D

Corollary 2.7. (N strongly minimal).

(i) Let X c: Nk be definable, then dim X = RM(X).

(ii) Let ai,...,ak € N, A c N, Then dim(ai,...,ak/A) =

RM(tp(ai,...,ak/A)).

Proof: (i) follows from Lemma 2.6 and the definition of Morley rank, (ii)
follows by noting that if p = tp(ai,...,ak/A) then dim p = min {dim X : X e p}

= RM(p). D

Example 2.8. Let K be a saturated algebraically closed field (with no

additional structure beyond the field structure).

Lemma 2.9. (i) K is strongly minimal.

(ii) I f k c ^ K and ai,...,an are in K, then ai,...,an are algebraically

independent over k in the sense of model theory iff they are algebraically

independent over k in the sense of field theory.

Proof: (i) We already remarked in Example 1.3 that any definable set X c K

is constructible, i.e. a finite Boolean combination of algebraic subsets of K.

Noting that an algebraic subset of K must be finite (or all of K), we see that

X is finite or cofinite, whereby K is strongly minimal.

(ii) We use again the fact (quantifier elimination) that every formula
(p(x) is equivalent in K to a quantifier free formula \|f (x) in a language with

function symbols for +, • and constant symbols for 0,1. It easily follows

that if ai,...,an are algebraically dependent over k in the model-theoretic

sense then ai,...,an satisfy a nontrival polynomial relation over k. D

Let now V = V( a/k) = { b e Kn : f( b) = 0 whenever f( a) = 0 for

fe k[ x]}. By definition, the algebraic-geometrical dimension of this affine

algebraic set V is the transcendence degree of k(a) over k.
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Proposition 2.10. (With the above notation)

RM(tp(a/k)) = RM(V) = algebraic geometrical dimension of V.

Proof: By part (ii) of the Lemma

(a) transcendence degree of k(a) over k = dim (a/k).

By Corollary 2.7 (ii)

(b) RMtp(a/k) = dim ( a/k).

By part (ii) of the Lemma again, dim (b/K) < dim (a/K) for all b e V

and thus

(c) dim(V) = dim ( a/k).

The Proposition now follows from (a), (b) and (c). D

3. STABILITY
Although much of this volume will concentrate on co-stable groups, and

even co-stable groups of finite Morley rank, it is worth saying something about

stable theories in general. Stability is a property of certain theories (the stable
ones) which is considerably weaker than co-stability. It might be considered as

"local co-stability", and we subsequently introduce it in this way. For now, we

can take a definition of stability as: T is stable if there is no formula cp( x, y)

and tuples âi,ïïj (i,j <co) in a model M of T with M 1= cp( ai, bj) iff i < j ;

orequivalentiy thereisno\|/(xi, X2) and ai(i<co) with M l=\[f(âi, ij) iff

i<j. ("One cannot define an order").

Under the sole assumption of stability, a good notion of independence

can be defined: for a model N of stable T, a c N, A c B c N, we will

make sense of " a is free from B over A", " a and B are independent over

A". This will depend only on the formulas true of a, A, B and so we will
also say "tp( a/B) does not fork over A". For T co-stable this will agree with

"RM( a/B) = RM( a/A)". In general, the following wiU be true:

(i) a is free from B over A iff a is free from B0 U A over A

for every finite B0 ̂  B.
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(ii) For any a, B there is B0 ^ B IB0I ^ITI, with a free from

B over B0.

(iii) If A c B <^ C, then a is free from C over A iff a is free

from C over B and a is free from B over A.

(iv) a is free from B over A iff for all b c: B, b is free from

a U A over A.
(v) For given pe 3(A) and B ^> A there are at most 2ITI and at

least one qe S (B) such that q3.p and q does not fork

over A.

(vi) a is free from B over M (M a model M c B) iff tp( a/B)
is definable over M Le. for every \|/( x, y)e L there is 8( y)

with parameters in M such that for all b e B, N 1= 8(b) iff

We will also say a is free from A over A, whereby, by (vi) we see,
every p e S(M) is definable.

There are a number of ways of introducing forking and proving its

properties, the original being due to Shelah [ S] and another influential

treatment being due to Lascar and Poizat [L.P]. See also [P], [H.H], [R],

One of the more efficient procedures appears in the introduction of

Hrushovski's thesis which is apparently the content of a course given at

Berkeley by Hamngton. For the interested reader we outline this approach

giving selective proofs.
We work in a saturated model I of T. Let A(x) be a (usually finite)

collection of L-formulas, say {8i(x, yO : i e 1} where x = (xi,...,xn). By a

A-type we mean a consistent (small) collection of formulas of the form

8( x, a), -i 8( x, a), for 8( x, y) G A and a c: (E. A complete A-type over

AC: (E is a A-type, all of whose formulas have parameters in A and which is

maximal (consistent) such. Sometimes we identify a complete A-type over A

with its closure under conjunctions and disjunctions. SA(A) denotes the

complete A-types over A.
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Definition 3.1. A A-defining schema over A is a map that assigns to each

8( x, y) E A a formula \|/§( y) over A such that for any B n> A (or for some

B ^> A which is a model), the following set

(8(x,b): b c B, 8 e A, h \[fô( b)}U {-,S(x, b) : EC B, 8 e A, h -. VB(b)J
is a complete A-type over B. If we let d denote the map 8( x, y) — » \|/§(y)

then we call the above complete A-type d(B). If A = L, we just talk about a

defining schema (over A).

We can observe immediately:

Lemma 3.2. (T stable). Let p(x) e S(A), q(y) G S(A) and <p(x, y) e L.
Let AI(X) contain (p(x, y) and A2(y) contains cp(x, y). Let di be a

Ai-defining schema over A such that for some (any) M ^> A, p(x) U di(M)

is consistent. Let da be a A2-defining scheme over A such that for (any)

M ^> A, q(y) U da(M) is consistent. Let \|/i(y) be di(cp(x, y))> and
be d2(cp(x,y)). Then \|fi(y) e q(y) if and only if \|^2(x)e p(x).

