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9. The notions "finite" and "infinite"

We will now leave for a while the theory of transfinite numbers and deal
with the notion "finite set". There are different possible definitions of this
notion and with the aid of the well-ordering theorem they can be proved to be
equivalent. Without the axiom of choice the proof of this equivalence seems
impossible. I shall prove that the well-ordered finite sets are just the well-
ordered sets that are also inversely well-ordered, that is, there is in every
non-empty subset also a last element.

Definition of the notion inductive finite set:

A set u is inductive finite, if the following statement is true:

(x)(xeUUu & (Oex) & (y)(z)(yex & zeu -»y u{z}ex) -»uex).

In ordinary language this means that every set x of subsets of u, such that
Oex and as often as yex and zeu, always y U {z}ex, contains u as element.

Remark. Such sets x of subsets always exist. Indeed Uu is such a set
x.

According to this definition we of course have the following principle of
induction: If a statement S is valid for 0, and S is always valid for y U {z}
if it is true for y, y c u, zeu, u inductive finite, then S is valid for u. I
shall now prove a few theorems on the inductive finite sets.

Theorem 35. I f u i s inductive finite, so is u u {m}.
Proof. It suffices to assume meu. Let x be a set of subsets of u U {m}

such that Oex and if yex and zeu U {m} then y U {z}ex. Further, let xf

be the subset of x consisting of all elements of x which are cu. Then Oex f

and as often as yex f , zeu, we have y u {z}ex and therefore also y U {z}exf.
Thus, u being inductive finite, uex f . But uex and meu U{m} yields u U{m}ex.
Hence the theorem is correct.

Theorem 36. Every subset of an inductive finite set u is inductive finite.

Proof. Let v be £u. I consider the set x of subsets w of u such that
w n v is inductive finite. It is obvious that Oex, because the set 0 is in-
ductive finite. Let y be ex and zeu. Then y n v is inductive finite and
(y U {z}) 0 v is either y n v, namely when zev, or (y n v) + {z}, namely if
zev. But by the preceding theorem also (y 0u) + {z} is inductive finite. Thus
as often as yex, zeu, we have y u{z}ex. Since u is inductive finite, it fol-
lows that uex. Hence u H v is inductive finite, that is, v is inductive finite.

It follows easily from this that each subset v of u, u inductive finite,
must be an element of every set of subsets of the kind mentioned in the defi-
nition of inductive finiteness.

Theorem 37. Ifu and v are inductive finite, so is u\j v.

Proof. We consider the subset x of all subsets w of u such that w U v
is inductive finite. Obviously Oex. Let yex and zeu. By the previous
theorem, y is inductive finite. Further y U v is inductive finite so that
y U {z} U v is also inductive finite which means that y U{z} ex. Since u is
inductive finite, uex. This again means that u U v is inductive finite.
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Theorem 38. If T is an inductive finite set of inductive finite sets
A,B,C,...., then ST is inductive finite.

Proof. We consider the subsets V of T such that SV is inductive finite.
Obviously 0 is one of them. If V is one of them and KeT then V U {K} is
one of these subsets of T according to the previous theorem, because
S(V U {K}) = SV U K. Therefore, since T is inductive finite, T itself is one
of these subsets, that is, ST is inductive finite.

It is evident that if A is inductive finite, and there is a one-to-one cor-
respondence between A and A', then A* is inductive finite. Using this it is
easily proved that the product of two inductive finite sets is again of this
kind, and further, that if T is an inductive finite set of inductive finite sets,
the product PT is inductive finite.

Theorem 39. If u is inductive finite, every set y of subsets of u con-
tains a maximal element x. This is in symbols

(U inductive finite) -^(y)(yeUUu-»(Ex)(xey & (z)((zey)-»(Et)(tex & te~z)v(x=z)))).

Proof. Let us consider the subsets of u for which this theorem is valid.
Certainly 0 is one of these. Lety be one of them. Then, if zeu, also
y U {z} will be such a subset of u. Let, namely, M be a set of subsets of
y U {z}. If all these subsets of y U {z}are actually subsets of y, then ac-
cording to supposition there is a maximal element in M. Otherwise there
are elements of M of the form yf U {z}, where yf £ u. These y7 constitute
a set Mf of subsets of y so that there is a maximal one, say y0, among
them. But then y0U {z} is a maximal element in M. Hence, since u is in-
ductive finite, the theorem is true for u.

The inverse is also true, namely:

Theorem 40. If every set of subsets ofu contains a maximal element,
then u is inductive finite.

Proof. In particular there is a maximal element in every set x of sub-
sets such that Oex and (yex) & (z-eu) —»(y U {z}eu). But in this case it is
obvious that there is no other maximal element than u itself, which proves
the theorem.

We might therefore just as well define a finite set as a set with property
that there is a maximal subset in every set of subsets. We have seen that
this notion coincides with the notion inductive finite, and we may notice that
we have proved this without any use of the axiom of choice.

A further definition of finiteness is the following: A set M is called
Dedekind finite, if there is no one-to-one correspondence between M and
any proper subset MT of M.

Theorem 41. If M is Dedekind finite, so is M U {m}.

Proof. If meM, nothing is to be proved. Let m be eM, and let us as-
sume that f(x), where x runs through M U {m}, furnishes a one-to-one
correspondence between M U{m} and a proper part N of that set. If N were
£ M, then f(x) would map M on a proper part of M, contrary to supposition.
We may therefore assume N = Ni + {m}, where NiCM. If f(m) were = m, f
would map M onto NI . Then we would have to assume that f(m) e NI . In
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this case f "* (m) e M so that one may define a mapping g such that g(x) = f(x)
for all x=)= m and n = f"1(m) with g(m) = m and g(n) = f(m). Then g would
map M onto Ni.

