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is uniformly continuous. Further he proves that the values of such a function
on a closed interval are bounded and that the upper and lower bounds are
attained. He also proves that such a function takes every value between two of
its values. If a quasi-primary function has a derivative for every (primary)
real number, then this derivative is again a quasi-primary function.

He also develops a theory of integration, defining first the Riemann inte-
gral, later also Lebesque's. It might seem that a measure theory must be
impossible in this system, because by ordinary concepts the measure should
be = 0 for denumerable sets, and here all sets are denumerable in a suffic-
iently high layer. However, the distinction between primary and secondary
sets makes a definition of measure possible in such a way that the primary
sets all get the measure 0, but not the secondary sets.

This system has one great advantage in distinction to the previous ones,
namely, that the objects we are dealing with are all definitely and explicitly
given. It is true of course that the unsolvability or even undecidability of
many problems remains as before, but we know what we are talking about.
In the previous theories it was at any rate not required that our considerations
should be restricted to the definable or constructible objects.

16. Some remarks on intuitionist mathematics

Of great interest is the so-called intuitionism which above all is due to
the Dutch mathematician L. E. J. Brouwer. This theory is essentially
characterized by the requirement that an assertion of the existence of a
mathematical object must contain a means of finding or constructing such an
object. Further, the use of such a formal logical principle as "tertium non
datur" is only justified, if we have a decision procedure. The intuitionist
critique of classical mathematics is similar to the critique of Kronecker who
also declared that a great part of ordinary mathematics was only words. It
would lead too far, however, if I should give in these lectures a detailed ex-
position of the intuitionist foundation of mathematics. I must confine my ex-
position here to a few remarks which I hope will give an idea of the intuition-
ist way of reasoning.

The conjunction p & q retains its usual meaning also in intuitionist logic.
The disjunction p v q can be asserted if and only if either p can be asserted
or q can. The negation ~| p shall mean that the assumption p leads to a con-
tradiction. The implication p —»q means that we are in possession of a cer-
tain construction which will furnish a proof of q as soon as a proof of p is
available. The assertion (x)p (x) is justified if we possess a schema showing
the property p(x) for an arbitrary x, and (E(x)p(x) can be asserted if we
know an x with the property p or at least have a method for constructing
such an x.

Since we have no general method to prove either p or "| p, the tertium
non datur, p v~l p, is not generally valid. It can be proved that p —*"|~lP *s

generally true, but not the inverse implication. Such differences in the pro-
positional logic cause differences in predicate logic of course. As an interest-
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ing example of the difference in the classical and the intuitionist way of stat-
ing a theorem, I will take an example mentioned in the book "Intuitionism"
of Hey ting.

Let us define a real number p by writing an infinite decimal fraction as
follows. As long as no sequence of digits 0,1,2,3,4,5,6,7,8,9 has occured in
the development of IT = 3.14... as a decimal fraction, there shall only be digits
3 in the development of p, however, if it should happen that the digits in the
places n - 9, , n should be just 0,1,...,9, then all digits after the nth shall
be 0 in the development of p. Then it is easy to prove that

This can, in classical mathematics, be expressed thus:

P= Q 3.10*

However, this is not correct intuitionistically, because the last statement
1 10n-lwould mean that we are able to prove either that p = ̂  or that p = „ 1Qn for

a certain n. But in order to do that we would have to decide whether a se-
quence 0,1,... ,9 occurs in the development of TT or not. This we are unable
to do at (the) present. This is an example of the circumstance that the two
statements

(Ex)p(x), 1(x)-|p(x) ,

which are equivalent in classical logic, are not generally equivalent in intui-
tionist logic.