Proof: Suppose not and let M i> A be saturated. Without loss of generality,

\|/2(x) e p(x) but -i \|/i(y) e q(y). We define ai, bi in M, inductively as

follows: an realizes p(x) U d i (AU {âo, bo,...,ân_i, bn-i}), and bn

realizes q(y) U d2(AU {âo,bo,...,an-i,bn-i,ân}). It is easy to check that M

(=9(âi,bj) iff i<j, contradicting stability. D

The aim now is to show that for every p(x) e S (A), where A is

algebraically closed in (E6^ and finite A(x), there is a A-defining schema d

over A such that p(x) U d(M) is consistent, for all M 2. A. For this we
introduce A-rank. So fix finite A(x). Let 9(x) be a formula maybe with

parameters.

Definition 3.3.
(i) RA(cp(x))>0 if
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(ii) RA(CP(X)) ^ a + 1 if for every m < œ there are finite pairwise

contradictory A-types qi,...,qm (i.e. for i*j there is a formula in cy whose

negation is in qp such that RA(<?(X) A A qO > a, for i = l,...,m.

(iii) For limit 8, RA(?(X)) > 8 if RA (cp(x)) > a all a < 8.

(iv) IfO(x) is a set of formulas then RA(^) = min{RA(cp (x)): (p is

finite conjunction of members of <!>}.

(v) Suppose RA(<& (x)) = a and m < œ is greatest such that there are

qi>— »q*n as in (ii). We call m the A-multiplicity of cp(x) and we denote it

by mA(cp(x)).

Fact 3.4. T is stable implies that for all (p(x) and finite A(x), RA((?(X)) is

defined (i.e. has an ordinal value).
Let us assume from now on T to be stable. We fix finite A(x), and

we denote (RA(9(x), mA(cp(x)) by R-mA(9(x)). We equip these pairs with the

lexicographic ordering.

Fact 3.5.

(i) RA((p (x) v \|f(x)) = max {RA(cp(x))» RA(¥(X)) 1 -

(ii) Let m > l , then R-mA(cp(x)) ^ (cx,m) iff there are mi,ni2

with mi + m2 = m, 8(x,y) e A, a e (E such that

R-mA(cp(x) A 8(x,a)) > (a,mi) and R-mA (cp(x) A-. 8(x,a)) >

(a,m2).
(iii) LetO(x) be a consistent collection of formulas over A. Then

there is a complete A-type q(x) over A such that

U q).

Lemma 3.6. Let R-mA (9(x)) = (a,m). Let 8(x,y) e A. Then there is a

formula \|f(y) (with parameters from among those in 9) such that for any b

(E 1= cp(b) iff R-mA (9(x) A 8(x,b)) = (cc,m).
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Outline of proof: First, using Fact 3.5 (ii), the finiteness of A and

induction one shows that for any formula cp(x,y) and pair (oc,m) there is a

collection F(y) of L-formulas such that I 1= F(b) iff R-mA (cp(x,b)) £ (a,m).

Now, suppose R-mA(9(x)) = (a,m). By Fact 3.5 (iï) "R-mA((p(x) A 8 (x,y))

> (a,m)" and "R-mA(9(x) A -i 8 (x,y)) > (a,l)" are inconsistent. By

compactness there is a formula \|f(y) (with parameters among those in 900)

such that \|f(y) is equivalent to RA(<P(X) A -i 8(x,y)) < a. Thus Œ N=V(b) iff

R-mA(9(x) A S(x,b)) N= (a,m). D

Lemma 3.7. RA(9(x))<œ for all cp(x).

Proof: If not there is 9(x) with R-mA(9(x)) = (co,l). By fact 3.5 (ii) and

the finiteness of A there is 8(x,y) e A such that for arbitrarily large r < 00

there is b such that RA(<?(X) A 8(x,b)) > r, RA(<?(X) A -i 8(x,b)) ^ r. But, as

in proof of 3.6, RA(C(X) A 8(x,b)) > r is equivalent to Fr ( b) for some

collection Fr(x) of formulas, and similarly for "RA(CP(X) A—« 8(x,b)) > r".

There is clearly b such that RA(C(X) A 8 (x,b)) > co and RA(<P(X) A -i 8(x,b))

> co, contradicting R-rriA((p(x)) = (co,l). D

Let pOO G S (M). We say p is definable if for every cp(x»y) E L there

is \|f(y) over M with : for b <^ M, c(x,b) € p iff M N \|f(b). If the \|f(y) are
all over A c M we say p is definable over A. Note this means that there is

a defining schema over A, d say, such that d(M) = p.

Proposition 3.8. (i) Every p(x) e S(M) is definable.

(ii) Let p(x) e S(A) where A is algebraically closed (in (Eeq). Then

for any finite A(x) there is a A-defining schema d over A such that p(x) U

d(M) is consistent (M any model containing A).

Proof: (i) Let p(x) e S(M). Let 9(x,y) e L. Let A(x) = (9(x,y)}. Let

X(x) e p be such that R-mA(X(x)) = (k»m) is least possible (in fact m = 1).

So for b e M, 9(x,b) e p iff R-mA(X(x) A9(x,b)) = (k,m) which, by
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Lemma 3.6, is equivalent to l=\|/(b) for a formula \|/(y) with parameters

among those in X-
(ii) Let p(x) e S(A). Let M => A be saturated. By Fact 3.5 (iii)

there is a complete A-type q(x) over M with RA(P(X)) = RA(P(X) U q(x)).

By the same proof as in (i) there is a A-defining schema over M, d say, such

that q = d(M). We will show that d is over A (i.e. q is definable over A).

Let f be an automorphism of M which fixes A pointwise. So f(p U q) =
p U f(q) and RA(P) = RA(P U f(q)). So by definition of R/\, q has only

finitely many images under such A-automorphisms of M. Thus for each
8(x,y) e A, the defining formula d(8(x,y)) has only finitely many images

under A-automorphisms of M, i.e. d(8(x,y)) is almost over A. But A is

algebraically closed in (E^ so d(8(x,y)) is over A. This shows that d is a

A-defining schema over A. D

Proposition 3.9. Let p(x) e S(A), A algebraically closed. Let di, d2 be

A-defining schema over A such that for M^ A, p(x) U di(M) is consistent

and p(x) Ud2(M) is consistent. Then di(M) = d2(M) (all M => A).

Proof: Let (p(x,y) G A. Let 8i(y) = di(q>(x,y)) and 82(y) = d2 (cp(x,y)).

