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11. Some remarks on the nature of the set-theoretic axioms.

The set-theoretic relativism.

Most of the axioms of the Zermelo-Fraenkel theory have the form: The
class of all elements for which a certain statement is valid is a set, or, in
other words, the domain D contains an element M such that all the objects
in the class, and only these, are e M. We might call these axioms "defining
axioms," because the set which is declared to exist is also defined. There
are two axioms at least, however, which are not of this kind, namely, the
axiom of infinity and the axiom of choice. The axiom I mentioned expressing
the general aleph hypothesis is of course not a defining axiom. As I have
shown (see Mathematica Scandinavica, vol. 5, p. 40) the axiom of infinity can
be put into defining form. The easiest way of doing that is to use the notion
of ordinal set introduced in § 8. We may define a finite ordinal as an ordinal
set M such that (Ex) (xeM) & (M = x*) & (y)(y eM -* (Ez)(zey & y = z*).
Here x* means x U{x}. Then the axiom of infinity can be expressed by
saying that the finite ordinals constitute a set.

The axiom of choice has given rise to many discussions. The reason
for this is of course its non-constructive character. But people who desire
to retain as much as possible of the old Cantor theory feel obliged to maintain-
that axiom. It is also quite clear that from an axiomatic point of view one
must be allowed to study the consequences of any axioms whatever. On the
other hand it cannot be denied that this axiom also leads to consequences
which one scarcely had expected. I shall mention a couple of examples of
this without entering into the proofs.

In Hausdorff's book "Grundzu'ge der Mengenlehre" one finds the proof of
the following statement: It is possible to divide the surface of a sphere into
4 disjoint parts A,B,C,D such that A is a denumerable set of points, while
B,C,D, are mutually congruent and at the same time B is congruent to C + D.
That two sets of points are congruent means of course that they arise from
one another by a rotation of the sphere.

Still more astonishing is a result obtained by Banach and Tar ski which
has later been improved by some other authors. In an article "Decomposi-
tions of a sphere" by T. J. Dekker and J. de Groot in Fund. Math. XLIII it
is proved that it is possible to divide a 3-dimensional unit sphere in 5 disjoint
pieces, each piece being a connected set, such that by suitable translations
and rotations these pieces can be put together again so that two unit spheres
are formed.

In the last instance it is a matter of personal taste whether one wants to
have a set theory without or with an axiom of choice. A similar remark must
be made with regard to the aleph hypothesis or the hypothesis of the exis-
tence of inaccessible cardinals etc.

From a purely logical point of view it would already be interesting to
study a set theory with only defining axioms. I have proved (see my address
"Some remarks on set theory" in the report of the International Congress
of Mathematicians, Cambridge, Mass, 1950) that in such a theory the intro-
duction of any set M can be brought into the form

(1) xeM — 0(x),
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where 0(x) is a prepositional function containing only x as a free variable
while there may be an arbitrary number of bound variables, 0 being built
from atomic expressions xey, yex, yez , etc. by the logical connectives
and the quantifiers. One might think in the first instance that there is a
more general way of defining new sets, namely, by writing

(2) xeM — 0(x,N,P,R,..),

where N,P,R,... are previously defined sets entering into the expression 0.
However, it is possible to prove that every set defined by an equivalence of
the form (2) is already definable by (1). Indeed the reduction of a definition
(2) to the form (I) can be performed by introducing the definitions of N,P,R,...
into (2) and repeating if necessary, this procedure. If N,P,R,... are defined
by (1) we get on once the form (1) by introducing their definitions. If N,P,R,...
are themselves defined again by (2), the process must be repeated.

The simplest example of reduction from (2) to (1) is the case that M is
defined by the axiom of separation applied to a set N which is defined in the
form (1). E indeed

(3) xeN—A(x)

and

xeM^-(xeN) & B(x) ,

then

xeM—A(x) & B(x)

which is of the form (1). Let us take as a little more complicated example
the definition of the set M of all non-empty subsets of N, where N is de-
fined by (3). First we have

(xeM)—(xeUN) & (Ey)(yex),

but

(xeUN)«~(xCNH-(z)(zex . v . zeN) —^(z)(zex • v • A(z)),

so that we obtain

(xeM) — (Ey)(yex) & (z) (z?x • v • A(z)).

It is now easy to understand the correctness of the theorem:

Theorem 57. In a set theory where the axioms are all of the form: The
class so and so is a set, the definable sets constitute a denumerable class.

Proof. We obtain all sets M by taking in (1) all propositional functions
which, by the operations of the predicate calculus, can be built from atomic
statements yez and only contain x as a free variable. We may replace x by
XQ, letting the bound variables be denoted by Xi, x2, .... Further, 0(x) may
be written in prenex normal form, while its matrix is written in conjunctive
normal form. Then we will get an enumeration of all 0(x) by enumerating all
finite sequences consisting first of some pairs of integers corresponding to
the quantifiers of the prefix, the first number being the index of the x which
occurs as quantifier, the last number being 0 or 1 according as the quantifier
is universal or existential. This sequence of pairs is then followed by a finite
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sequence of finite sequences of triples, each triple corresponding to an atomic
statement xmexn, the last number in the triple being 0 or 1 according as
xmexn occurs unnegated or negated and the first numbers being m and n.

Of course this class of definable sets is not itself a set, or, in other words,
it is no object in the domain D; neither is the enumeration of these sets a
correspondence which occurs as a set in D.

These considerations are put in a clearer light by the application to axio-
matic set theory of the Lb'wenheim theorem, or more exactly a generalization
of this. The theorem of Lowenheim says that if F is a well-formed formula
of the first order predicate calculus with certain predicate variables A,B,C,..,
either F is provable or F can be satisfied in the natural number series by
suitable determination of A,B,C,... in that domain of individuals. The general-
ization which I proved in 1919 says that the same is true for_an enumerated
set of such formulas, say Fi, F2, ..., that is,, either some Fj is provable or
the whole set of formulas can be satisfied by suitable determination in N of
the predicates occurring in them. Since the axioms of our set theory are
either such formulas or are schemas each case of which is such a formula,
it is clear that the generalized Lowenheim theorem can be applied. Therefore
we have that if the axioms are consistent, it must be possible to determine
the relation e between the natural numbers in such a way that all our axioms
become valid. This result appears paradoxical, but it is not difficult to under-
stand how it can be explained. Indeed, the existence of sets in our domain D
is given by the axioms, and we have no guarantee that it should not be possible
in other ways to introduce further sets. Therefore we have no reason to ex-
pect that, for example, the subsets of an infinite set which we can prove to '
exist in D are all of the subsets in an absolute sense. We must be content
with a relativistic conception of set theory. Everything must be conceived
in relation to D as it is supposed to be by the axioms, and we must abandon
the idea that the axioms shall yield an absolute notion of "set" as in Cantor's
theory. That M is not ~ N means in the axiomatic theory that there is in D
no set F of pairs (m,n), meM, neN, yielding a one-to-one correspondence
between M and N. But that does not mean that we cannot find such a set at
all. There might be such a set, but outside D. In this way there might be a
one-to-one correspondence between the Zermelo number series consisting of
the elements 0, {0}, {{0}}, .... and the whole domain D, but this correspond-
ence is not one of the sets of pairs which occur in D. Because of the general
character of the theorem of Lowenheim and its generalization, it is clear that
this set-theoretic relativism is unavoidable if we desire to have an exact
formulation of set theory at all. Of course it shows the illusory character of
the absolutist conceptions of Cantor's theory.