Let a real number generator (abbreviated an rng) be any sequence of
rational numbers an such that for every positive integer k we can find an-
other positive integer n such that

for all p. We put

a = b

when for every k we can find n such that

' an+p ~ ^n+p ' ^ ijj:

for all p. Further, a =t= b may mean

l(a = b),

that is, the assumption a = b leads to a contradiction. On the other hand
a tt b shall mean that we know a k and an n such that, for all p,

'an+p " bn+p> > £ '

while a < b shall mean that we know a k and an n such that

bn+p

for all p.
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It is then possible to prove a lot of theorems about these rng. A real
number is the set of all rng which are = a certain rng. The intuitionist notion
set will soon be explained below. I shall mention a few of the most important
theorems about the rng. One proves that a = b is equivalent ~|~l(a = b), or, in
other words, if the assumption a =(= b leads to a contradiction, then a = b.
Further, if a =14= b, then for every c we have a 4 c. v b 4= c. It is clear that
a $ b -*a ± b. Further, a =0= b is equivalent to a < b . v . b < a. Instead of
l(a < b) one writes a <f b. Then we have that a < t b & b > c - * a > c .

Addition, subtraction, multiplication of the rag's a and b is defined by
taking the rng with the general term

an + t>n» an - bn, anbn ,

whereas the quotient g is defined as a - 7- under the assumption b 4= 0, where

r- is the rng c whose general term is cn = |— whenever bn 4= 0 and cn = 0, if

bn = 0. It is then trivial to prove the associative, commutative and distributive
laws. It may be noticed that a + b ^ O - ^ a ^ O - v - b ^ O . For a more thorough
study of this subject I recommend Heyting's book.

As an introduction to the intuitionist set theory it is convenient to define
the notion ips, that is, infinitely proceeding sequence of natural numbers. We
are dealing with an ips, if we first choose a natural number ai and, for every
n, as soon as B.I ,..., an have been chosen, we choose an+i. What determines
these choices, whether they obey a certain law or are made at random or
more or less arbitrarily, is irrelevant. We are justified in saying that an ips
is something that becomes, not that is. If we let a mathematical entity corre-
spond to every finite initial sequence ax,..., an of an ips, we obtain an infinitely
proceeding sequence of such entities.

A set can be built in two ways: 1) There may be a common way of gene-
rating its elements, 2) one considers all elements having a common property.
The sets which are obtained in the first manner are called spreads. The
sets obtained according to the second point of view are called species.

The definition of a spread is as follows: One has two rules, a spread
rule and a complementary rule. The spread rule A determines a process for
the generation of ips in the following way. 1) A determines for every natural
number k, whether it is allowed to be the first element of an ips or not.
2) Every allowed sequence ai,..., an+1 shall be generated from an earlier
allowed sequence ai,..., an. 3) Whenever an allowed sequence ai,...., an is
given, the rule A determines, for any natural number k, whether ai,..., an,
k is an allowed sequence or not. 4) To every admitted sequence a!,..., an
at least one natural number k can be found such that ai,..., an, k is an ad-
mitted sequence.

The complementary rule T determines for every allowed sequence
ai,..., an a corresponding mathematical object bn.

Some elucidating examples, taken from Hey ting's book, may be suitably
mentioned here.

1) Let ri, r2,.... be an enumeration of all rational numbers. We build a
spread M by letting the rule A M be this: Every natural number is ad-
mitted as ai. Whenever ai,..., an is an admitted sequence, a!,..., an, an+1
shall be admitted if and only if
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The rule F^j shall be: To every admitted sequence ai,..., an we let corre-
spond the rational number ran.

It is easy to see that the elements of M are rng, and indeed, if c is an
arbitrary rng, we can find an element m of M such that m = c. Thus M is
simply the continuum consisting of all rng.

2) If the rule A -^ in example 1 is restricted by adding the requirement
0 < ra ^ 1 f°r every n, then M is the spread consisting of all rng x such
that n

3) If the rule A^ in example 2 is further restricted by the requirement that
for each n > 1 we shall have

1 r
2" r«

then M will consist of all rng y such that 0 < y < 1.

It is evident that by changing the rules AM and F^ one can obtain the
most varied spreads of rng.