We must show that M h (Vy)(Si(y) <-> 82(y)). Let b d M with J(b) =

Jt(y). Let q(y) =tp(b/A). Let A'(y) be a finite set of L-formulas containing

cp(x,y). By Proposition 3.8 (ii) there is a A'-defining schema d$ over A

such that q(y) U ds(M) is consistent. Let 8s(x) be d3(c(x,y)). By Lemma

3.2, 8i(y) e q(y) iff 83(x) e p(x) iff 82(7) e q(y). In particular l=8i(b)

<-^ S2(b), which proves what is required. D

Corollary 3.10. Let p(x) e S(A) (A algebraically closed). Then there is a

unique defining schema d over A such that for all M n> A, p(x) U d(M) is

consistent (i.e. p(x) = d(A)).

Proof: By 3.8 (ii) and 3.9. D
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Note: Corollary 3.10 says that for any p e S(A) (A algebraically closed)

and M ^> A there is a unique q e S(M) such that q ^> p and q is definable

over A.

Definition 3.11. For p e S(A) (A algebraically closed), we denote by dp

the unique defining schema over A given by 3.10. Let qe S(B) and

A c B (A, B not necessarily algebraically closed). We say q does not fork

over A if for some (equivalently any) extension qi of over acl(A), dqj is

over acl(A).

Remark 3.12. So qe S(B) does not fork over A iff for some (any)

extension q, of q overacl(B), d^ and d r are equivalent. This is by
1 "i 1j I acl(A)

the uniqueness part of 3.10. It is also the case that q e S(B) does not fork
over A iff RA(q) = RA(qfA).

Properties (i) - (vi) mentioned in the introduction to this section are now

more or less immediate. Note that property (iv) (symmetry) follows from

Lemma 3.2. We should also add

Corollary 3.13. For any p E S(A) and B => A there is q € S(B) q 13 p,

q does not fork over A (q is called a nonforking extension of p).

And we summarize:

Corollay 3.14. (i) Let p(x) e S(M) and A c M. p does not fork over A

iff p is definable over acl(A).
(ii) Let p(x) e S (A), A algebraically closed. For any B ^> A, p has

a unique nonforking extension to B.

Proposition 3.15. Let p(x) e S(M), A ci M and suppose p does not fork

over A. Let (p(x,b) G p(x) (b <^ M). Then for every model MI ^> A, there is

â'e MI, for which 1= (p(â',b) (Le. p is almost finitely satisfiable in MI).
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Proof: We may assume A to be algebraically closed (in (Eecl) (as A d MI iff
acl A d MI). Now let MI ^> A and let p' be a nonforking extension of p

over M UMi (by Corollary 3.13). So clearly p' does not fork over MI. Let

a realize p' (so h (p(â,b)). By symmetry (iv) tp(b/Mi U a) does not fork

over MI. So tp(b/Mi U a) = d(Mi U a) for some defining schema over

MI. Let \|/(x) be d((p(x,y)) (\|/(x) has parameters MI). Note l=3x\|f(x)

(namely a). Thus there is à' G MI l=V(â')>so [=(p(â',b). n

We say p(x)sS(A) is stationary if p has a unique nonforking

extension over any B i> A.

Lemma 3.16. p e S (A) is stationary if and only if for some M i> A and

some qe S(M) containing p, q is definable over A.

Proof: Let M ^ A be saturated (homogeneous). Let q(x) G S(M) be a

nonforking extension of p. So we know q = d(M), where d is a defining

schema over acl(A). Now for any A-automorphism f of M, f(q) = f(d)(M)

still extends p, so is clearly also a nonforking extension of p. By hypothesis

f (q) = q, i.e. f(d) = d. It clearly follows that d is over A.
Conversely, suppose the right hand side to be true. Let q G S(M),

q 2 p, q definable over A. So q = d(M) for some defining schema d over

A. By the uniqueness in Corollary 3.10 d = dp, which implies that p is

stationary. D

Lemma 3.17. tp(i/A) is stationary iff dcl(A,a) fl acl(A) = dcl(A) (where

acl, del are computed in

Proof: Assume tp(a/A) to be stationary. Let c e dcl(A,a). Easily tp(c/A) is

stationary. Thus if c e acl(A) then c e dcl(A).

On the other hand, suppose the right hand side is satisfied. Let
MS AU à be saturated and let q(x) G S (M) be a nonforking extension of

tp(a/aclA). Let q(x) = d(M) where d is a defining schema over aclA. Let f
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be an (A U a) -automorphism of M. So f(aclA) = aclA (as a set), and so
f(q) = q, so f(d) = d. Thus d is over A U a i.e. for every ç(x,y) e L,

d9(x,y)) e dcl(A U a) fl aclA. By the condition, d(cp(x,y)) e dclA, i.e. d

is over A. By 3.10, p is stationary. D

We now examine what some of these notions mean in the context of
co-stable theories and algebraically closed fields.

Lemma 3.18. Let T be co-stable. Then T is stable. If p e S (A), p c q

e S(B), then q is a nonforking extension of p iff RM(q) = RM(p). p is

stationary iff Morley degree of p is 1.

Proof: RM(cp(x)) < oo clearly implies RA(<?( x)) <°° for all finite A. So T

is stable.

It is easy to see that RM (tp(â/A)) = RM(tp(â/aclA)). So we may

assume A to be algebraically closed. Also we may assume B is a big model
M say. Let q G S(M), RM(q) = RM(p). Any conjugate of q under an A-

automorphism of M clearly has the same property, so there are only finitely

many such q. Thus q is definable over aclA = A. Hence q does not fork

over A. The converse is similar. Clearly p has Morley degree 1 iff p has a

unique extension to M with the same Morley rank, which by the above means

that p is stationary. D

In the next observation we will use the fact, pointed out by Poizat in

[Pol] that algebraically closed fields admit so-called elimination of imaginaries.
This means that if K is an algebraically closed field and a e K6^ then there is

some k-tuple (bi,...,bk) from K much that b and a are interdefinable (over
0) in Kecl. We also use the fact that if K is an algebraically closed field of

characteristic 0 and A <^ K, then the definable closure in K of A equals the

subfield of K generated by A (i.e. the rational closure of A). (By quantifier

elimination).
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Corollary 3.19. (of Lemma 3.17). Let K be an algebraically closed field

of characteristic 0, â<^ K and k asubfieldof K. Then tp(a/k) is stationary

iff k is algebraically closed in k(a) (i.e. k(a) is a regular extension of k).