Theorem 42. Every inductive finite set is Dedekind finite.

Proof. Let M be inductive finite. Let HI be the set of all Dedekind finite
subsets of M. Then OeHl and by the previous theorem N + {m}e HI when-
ever NeHl. Thus we have Mefll.

In this treatment of the notions of finiteness we have hitherto not used the
axiom of choice. This is needed, however, to prove the inverse of the last
theorem. As a matter of fact, as far as I know, nobody has been able to prove
that without the axiom of choice. I shall give two versions of the proof.

Theorem 43. Every inductive infinite set is Dedekind infinite.

Proof. That the set u is_inductive infinite means that there exists a set
x of subsets of u such that uex in spite of the circumstance that Oex and
whenever yex & zeu, we have y U {z}ex. It is clear that there is no subset
of u occurring as a greatest element of x. Now let us assume the principle
of choice, that we have a function f of the subsets y of u such that always
f(y)ey. Then we can define a g(y) for all yex thus: g(y) = f(u-y). Then we
may remark that the set x has the two properties: 1) Oex, 2) whenever
yex also y + {g(y)}ex. All these x together constitute a subset X of Uu.
Let XQ be the intersection D3C of all these x. Then XQ still possesses the
properties 1) and 2). Furthermore, for every yex0 , where 0=1= y, there is a
y^exo such that y = y-i + g(y-i). Otherwise x0- {y}would still possess the
properties 1) and 2) which is contrary to the definition of XQ. Then we may
define a mapping of u on a proper part of u as follows. We let u - Sxo be
mapped identically onto itself while every g(y), where yex0 , shall be the
image of g(y-i) for the corresponding y _ j . This provides a mapping of Sxo
onto the proper part Sxo - (g(0)}. Indeed every zeSxo must be a g(y) for
some yexo, because otherwise we could remove all elements y containing
the element z from XQ and still have a subset x with the properties 1) and 2).

Theorem 44. If an inductive finite set is well-ordered, it is also in-
versely well-ordered by the same ordering.

Proof. Let M be inductive finite. We consider the set T of all subsets
N for which the theorem is valid. We have OeT. Let N be eT and meM
but not eN. By every well-ordering of N + {m}, either m will precede all
elements of N or come after all these, or m will divide N into an initial
part NI and a terminal part N2 so that all elements of Ni precede m while
all of N2 succeed m. But since every non-empty subset of N has both a
first and a last element, one sees that every subset of N + {m}which is not
empty has this property as well. Therefore MeT, which means that the
theorem is true for M.

Theorem 45. If a set M is well-ordered and also inversely well-ordered,
it is inductive finite.

Proof. Let us assume the existence of elements y of M such that the
set of all x = y was not inductive finite. Among these y there is then a
least one, say m. There is a predecessor mi of m. Then the set of all
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x = mi is inductive finite. But according to a previous theorem then also the
set of the x ^ m must be inductive finite. Therefore the set of all x i y is
inductive finite for arbitrary y. Taking y then as the last element, one sees
the truth of the theorem.

Using the last theorems we obtain another version of the proof of the
statement that every inductive infinite set M is Dedekind infinite. However
we must also use the well-ordering theorem, so that this proof depends on
the axiom of choice as well. Let M be well-ordered. Then after our pre-
ceding results this well-ordering of M cannot simultaneously be an inverse
well-ordering. Thus there is a subset Mi ̂  0 without a last element. The
set of all elements x = an element y of MI is then an initial part N of M
without last element. Every element n of N has a successor n'eN. We may
then define a mapping f of M into a proper part of M by putting f(n) = nf for
every neN and f(n) = n for every n not eN. '

10. The simple infinite sequence. Development of arithmetic

Let M be a Dedekind infinite set, f a one-to-one correspondence between
M and a proper part Mf of M. Let 0 denote an element of M not in Mf. I
denote generally by af the image f(a) of a, also by Pf, when PEM, the set
of all pf = f(p) when p runs through P. Let N be the intersection of all sub-
sets X of M possessing the two properties

1) OeX, 2) (x)(xeX-»x'eX).

Then N is called a simple infinite sequence or the f-chain from 0. We may
say that it is the natural number series. It is evident that N has the proper-
ties 1) and 2). Further we have the principle of induction: A set containing
0 and for every x in it also containing x1 contains N.

Theorem 46. (y)(yeN -»(Ex)(y = xf) & (xeN) • v • y = 0).

This means that any element of N is either 0 or the f-image of another ele-
ment of N. The proof is easy: Let us assume that neN and ^ 0 and ^ every
xf when xeN. Then N-{n} would still possess the properties 1) and 2), which
is absurd.

In order to develop arithmetic it is above all necessary to define the two
fundamental operations addition and multiplication. Usually these as well as
any other arithmetical functions are introduced by the so-called recursive
definitions. I shall show how we are able to use here the ordinary explicit
definitions which can be formulated with the aid of the predicate calculus. I
shall introduce addition and multiplication by defining the sets of ordered
triples (x,y,z) such that x + y = z resp. xy = z.

We may consider the sets X of triples (a,b,c), where a,b.,c are eN,
which have the two properties:

1) All triples of the form (a,0,a) are eX.

2) Whenever (a,b,c) is eX, (a,b',cf) is eX.