A simple example of a species is the notion real number. A real number
is the species whose elements are all rng equal to a given one. A general
remark is that the definition of an element of a species must always precede
the definition of the species in order to avoid circular definitions.

Also in the intuitionist theory we have the operations of union and inter-
section of two species. If e as usual means the membership relation we
have the definitions

SET stands for (x) (xeS ->xeT)

S = T means (S ET) & (T ES).

Further we have for arbitrary x the equivalences

(xeS n T)—*(xeS) & (xeT), (xeS U T)—-(xeS) v (xeT).

Letting 4 mean the negation of e in the intuitionist sence, we have the follow-
ing definition of the difference species S - T:

(xeS - T)—(xeS) & (x^T).

It must then be noticed that we don't always have S = T U (S - T). That is
only the case if T E S and we are able, for every xeS, to prove either xeT
or x4 T. A subspecies T of S is called detachable when we possess such a
decision method to decide for any xeS whether it is eT or not.

A characteristic notion is "S is congruent to T". That means

l(Ex)(xeS & x4 T • v • x<|s & xeT),

which can also be written

~l(Ex)(xeS & xdT) • &• "](Ex)(xis & xeT).

As an example of the use of this notion I shall mention the theorem:
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Let T £ S and S1 = T U (S - T). Then S and Sf are congruent.

Proof. First we have Sf £ S because T £S and S - T £ S. Hence
~|(Ex)(xeS & x^S f). Therefore it remains only to prove that ~"|(Ex)(x4s &
xeST). But this is equivalent to ~~l(Ex)(x<|s & (xeT • v - xeS & x<tT)) which
again is equivalent to ~l(Ex)((x4s& xeT) v (x^S & xeS & xeT)) which is
equivalent to (Ex)(x^S & xeT) which follows from (x)(xeT -*xeS).

Simple examples of detachable subspecies of the natural number sequence
are given by the even or the odd numbers. The linear continuum can be
shown to have no other detachable subspecies than itself and the null species.

A species is said to be finite if there is a 1-to-l correspondence between
it and an initial part 1,..., n of the natural number series. It is called de-
numerable if there is such a correspondence between the species and the
whole number series. A species is called numerable if it can be mapped
onto a detachable subspecies of the sequence of natural numbers.

An important notion is "finitary spread" or, more briefly, "fan". A
fan is a spread with such a spread law that there are only finitely many al-
lowed first terms, and for every n every admitted sequence with n terms
has only a finite number of sequences with n + 1 terms as admitted continua-
tions. Above all the so-called fan theorem is important here. It says that if
0(a) is an integral-valued function of a, a varying through the different ele-
ments of the fan, then the value of 0 is already determined by a finite initial
sequence of a. Therefore, if 0((Ji) = m, there exists an n such that 0(a2) = m
as often as a2 has the same first n terms as ai. An important application
of the fan theorem is the proof of the statement that every function which is
continuous on a bounded and closed point species is uniformly continuous on
the point species. Further, such covering theorems as that of Heine-Borel
can be proved. However, not all of the theorems of classical analysis can be
proved in intuitionist mathematics.

I must confine my exposition of intuitionism to these scattered remarks
A more thorough exposition would require a more complete treatment of in-
tuitionist logic, and that would take more space than I have at my disposal
here.

17. Mathematics without quantifiers

In all the theories we have treated above we have made use of the logical
quantifiers, the universal one and the existential one. We have used them
without scruples even in the case of an infinite number of objects. There is
now a way of developing mathematics, in particular arithmetic, without the
use of these operations which, in the case of an infinite number of objects,
may be considered as an extension or extrapolation of conjunction and dis-
junction in the finite case. If we shall really consider the infinite as some-
thing becoming, something not finished or finishable, one might argue that
we ought to avoid the quantifiers extended over an infinite range. Such a
theory is possible. I myself published in 1923 a first beginning of such a
strict finitist mathematics. I treated arithmetic, showing that by the use of