Proof: By the above remarks dcl(k U a) in K6^ is interdefinable with k(a)

(the rational closure of k U a). Similarly, acl(k) in K64! is interdefinable with

k (the algebraic closure of k inK). Thus the condition in Lemma 3.17

translates into: k is algebraically closed in k(a), proving the Corollary. D

Let now K be a saturated algebraically closed field (of arbitrary
characteristic). Fix n<ox We have already remarked that the affine algebraic

subsets of Kn are the subsets of Kn defined by PI(X) = 0 A...A Pk(x) = 0,

where PIG K[x]. We point out that these are the closed sets for a certain

Noetherian topology on Kn, the Zariski topology. It is first easy to see that a

finite union of affine algebraic sets is also an affine algebraic set. On the other
hand, if Vi ÇL Kn, i < co, are affine algebraic sets then the ideal of Kpt]

generated by all the polynomials defining all the sets Vi, is generated by

finitely many such polynomials (as K[x] is a Noetherian ring) and thus the

intersection of the Vi is a finite subintersection. This shows that we have the

DCC on affine algebraic sets. So we call the affine algebraic subsets of Kn,

the Zariski closed subsets of Kn and we see that this equips Kn with a

Noetherian topology (the Zariski topology). A Zariski closed set V is said to

be irreducible if we cannot write V as Vi U ¥2, where Vi Ç V (i = 1,2)

are also Zariski closed. It is standard to show that any Zariski closed V c: Kn

can be written uniquely as a union of irreducible Zariski closed subsets.

Proposition 3.20. Let k c K, k perfect. Let âe Kn and let V = V(a/k).

Then the number of irreducible components of V = Morley degree of V =

Morley degree of tp(aTk).

Proof: (Remark: We take k perfect, so that "defined over k" has the same

meaning in model theory as in geometry). Let p = tp(a/k). Let pi,...,pr be
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the nonforking extensions of p to K. (i.e. pi e Sn(K), pi does not fork over

k). So r = Morley degree of p. For each i=l,..., r let Vi = V(pi) =

smallest Zariski closed set in pi. Clearly Vi is irreducible (as K is a model)

and Vi ci V. By quantifier elimination pi is "determined" by Vj. So if f is a

k-automorphism of K then for any i, f(VO = Vj for some j. Thus each V{
has only finitely many conjugates over k. Fix say Vi and let Vi= Vir
Vi2,...,Vis, be the k-conjugates of Vi. Then V^ U...U Vis is defined

over k, is in p = tp(a/k) and so equals V. By the irreducibility of each Vi

this shows that Vi U...UVr = V and that the Vi are the irreducible

components of V. This suffices to prove the proposition. D

Corollary 3.21. (Again k perfect). Let V c: Kn be an irreducible Zariski
closed set, defined over k. Then there is a € kn with V = V(a/k). Also if

Vi Ç V is Zariski closed then RMO^) < RM(V).

Proof: By irreducibility of V and compactness there is a e Kn with V =

V(a/k). Suppose Vi Ç V, RM(Vi) = RM(V). Let p' be (by Prop 3.20) the

nonforking extension of p to K. So, as Morley degree of V = 1, Vi e p'.

But then V2 = V(p') is contained in Vi and so is a proper irreducible

component of V, and by the proof of 3.20 we obtain a contradiction. D

Corollary 3.22. (k perfect). Let V jc Kn be irreducible and defined over

k. Let k be the algebraic closure of k (in K) and let V(k) be Vfl kn.

Then V(k) in Zariski dense in V.

Proof: By 3.21 there is an a e Kn with V = V(a/k). Let p = tp(ITk) and

p' the nonforking extension of p to K. Let X c: V be Zariski open in V. So

by Corollary 3.21, RM(X) = RM(V), so Xe p' does not fork over k and

k is an elementary substructure of K containing k. By Proposition 3. 15

X H kn ( = X H V(k)) is nonempty. D
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Let me finally in this section mention superstability a property stronger

than stability but weaker than co-stability. Again it can be defined by means of

a rank. We define the rank R°° on definable subsets X of a very saturated

model N, (the crucial clause being: R°°(X) > a + 1 if there are for all X,, Xi

(i<X), all defined by an instance of the same formula such that

(i) R°°(X A Xi) > a and

(ii) the Xi are m-inconsistent for some m < co, i.e. for distinct
L,...,im we have X. A...A X. = 0.

* 1 Til

T is superstable if R°°(X) is defined for all A. A rather different kind

of rank, the U-rank (of Lascar) can be defined for complete types pe S (A) in

a stable theory: U(p) > a + 1 if p has a forking extension q such that U(q)

> a. It turns out that T is superstable if and only if U(p) < «*> for all p.

Both ranks R°° and U reflect forking in a superstable theory: namely

for R = R°° or U and p <^ q complete types, R(p) = R(q) just if q is a

nonforking extension of p.

4. CO-STABLE GROUPS

A stable group is a group (G,-,...) equipped with possibly additional

structure such that the theory of this structure is stable. Similarly for co-stable

groups, superstable groups. One could also (and we do) consider a stable

group G as a group definable in a stable structure M; namely both the

universe of the group G and the group operation are definable in M. This is

the case of say affine algebraic groups over an algebraically closed fields K,

such groups being definable (in K) subgroups of GLn(K). The two points of

view amount to the same thing. For suppose G to be defined in the stable

structure M; where 9(x,i) defines the universe of G and f(x,y,a) defines

the group operation on G (a c M). For each relation on Gn defined in M by

a formula with parameter a, introduce a new relation symbol. Let G be G

equipped with its multiplication and all there relations. By virtue of definablility

of types in M, every definable in M subset of Gn is definable also in the

structure G. G inherits all the stability theoretic properties of M (stability,
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superstability, co-stability and even K i-categority). Similarly for neducts of £r

(e.g. the pure group (G,-)), except that K i-categority may no longer hold: as

pointed out in a paper of Baldwin in this volume GL2(Œ) is not K i.categorical.

