50 LECTURES ON SET THEORY

and their proofs from the Zermelo-Fraenkel theory to the simple theory of
types. Bernstein’s equivalence theorem with its proof remains unchanged.
Cantor’s theorem that UM is always of higher cardinality than M must be
expressed thus: Let EM be the set of all unit sets {m} contained in M.

Then EM < UM. The previous definition of well-ordering (see § 4) must be
slightly changed to this wording: A set M is well-ordered, if there is a
function R from EM to UM such that, for 0CNESM, there is a unique neN
such that NSR({n}). The wording of Theorem 10 must now be: Let a func-
tion ¢ be given such that ¢(A), for every A such that 0 CA SM, denotes a
unit subset of A. Then there is a subset il of UM such that to every NEM
there is one and only one element No of #l such that NS Np and ¢(No) S N.
Such slight changes will be necessary in many of the previous theorems and
proofs. If we look at Theorem 6 for example, there can be no meaning in an
equivalence between M + N and M - N or even M X N, because the elements
of M N are of type t + 1 and those of M X N are of type t + 2 when those of
M and N are of type t. I, however, we replace M by its sets of unit subsets
EM and N by EN, then EM + EN and M * N will be of same type, and an
equivalence between these two sets will be meaningful. Similarly we can
compare EEM + EEN and M X M. Idon’t think it is necessary to carry out
in detail these small changes in the considerations. By the way, it may be
remarked that functions may well be introduced such that arguments and
values are not of same type, but if functions should be conceived as special
cases of relations, and relations as sets of sequences conceived as sets,
such a procedure must be avoided.

13. The theory of Quine

There have been many attempts to avoid the introduction of types, which
are inconvenient, One of these is the theory of Quine. An exposition of this
can be found in the book ‘‘Logic for Mathematicians’’ recently published by B.
Rosser. Quine’s theory is something intermediate between the axiomatic
theory of Zermelo-Fraenkel and Russell’s type theory. It has in common
with the former the feature that there are no type distinctions. On the other
hand it has in common with the latter the feature that only stratified proposi-
tional functions are admitted for the definition of new sets. Indeed we have
in Quine’s theory the following axiom of comprehension:

(Ey)(x)(xey =—0¢ (x))

with the whole domain of objects as range of variation of x and y. Of course
y must not occur in ¢(x).

It is easy to see that here we again get only one null set A and only one
universal set V. We may for example use these definitions:

x€A ~—(y)(xey & x€y), x€V=(Ey)(x€y - v - X€y) .

Obviously the set V is €V. Nevertheless Russell’s antinomy cannot be de-
duced, because the propositional function xex is not stratified, so that no
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set M can be introduced such that xeM should be~~ x€x. The ordinary con-
structions of new sets are, however, valid. If A(x) and B(x) are stratified,
say without free variables other than x, also A(x) & B(x) and A(x) v B(x) are
stratified, making the definition of an intersection and the union of two sets
possible. Further, if A(x) is stratified, and x does not occur in A(y), then
(Ey)(xey & A(y)) is stratified as well. This shows the existence of the union
of all elements of a given set. Further (x)(xey - v - A(x)) is stratified so that
we can always build the set of all subsets of a given set. Since A(x) is also
stratified, there always exists a complementary set to any given set. There
is therefore a greater possibility for the introduction of new sets in this
theory than in Zermelo’s. In spite of this, however, it turns out that the ex-
istence of infinite sets is not any more provable in Quine’s theory than in
Zermelo’s, so that an axiom of infinity is just as well neéded here. This is
due to the fact that the propositional functions needed for the definition of an
infinite set are not stratified. In Rosser’s book the axiom of infinity is set

up thus:

(m)(n)(meéNn &neNn & m +1=n+1—m = n).

Here Nn means the set of natural numbers, where the natural numbers are
defined as the cardinals of finite sets. The axiom has the effect that none of
these cardinals coincides with the set A, or in other words, there exist finite
cardinal numbers as large as we please. The sequence of natural numbers
is then infinite.

It is interesting to look at Cantor’s theorem. In type theory we could not
compare Um with m. Here we can do that, but Cantor’s theorem is not
generally valid. That it cannot be generally valid is clear, because at any
rate it cannot be true for V. However, if we modify the theorem a little, say-
ing that UM is of higher cardinality than EM (this was also the formulation
we could use in type theory) then we get a correct statement. This circum-
stance shows again that M and EM cannot always be equivalent. This ap-
pears very peculiar, but if we try to prove the equivalence between M and
EM in general, this turns out to be impossible, because we would have to
use propositional functions which are not stratified. Nevertheless, in many
particular cases the use of non-stratified formulas can be avoided. We
therefore have to distinguish between sets M for which we can prove the
equivalence between M and EM and those for which this is not provable. The
former kind of sets are said to be Cantorian and Can M is written for the
statement M ~ EM. Rosser mentions in his book that the statement Can M
is provable not only for the natural number series, M = Nn, but for all the
sets which occur in ordinary mathematics.

Since UV S V, we have
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From this relation it follows (see the proof below) that
(2) EEV < EV,

so that the sets V,EV, EEV, .... will possess decreasing cardinal numbers.
The existence of such a decreasing sequence of cardinals shows that these
cardinals cannot be alephs, whence it follows that not all sets can be well-
ordered. Therefore, the axiom of choice cannot be added to the other axioms
of Quine’s theory without contradictions. We may express this fact by saying
that the principle of choice can be proved false in Quine’s theory. This was
pointed out by Specker.

Proof that (2) follows from (1): Because of (1) there exists a mapping of
the set of all unit sets {m} on a subset of V. Indeed the identical mapping is
of that kind. However, the identical mapping maps the set of all {{m}} on
just this subset of all sets {m}. Let us on the other hand assume that EV
could be mapped onto EEV. The mapping would then consist of mutually dis-
joint pairs ({m}, {{n}}). However, the certainly existing set of pairs (m, {n})
would then furnish a mapping of V on EV contrary to (1). Hence (2) follows
from (1).

The theory of Quine’s does not seem to have many adherents among
mathematicians. The reason for this is presumably the existence of such
sets in it as V which are elements of themselves, pathological sets as they
are called. I don’t think, however, that this circumstance ought to worry
mathematicians, because it is not necessary to take these abnormal sets into
account in the development of the ordinary mathematical theories.

14. The ramified theory of types. Predicative set theory

I have already mentioned Poincare’s objection to Cantor’s set theory,
that one makes use of the so-called non-predicative definitions. These defi-
nitions collect objects in such a way that the totality of these objects, or
objects logically dependent upon that totality, are considered as belonging to
the same totality, so that the definition has a circular character. It might
perhaps be better to say that a non-predicative definition is the definition of
an entity by a logical expression containing a bound variable such that the
defined entity is one of the possible values of this variable. However, instead
of trying to explain this generally, I think it is better to take a characteristic
example.

Let us consider mankind, the domain of all human beings. We have the
binary relation ‘‘x is a child of y’’ which I write Ch(x,y). Let us try to de-
fine descendant of P, P any given person. If we make use of the notion of
finite number we may proceed thus: We define the relation ChP(x,y) re-
cursively by letting

Ch'(x,y) stand for Ch(x,y)
Chh+(x,y) stand for (Ez)(Ch™(x,z) & Ch (z,y)).