Examples of stable groups are: Abelian groups (as pure groups),
modules, affine algebraic groups over algebraically closed fields (which are co-

stable of finite Morley rank), algebraic matrix groups over any stable ring,

Abelian varieties (equipped with their induced structure from the underlying

field).
We will specialize first to co-stable groups, where the proofs of basic

properities (generic types etc.) are somewhat easier, and then say a few words

about general stable groups.

So let G be a group (with additional structure). At times we want to

consider G as an elementary substructure of a saturated GI, and sometimes

G is itself taken to be saturated. The main new fact given to us by working

with a group rather than an arbitrary structure is "homogeneity" - in the sense
that for every a, b e G there is a definable bijection of G with itself taking a

to b (e.g. right multiplication by a^b). It is clear that any definable bijection

of a structure M also acts on the definable sets and preserves "everything"

of a definable nature, in particular Morley rank, degree etc. So this is true in

particular of left and right multiplication by elements of G. Note that if X c G

is defined by 9(x,b) then a-X is defined by <p(arlx,V). G also acts on the

1-types p E Si(G): if a e GI > G realizes p and b e G, then bp =

tp(ba/G) and pb = tp(ab/G). Similarly p-1 = tp(a'VG). So

RM (p) = RMftr1) = RM(bp) = RM(pb). (*)

Proposition 4.1. Let G be co-stable. Then G has the DCC on

definable subgroups.

Proof: Let Hi^H2<G. (Hi,H2 definable subgroups of G). If HI has

infinite index in H2 then clearly RM(Hi) < RM(H2). If HI has finite index

in H2 then RM(Hi) = RM(H2) but Morley degree (Hi) < Morley degree
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(H2>. As every definable subset of G has ordinal valued Morley rank and

integer valued Morley degree, there cannot be an infinite descending chain of

definable subgroups. D

Corollary 4.2. If G is co-stable, then G has a smallest definable subgroup

of finite index. We call this G°, the connected component of G. D
Note that G° is 0-definable because (i) G° is definable and (ii) G°

can be described without reference to any parameters.

Definition 4.3. Let G be co-stable, pe Si(G) is said to be a generic

type of G if RM(p) = RM(G) (= RM("x = x") in Th(G)).
Remark 4.4. (G co-stable)

(i) There are only finitely many generic pe Si(G) (and there is at least

one.

(ii) if p is generic so is p"1 (by *).

(iii) G acts (by left or right translation) on the generic types of Si(G)

(by *).
In fact:

Lemma 4.5. G acts (by left or right translation) transitively and definably

on the set of generics of Si(G).

Proof: First, let p, q e Si(G) be both generic types, and let a, b e GI > G

realize p, q respectively such that a and b are independent over G. Let c =

ab-1.

Claim: RM(c/G U b) = RM(a/G U b).

This is because cp(x,d) e tp(c/G U b) iff ^(xb-^d) G tp(a/G U b) and

cp(x,d) e tp(a/G U b) iff (p(xb,d) e tp (c/G U b) and (p(x,d), 9(xb,d) have

the same Morley rank.
Let a = RM(G). We know that RM(a/G U b) = a. Thus
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RM(c/GU b) = a. SoRM(c/G) = a. By 3.18 c and b are independent

over G and so by 3.15 tp(c/G U b) is finitely satisfiable in G. Now let
cp(x) e p = tp(a/G) have Morley rank a and degree 1. (So p is the unique

type in Si(G) containing cp(x) and with Morley rank a). We clearly have 1=

cp(cb). So there is c' e G such that t= (p(c'b). But as tp(c'b/G) has Morley

rank a, tp(c'b/G) = p. So p = c'q. This proves transitivity of the action.

Let P = {pi,...,pn} be the generic types of G. To say that G acts

definably on P we mean (in this specal case) for each i,j there is a formula
9ij(x) with parameters in G such that G 1= 9ij(a) iff api = pj. So fix such

ij. Clearly RMpi = RMpj = <x. Let q>(x,a)e pi with RM(cp(x,â)) = a and

degree of (p(x,a) = 1. Clearly api = pj just if <p(arlx,~a) e pj. But pj is

definable (Prop 3.8), so there is \|f(z,a,c) (a,c" c G) such that for all a e G.

, a) e pj iff G 1= \|/(a,â,c). This is enough. D

Corollary 4.6. (G co-stable). The Morley degree of G ( = number of

generic pe Si(G)) = index of G° in G.

Proof: Let {pi,...,pn} be the set of generics in Si(G). Let K = {a e G :

api = pi Vi= l,...,n}. By Lemma 4.5, K is definable, and clearly has finite

index in G and moreover

On the other hand, each coset of G° in G has Morley rank a and so gives

rise to at least one generic type, whereby IG/G°I < n. Thus we have equality,

proving the Corollary. D

Proposition 4.7. Let G be co-stable with RM(G) = a. Let X ci G be

definable. Then RM(X) = oc iff finitely many translates (left or right) of X

cover G.

Proof: As finitely many translates of G° cover G, we may assume that G =

G° (Le. G is connected), and so by 4.6, G has a unique generic type. The

right to left direction of the proposition is easy (as all translates of X have



28 Model Theory, Stability Theory & Stable Groups

same Morley rank). For the left to right direction: Let RM(X) = a. We will
show that for all qe Si(G) there is an element ce G such that the definable
set cXisin q. Fix qe Si(G) and a realization b of q. Let a realize the

generic type of G such that a and b are independent over G. As in the
proof of Lemma 4.5, RM(ab/G) = a ( = RM(G)). As G has Morley degree 1
and RM(X) = oc, abe X. By independence and 3.15. 3a'e G such that
a'b e X. i.e. (a'^-X e q. Put c = (a')'1.

By compactness, finitely many translates of X cover G. D

So we can define a generic formula (or definable set) in G to be one
finitely many left translates of which cover G.
Corollary 4.8. (G co-stable) p e Si(G) is generic iff p contains only

generic formulas.
For stable groups G, Corollary 4.8 can be taken as a definition of

generic type.

Proposition 4.9. Let G be co-stable and connected . Let X c G be

generic. Then X-X = G.

Proof: Let a e G. Let b e GI > G realize the generic type of G. Let cp(x)

be the formula defining X. Now tp(b"VG) and so also tpCb'WG) are
generic. Thus h cpCb^a) and of course N=9(b). Thus GI I=3x3y(cp(x)
A (p(y) A a = xy). The same is true in G (as a e G). So X-X = G. D

Borel proved a useful fact about algebraic groups (over algebraically
closed fields) which is the following: Let G be an algebraic group. Let Xi
i e I be a family of constructible subsets of G, each containing the identity

element e such that the Zariski closure Xi of each Xi is irreducible. Then
the subgroup H of G generated by the Xi is (Zariski)-closed (i.e.

E. En

constructible), connected and H = X. ...X. fo some L,...,ine I, where
l Jn A
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The proof is so direct that it is worth giving: One first observes that for
ei ek

all L ,...,i e I and 6 - ,...,e. = ± 1 the Zariski closure of X. ,...,X. is
1 K I K h \

ei ek —
irreducible. Thus there is X = X. ...X. such that X is greatest. Easily

h *k

X is a subgroup of G. As dim X = dim X and X is connected, by

Proposition 2.9 even X-X = X.
Zil'ber remarkably proved a generalization of this result to co-stable

groups of finite Morley rank. Hrushovski in a paper in this volume proves the

result in an even more general context. Here we give Zil'ber's proof. The
problem of course is that in the general situation of co-stable groups we have no

geometry (at least a priori), so no notion of irreducible. Zil'ber finds a

substitute for this: he calls definable Xd G indecomposable if for any

definable subgroup H of G, either IX/HI = 1 or IX/HI is infinite.

Proposition 4.10. Let G be co-stable with finite Morley rank. For i e I

let Xi be an indecomposable definable subset of G containing the identity

element e. Let H be the subgroup of G generated by the subsets XL Then
H is definable, connected and is equal to Xir..Xik for some ii,...,ifc e I.

Proof: As RM(G) is finite, we can choose ii,...,ik e I such that X =
Xir..Xik has maximum possible Morley rank, say m. Let p e Si(G),

X e p, RM(p) = m. Let H = Fix(p) ( = {a e G : ap = p}) which is

definable as in the proof of 4.5 (H is clearly a subgroup of G).

Claim (i): Xi e H for all i e I (so H contains the subgroup generated by

the Xi).

Proof: Fix i e I. as e G Xi 0 H and Xi is indecomposable if Xj C£ H

then there would be aj e Xi for j < co such that aj * a/ mod H for j * j'. As

H = Fix p, it follows that ajp & ayp for j & j'. As XiX e ajp for all j < co, it
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follows that RM(X|X) > m +1, contradicting the choice of X. Thus Claim (i)

is established.

Claim (ii): H is connected and p is the generic type of H.

Proof: Note that by Claim (i) X c H and thus "x e H" e p. As in the

proof of 4.7, we can find c e H such that cp is a generic of H. By

definition of H (as Fix(p)) we see that p is already a generic of H. By

Lemma 4.5, it is the unique generic of H and thus by 4.6, H is connected.

Thus we see that RM(H) = m, RM(X) = m and H is connected. By 4.9. H

= X-X. D
Macintyre [M] proved that an co-stable field is algebraically closed.

The model theoretic ingredients of this are:

Lemma 4.11: Let K be an co-stable infinite field. Then K has Morley

degree 1 (so by 4.6 is connected both additively and multiplicatively).

Proof: Suppose A is a proper additive subgroup of K of finite index. So
H {kA:ke K} is an ideal I of K. But by 4.1 I=lqA D...nknA for some

ki,...,kn e k, so I has finite index in K. Since K does not have nontrivial

ideals, I = K. So A = K. Thus by 4.6, K has Morley degree 1.

D

Lemma 4.12. Let G be a connected co-stable group and f : G -> G a

definable endomorphism with finite kernel. Then f is surjective.

Proof: G/Kerf is definably isomorphic to Imf, the latter being a definable

subgroup of G. As Kerf is finite, properties of Morley rank imply that

RM(G) = RM(lmf). By connectedness of G, Imf = G. D
Now, by considering the maps x —>xn (endomorphism of K* with

finite kernel) and, if charK = p, the maps x-»xP-x (endomorphism of K

with finite kernel) we see from the previous two lemmas that K is perfect,
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xn - a = 0 has a root in K Va € K, Vn < co, and if char K = p, xP - x - a = 0

has a root in K V a e K. Moreover this is also true for every finite extension

of K (as any finite extension of K is interprétable in K and thus also co-

stable). Now Galois theory implies that K is algebraically closed.

One of the important applications of Zil'ber's indecomposability

theorem is to find a field in certain algebraic situations of finite Morley rank.

The following proposition summarizes the essential points.

Before stating and proving this we make a few explanatory remarks:
First let G be an co-stable group, A d G and a e G; we say that a is generic

over A if tp(a/A) has a nonforking extension peSi(G) which is generic

(Note that if p € Si(G) is generic then p does not fork over 0 so V A c: G

p [A is "generic").

Secondly let G, A be definable groups in an o-stable structure such

that G acts definably on A, as a group of automorphisms of A (e.g. A is a

normal subgroup of G and G acts by conjugation). We call X d A G-

invariant if X is fixed setwise by G.

Fact 4.13: Let X c: A be G-invariant. Then X is indecomposable if and

only if for every definable G-invariant subgroup H of A we have IX/HI =
1 or oo.

Proof: Let H be an arbitrary definable subgroup of A. By the DCC
s = HSl n...nHSn for some sr...,sne G. If X is G-invariant and

IX/HI < co then clearly IXAH*1 n...n H*)l < co and note that H*1 H...n H*"

is G-invariant. D

Proposition 4.14. Let G, A be (infinite) definable Abelian groups in a

structure M of finite Morley rank and assume that G acts definably and

faithfully on A. Suppose moreover that A has no infinite proper G-invariant

subgroup. Then there is in M a definable field R such that the additive group

of R is definably isomorphic to A, G definably embeds into the



32 Model Theory, Stability Theory & Stable Groups

multiplicative group of R, and the action of G on A corresponds to

multiplication in R.

Proof: We first note that A must be connected. Now let a be a generic of A
over 0. We claim that G -a is infinite. For otherwise G°-a is finite, so G°-a =

{a} (as G° is connected), but then as every element of A is a sum of
generics, G°b = b Vbe A soG° ={!},contradicting G beinginfinite.Now

G-a is clearly G-invariant. By Fact 4.13, GaU {0} is an indecomposable
subset of A. By Proposition 4.10, there is an integer n<co such that for

every b e A 3 gi,.»,gn e G such that b = gi-a + ... + gn-a (**).

Let R be the subring of End(A) generated by G. So R is commutative and

by (**) every element r of R is determined by its action on a; in fact every
r e R is of the form gi + ... + gn for some gi,...,gn e G. It easily follows

that R and its action on A are definable, using a as a parameter. We claim

that R is a field. We must show that every nonzero element of R has an
inverse in R. Let re R r & 0. Now Ker r is a G-invariant subgroup of A,

so must be finite. By Morley rank considerations r is surjective. Let therefore
b e A be such that r -b = a where a is the generic element of A chosen

above. By (**) there is s e R such that sa = b. So rs(a) = a. By (**) again

rs = 1. This shows that R is a field. Clearly G <^ R, and the map r —» ra is

an additive isomorphism between R and A.

D

Corollary 4.15. Let G be a connected co-stable group of finite Morley rank

which is solvable but non nilpotent. Then G interprets an infinite field.

Proof: First a remark: If G is connected and Z(G) is finite then G/Z(G) is
centreless. For if ae G is such that a is central mod Z(G) then a~l-aP <^

Z(G), so aG is finite, so CG (a) has finite index in G. Thus Co(a) = G and
a e Z(G).

Now suppose G to be solvable, non nilpotent and connected of finite

Morley rank. If Zn is the upper central series, then since G has finite Morley
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rank, Zn+i/Zn is finite for some n. But then G/Zn+i is centerless by the

above remark. Clearly G*Zn+i (as G is nonnilpotent). So working now

with G/Zn+i (which remains solvable) we may assume G to be centreless

(and still connected). Let A be a minimal infinite definable normal subgroup

of G. Now A is connected and solvable, and by Prop 4. 10 the derived group
A' is definable and connected. Thus A'={e}, A isabelian. As G has no

center, Gc(A) * G. So G/Co(A) is infinite and acts faithfully on A. Let H
be an infinite abelian definable subgroup of G/CG(A) (by co-stability [Ch])

and let B be a minimal infinite H-invariant subgroup of A. H and B satisfy

the conditions of Prop 4. 14,, thus an infinite field is interpreted. D

Before the next application of 4.14, we need to know something about

automorphisms of fields of finite Morley rank.

Fact 4.16. Let K be a (infinite) field of finite Morley rank. Then K has no

infinite definable proper subfield.

Proof: Let L be a definable infinite subfield. So L is co-stable and thus

algebraically closed. K could not therefore be a finite extension of L. But
then Ln can be defmably embedded in K for all n < co, whereby easily K

must have infinite Morley rank. D

Lemma 4.17. Let K be a (infinite) field of finite Morley rank. Let a be a

nontrivial definable field automorphism of K. Then
(i) a has infinite order

(ii) a is acl(0)-definable.

Proof: (i) If a had finite order then the fixed field of a would be infinite

and definable, contradicting the previous fact.
(ii) If a were not acl(0)-definable then we could find P, a definable

field automorphism, with oc^P and stp(a) = stp(P). But then a and p

must agree on the algebraic closure of the prime subfield of K, which is
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infinite. So the fixed field of p^a is infinite, but p^a & id, again

contradicting the previous fact.

Corollary 4.18. A field K of finite Morley rank cannot have a definable
group G of automorphisms.
The second major application of 4.14 is Nesin's theorem:

Proposition 4.19. Let G be solvable, connected of finite Morley rank.
Then G' (the commutator subgroup) is nilpotent.

Proof: We suppose not and obtain a contradiction. As in the proof of 4.15,
we may assume G' to be centreless. (Note G' is definable, connected by

4.10). Let AI be a minimal infinite normal (in G') definable subgroup of G'.

By induction we can choose AI in the center of (G')'. As G' is solvable, AI
is abelian. Let A be the subgroup generated by the A^, g G G. Then A < G'
is abelian, normal in G and in fact A = AI © A^1©...© A^k some
gi,...,gke G (using minimality of AI, the fact that G' is centreless and

finiteness of Morley rank). The proof now follows a series of steps: Let R be
the ring of endomorphisms of A generated by G' (acting on A by
conjugation) and let I be the ideal in R consisting of those r eR which

annihilate AI.
(1) R/l is an infinite field K, which is precisely the ring of endomorphisms
of AI generated by G'/CG'(AI). The latter, as well as its action on AI is

definable, by 4.14. (Note CG'(AI) & G' as G' is centreless). Similarly

I = {r e R : r(Ax) = 0} is a maximal ideal of R for all g e G.

(2) There are only finitely many ideals is of R for g e G.

Proof: Suppose not; let m>RM(A), and suppose Igl,...,Igm are distinct

ideals. Let Bi = Agl, let bie BI such that bi+...+ bm = 0. Let TE R 1

such that r = 1 mod Igl, r e I * for i = 2,...,m (as the I are maximal
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ideals). So r(bi+...+bm) = rbi = 0, so bi= 0. Similarly bi= 0 Vi. Thus the

subgroups BI direct sum which implies that RM(A) > m, contradiction.

(3) I = is for all g E G.

Proof: Let by (2) IiJk—Jn be the distinct conjugates of I. For all m < co

let Rm be those members of R that can be expressed as hi+...+hm for
hi E G'. Thus there is an m such that the Ij fl Rm are pairwise distinct. But

G acts transitively and definably on the Ij H Rm. As G is connected, there is

only one. So (3) is proved.

(4) R = K and is action on A (making A into a K-vector space) is

definable.

Proof: As A is generated by the AS and I = IS Vg, it follows that 1 = 0.

Thus "R = K" and the action of r E R on A is determined by its action on

AI. More precisely: given that I = 0 it follows that the action of an element
r E R on A is determined by its action on AI. But the action of R on AI is

precisely that of K. Now K is definable: every element k of K can be
represented by hi+...+ hn, for hiE G' and fixed ne œ (by 4.14).

Multiplication and addition of such elements are definable using a parameter
from A, as is the relation hi+...+hn = h'i+...+h'n. The action of an

element of R represented by such hi +...+ hn on A is precisely (hi+...+

hn)-a = hi*a +...+ hn-a. We now identify K with R.

It is easily checked that G acts as a group of automorphisms of K by

(hi +...+ hn)S and thus by Corollary 4.18 we have

(5) for every k E K, g E G kê = k.

Finally
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(6) The action of G on A (by conjugation) is K-linear.

Proof: Let k e K, a G A, gE G. Then clearly (k-(a))S = ke-aS = k-ae,

using (5).
By (6), G' acts on the K-vector space A as matrices with determinant

1. But G' also acts as scalar multiplication. Thus G' acts trivially on A i.e.

A d Z (G') which contradicts everything. D

A result whose proof uses similar ideas to the above is:

Proposition 4.20. Let G be solvable centreless connected of finite Morley

rank. Let A be the socle of G (= group generated by minimal normal

definable subgroups). Then the ring R of endomorphisms of A generated by

the action of G on A by conjugation is definable, as well as the action of R

on A.

Proof: As G' isnilpotent (by 4.19) it is clear that every minimal normal

definable subgroup of G is in Z(G'). Moreover A = AI© A2 ©...©An

where each AÏ is minimal normal definable. Then R is generated by
G/CG(A), which is Abelian (as Cc(A) ^> G'), and so R is commutative.

Let If = the ideal of R which annihilates AI. As in 4.19, R/I{ is a field and

is "identical" to the ring of endomorphisms of AI generated by G/CG(AJ),
which is definable by 4.15. Rewrite A as Bi©...©Bk where Bj =
A., ©...©A. , the ideals corresponding to the A., are the same and for j. * L

Jl J"lj Jl 1 Z

the ideals corresponding to the A.., A.. are different. Rewrite I. as the
Ji1 h1 J

annihilator of Aj (=annihilator of Bj). As in the proof of 4.19, Bj is a R/Ij

vector space, where R/Ij and its action on Bj are definable. As the Ij are
maximal ideals of R, for each j there is rj e R which is 1 mod Ij and 0

mod Ik for k* j. Writing Kj = R/Ij, it follows that for any si e KI,...,

Ske Kk there is re R such that for a = bi+...+bke A, r-a =

srbi+...+sk*bk. Thus the action of R on A is the product of the actions of

the KJ on Bj, and so is definable. D
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The greatest and in some sense correct level of generality of stable

group theory is of course stable groups. In place of the DCC on definable

subgroups, one has the weaker DCC on intersections of uniformly definable

subgroups.

Proposition 4.21. Let G be a stable group, and (p(x,y) a formula. Let HI

(i G I) be subgroups of G, each defined by an instance of (p. Then
H H. =H. n...n H. for some L.-.^e I.iel 1 li *n L

Proof: Let A(x) a a finite collection of formulas including (p(z-x,y). If by

way of contradiction, we had an infinite descending chain of finite intersections

of the HI; say KI ï> K2^> KS ..., then for each i we would clearly have
RA(KI + i) < RA(KO or mA(Ki+i) < mA(Ki), which would be a contradiction

to 3.2. D

Generic types in the general stable context can be defined using the

notion of generic formula, introduced earlier: roughly p is generic iff it only

contains generic formulas. This is equivalent to : if G is IT l+-saturated and
pe Si(G), then p is a generic type of G if and only if ap does not fork

over 0 for all ae G. A detailed exposition of the theory of generic types in

the general stable situation appears in Victor Harnik's paper in this volume, so

we will not go into any further details.

If G is stable and very saturated, we will call a subgroup H of G

infinitely definable if H is defined by a collection of at most ITI formulas. A

theorem of Poizat asserts that the formulas can be taken to define subgroups of

G. On the other hand, if H is the intersection of some arbitrary number of

definable subgroups of G, then by 4.21, H is actually the intersection of at

most ITI many definable subgroups. In general infinitely definable subgroups
arise in the stable context where definable subgroups appear in the co-stable

context. For example, if G is saturated, pe Si(G), then Fixp is an

infinitely definable subgroup of G, by virtue of definability of types.
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Superstable groups are of course in between. On the one hand by

looking at the rank R°° mentioned at the end of Section 3, we see that

superstable groups have no infinite descending chains of definable subgroups,

each of infinite index in the preceding one. On the other hand, a superstable

group may not contain a smallest definable subgroup of finite index. So

infinitely definable subgroups only come into the picture when we want to

obtain connected components: If G is a ITI+-saturated superstable group then

the connected component G° of G is the intersection of all definable

subgroups of G of finite index. R°° (G°) = R°°(G). An important fact about

superstable groups G is that the U-rank of G is well defined. There are
types pe Si(G) of maximum U-rank; these are precisely the generic types of

G. An important topic that we have not mentioned is the study of groups of

finite Morley rank from the point of view that they should resemble algebraic

groups over algebraically closed fields. As this is clearly false for abelian

groups (consider Zpoo), some hypothesis of non-abelianness should be

imposed. The major work was done by Cherlin [Ch], where he showed:

(1) A Morley rank 1 group is abelian-by-finite (Actually this is due to
Reineke; Cherlin noted that any (infinite) co-stable group has an infinite

definable abelian subgroup).

(2) If G is connected, of Morley rank 2, then G is solvable. If also G is

centreless then G is the semidirect product of the additive and multiplicative

groups of an algebraically closed field.

(3) If G is connected of Morley rank 3 and G is nonsolvable centreless and

G has a definable subgroup of Morley rank 2, then G = PSL2(K) for K an

algebraically closed field.

The attempt to eliminate (i.e. prove) the condition that G has definable

subgroup of rank 2 has led to an important line of research ([NI], [B.P], [Co]).



AnandKllay 39

Notes for section 4. 4.1 is due to Macintyre [M] 4.6 is due to Cherlin [Ch]
and Zilber [Z]. Our treatment of the material is influenced by Poizat's book
[Po2]. Prop. 4.10 is due to Zilber [Z] as are 4.14,4.15. Proposition 4.19,
4.20areduetoNesin[N2]. 4.21 is Baldwin-Saxl [B.S]. The theory of stable
groups in its full generality is due to Poizat.
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